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BACKGROUND: The randomized, placebo-controlled COLCOT (Colchicine Cardiovascular Outcomes Trial) has shown the 
benefits of colchicine 0.5 mg daily to lower the rate of ischemic cardiovascular events in patients with a recent myocardial 
infarction. Here, we conducted a post hoc pharmacogenomic study of COLCOT with the aim to identify genetic predictors of 
the efficacy and safety of treatment with colchicine.

METHODS: There were 1522 participants of European ancestry from the COLCOT trial available for the pharmacogenomic study 
of COLCOT trial. The pharmacogenomic study’s primary cardiovascular end point was defined as for the main trial, as time 
to first occurrence of cardiovascular death, resuscitated cardiac arrest, myocardial infarction, stroke, or urgent hospitalization 
for angina requiring coronary revascularization. The safety end point was time to the first report of gastrointestinal events. 
Patients’ DNA was genotyped using the Illumina Global Screening array followed by imputation. We performed a genome-
wide association study in colchicine-treated patients.

RESULTS: None of the genetic variants passed the genome-wide association study significance threshold for the primary 
cardiovascular end point conducted in 702 patients in the colchicine arm who were compliant to medication. The genome-
wide association study for gastrointestinal events was conducted in all 767 patients in the colchicine arm and found 2 
significant association signals, one with lead variant rs6916345 (hazard ratio, 1.89 [95% CI, 1.52–2.35], P=7.41×10−9) in a 
locus which colocalizes with Crohn disease, and one with lead variant rs74795203 (hazard ratio, 2.51 [95% CI, 1.82–3.47]; 
P=2.70×10−8), an intronic variant in gene SEPHS1. The interaction terms between the genetic variants and treatment with 
colchicine versus placebo were significant.

CONCLUSIONS: We found 2 genomic regions associated with gastrointestinal events in patients treated with colchicine. Those 
findings will benefit from replication to confirm that some patients may have genetic predispositions to lower tolerability of 
treatment with colchicine.
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Inflammation plays an important role in atherosclerosis 
and in processes leading to and following a myocar-
dial infarction. The COLCOT (Colchicine Cardiovascular 

Outcomes Trial) has recently shown the benefits of the 
anti-inflammatory medication colchicine in reducing the 
rate of ischemic cardiovascular events in 4745 patients 
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included within 30 days after myocardial infarction.1 The 
study’s primary end point consisting of time to first occur-
rence of cardiovascular death, resuscitated cardiac arrest, 
nonfatal myocardial infarction, nonfatal stroke, or urgent 
hospitalization for angina requiring coronary revasculariza-
tion was reduced by 23% by low-dose colchicine as com-
pared to placebo after a median follow-up of 23 months.1

Considering that patients receive long-term treatment 
with multiple drugs after a myocardial infarction, genomics 
can help identify patients more or less unlikely to derive 
benefits to decrease polypharmacy. Given the effects 
of colchicine on tubulin and multiple inflammatory path-
ways,2,3 the identification of genes associated with clinical 
outcomes can provide insights into the underlying mecha-
nisms responsible for its benefits in patients with coronary 
artery disease. Similarly, genes linked to adverse effects 
may offer clues to their pathophysiology. Here, we pres-
ent the post hoc pharmacogenomic study of COLCOT in 
the subgroup of participants who took part in the optional 
genetic substudy, with the aim to identify genetic predic-
tors of the efficacy and safety of treatment with colchicine.

METHODS
The data underlying this article cannot be shared publicly to 
preserve the privacy of study participants; however, the data 
are available from the corresponding authors upon reason-
able requests. The analytic methods and study materials may 
be made available to other researchers for purposes of repro-
ducing the results or replicating the procedure. Summary sta-
tistics are available publicly for download and visualization via 
PheWEB4 at URL: http://statgen.org/pheweb/colcot. The 
COLCOT clinical trial was registered at URL: https://www.clin-
icaltrials.gov under the unique identifier NCT02551094. The 
study protocol was approved by the Montreal Heart Institute 
research ethics committee and complies with the Declaration 
of Helsinki. Written informed consent was obtained from all 
participating subjects. Full Methods are available in the Data 
Supplement of the article.

RESULTS
There were 1522 participants included in the pharma-
cogenomic analysis of COLCOT of which 767 were ran-
domized to colchicine and 755 to placebo (Figure I in 
the Data Supplement). The baseline characteristics of 
patients according to the study treatment groups are 
shown in Table 1. The mean age of participants was 60.9 
years and 81.3% were male. The COLCOT study primary 
cardiovascular end point occurred in 6.2% of patients 
who consented to the pharmacogenomic substudy, as 
compared to 6.3% of those in the main trial (P=0.86; 
Table I in the Data Supplement). Gastrointestinal adverse 
events occurred in 23.4% of the pharmacogenomic 
study population, as compared to 17.6% of the COLCOT 
trial participants (P=1.8×10−7).

Genetic Determinants of Cardiovascular 
Efficacy With Colchicine
The pharmacogenomic analyses of the primary car-
diovascular efficacy end point were limited to the 702 
participants randomized to colchicine who used the 
study drug with at least 80% compliance in the first 
6 months of treatment. Of those, 39 patients had an 
event. The prespecified analysis for the ATP binding 
cassette subfamily B member 1 gene (ABCB1) vari-
ant rs1045642 and the CYP3A4 (cytochrome P450 
family 3 subfamily A member 4) metabolizer phenotype 
was not associated with the primary cardiovascular 
efficacy end point (P=0.77 and P=0.91, respectively), 
and none of the tested genetic variants passed the 
genome-wide association study (GWAS) significance 
threshold (P<5×10−8; Figure IIA in the Data Supple-
ment). However, the GWAS analysis had limited power, 
and negative results should be interpreted with care. 
The sex-stratified GWAS with 576 male participants 
also did not provide any GWAS-significant findings 
(Figure IIB in the Data Supplement), however, there 
was some interest for the top signal on chromosome 
9 at rs10811106 (P=5.8×10−8) near the stabilizer of 
axonemal microtubules 1 (SAXO1) gene (also known 
as FAM154A), as it encodes the stabilizer of axonemal 
microtubules 1 (Figure IIIB in the Data Supplement).

Genetic Determinants of Gastrointestinal 
Adverse Events With Colchicine
There were 767 participants randomized to colchicine 
who were included in the genetic analyses for gastro-
intestinal adverse events, of those, 187 had a gastro-
intestinal event. The ABCB1 rs1045642 variant and 
the CYP3A4 metabolizer phenotype were not associ-
ated with gastrointestinal adverse events (P=0.97 and 
P=0.31, respectively). We found 22 genetic variants 
significantly associated with gastrointestinal events at 

Nonstandard Abbreviations and Acronyms

ABCB1	� ATP Binding Cassette Subfamily B 
Member 1 gene

COLCOT	� Colchicine Cardiovascular Outcomes 
Trial

CYP3A4	� cytochrome P450 family 3 subfamily A 
member 4

GWAS	 genome-wide association study
HAUS6	� HAUS augmin like complex subunit 6 
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2 loci located on chromosomes 6 and 10 (Figure). The 
most significant association on chromosome 6 was the 
intergenic variant rs6916345 (P=7.41×10−9). When 
conditioning on rs6916345, no additional genetic vari-
ants remained significant at P<5×10−8 in the region, and 
rs6916345 had the highest probability of being causal by 
CAVIAR analysis (Data Supplement). The minor allele (A) 
was associated with gastrointestinal events in the colchi-
cine group (hazard ratio [HR], 1.89 [95% CI, 1.52–2.35], 
P=7.41×10−9) with an estimated effect in the placebo 
group of HR=1.30 (95% CI, 1.04–1.62; P=0.02). The 
effect appeared to be mostly driven by the occurrence of 
diarrhea (Table II in the Data Supplement). The interac-
tion term between rs6916345 and colchicine treatment 
was significant (P=2.96×10−8; Table 2). Individuals with 
the AA genotype represented 25% of the trial popula-
tion. Gastrointestinal adverse events were reported by 
36.9% of AA patients in the colchicine group compared 
with 18.6% in the placebo group (HR, 2.42 [95% CI, 
1.57–3.72], P=5.77×10−5; Table 3). We found evidence 
of colocalization of the locus with Crohn disease (Mate-
rial and Figure V in the Data Supplement). The risk allele 
(A) at rs6916345 was previously associated with Crohn 
disease (odds ratio, 1.07, P=3.1×10−5).5

The most significant association at the chromosome 
10 locus was at rs10128117 located in intron 2 of the 
selenophosphate synthetase 1 gene (SEPHS1). However, 

because this variant is triallelic and was imputed as bial-
lelic, we report the findings based on variant, rs74795203, 
in strong linkage disequilibrium, located in intron 4 of the 
gene (Figure IVB in the Data Supplement). The G allele 
of variant rs74795203 was associated with gastroin-
testinal events with an HR of 2.51 (95% CI, 1.82–3.47; 
P=2.70×10−8) with an estimated effect in the placebo 
group of HR of 0.71 (95% CI, 0.46–1.09; P=0.11). 
The interaction term between rs74795203 and colchi-
cine treatment was significant (P=3.13×10−6; Table 2). 
When conditioning on rs10128117 or rs74795203, 
no additional genetic variants remained significant at 
P<5×10−8. Individuals with the AG or GG genotype at 
rs74795203 represented 13% of the trial population. 
Gastrointestinal adverse events were reported by 47.1% 
of patients with the AG or GG genotype in the colchi-
cine arm compared with 18.9% in the placebo arm (HR, 
3.98 [95% CI, 2.24–7.07], P=2.33×10−6; Table 3). The 
GWAS limited to 622 male participants did not identify 
additional association signals.

DISCUSSION
In this pharmacogenomic study of the randomized, pla-
cebo-controlled COLCOT trial, genetic variants were 
found to be associated with gastrointestinal events in 
patients treated with colchicine, offering insights into the 
biological mechanisms underlying the tolerability of treat-
ment with colchicine. Although the signal did not reach 
the significance threshold, we have found an interest-
ing genetic region on chromosome 9 in the prespeci-
fied analysis in males that is possibly associated with 
the cardiovascular benefits of colchicine. The locus is 
particularly interesting as it spans the SAXO1 gene, and 
it colocalizes with the expression of the HAUS augmin 
like complex subunit 6 (HAUS6) gene which is involved 
in microtubule generation from existing microtubules 
and in kinetochore-microtubule attachment and central 
spindle formation during anaphase.6 The cardiovascular 
event risk allele at the leading variant reduces HAUS6 
expression, and it may possibly interact with the effects 
of colchicine on tubulin binding and microtubule polym-
erization. However, replication of this locus in future car-
diovascular studies with colchicine is necessary.

The genome-wide analysis of gastrointestinal adverse 
events found 2 associated regions. The first region on 
chromosome 6 is particularly appealing as it colocalizes 
with a previously identified locus for Crohn disease.5 The 
risk allele of the lead variant at this locus was previously 
associated with Crohn disease risk and with reticulocyte 
counts and hemoglobin concentrations, which are com-
mon extraintestinal complication of Crohn disease. The 
second genetic locus on chromosome 10 overlaps the 
SEPHS1, which encodes an enzyme that synthesizes 
selenophosphate from selenide and ATP. We found evi-
dence of colocalization of the region with expression of 

Table 1.  Characteristics of the Pharmacogenomics Study 
Participants

Characteristics
Colchicine 
(N=767)

Placebo 
(N=755)

Female sex, N (%) 145 (18.9) 139 (18.4)

Age, mean±SD, y 60.7±10.0 60.8±9.9

BMI,* mean±SD, kg/m2 28.7±4.9 29.1±4.5

Current smoker, N (%) 180 (23.5) 164 (21.7)

Diabetes, N (%) 123 (16.0) 129 (17.1)

Hypertension, N (%) 368 (48.0) 363 (48.1)

Dyslipidemia, N (%) 393 (51.2) 366 (48.5)

Prior MI, N (%) 114 (14.9) 113 (15.0)

Prior PCI, N (%) 141 (18.4) 136 (18.0)

Prior CABG, N (%) 29 (3.8) 33 (4.4)

Prior stroke, N (%) 19 (2.5) 22 (2.9)

Prior heart failure, N (%) 8 (1.0) 10 (1.3)

History of atrial fibrillation, N (%) 39 (5.1) 34 (4.5)

Concomitant medication

  Aspirin, N (%) 762 (99.3) 749 (99.2)

  Antiplatelet agent other than aspirin,* N (%) 755 (98.4) 751 (99.5)

  Statin, N (%) 762 (99.3) 751 (99.5)

  β-blocker, N (%) 683 (89.0) 664 (87.9)

BMI indicates body mass index; CABG, coronary artery bypass graft; MI, 
myocardial infarction; N, number of patients; and PCI, percutaneous coronary 
intervention.

*Significantly different between treatment groups, all variables tested by Krus-
kal-Wallis or χ2 test.
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SEPHS1, with correlation between the gastrointestinal 
disorder risk allele and lower SEPHS1 gene expression.

Despite the relatively small proportion of participants 
who consented to take part in the pharmacogenomic 
substudy of COLCOT (32%), we have found significant 
and credible association signals predictive of gastrointes-
tinal events with colchicine use. There may be volunteer 
bias in the pharmacogenomic subgroup compared with 
the main trial population, and we observed a lower occur-
rence of deaths, possibly attributable to the fact that not 
all patients were recruited into the pharmacogenomic 
substudy at the baseline visit. This may have contributed 
to reducing the statistical power for detecting genetic 
association signals with the primary cardiovascular end 
point which included cardiovascular death. We also noted 
an overrepresentation of patients who reported suffering 
from gastrointestinal disorders during the course of the 
trial from both the colchicine and the placebo arm. This 
could be due to correlation between patient willingness 

to participate and to share information on milder gas-
trointestinal adverse events. We do not expect that this 
observation had an impact on the pharmacogenomic 
findings with gastrointestinal events, as the 2 genetic 
association signals identified were strong and had strong 
interaction effects with colchicine treatment.

Because this study was a post hoc investigation, 
these results are considered as hypothesis-generating, 
and they will have to be replicated before using the 
information for clinical decision-making. Colchicine is 
used throughout the world for indications of gout, famil-
ial Mediterranean fever, pericarditis, and, since the COL-
COT trial, for secondary cardiovascular prevention. There 
are other ongoing and planned clinical trials designed to 
assess the cardiovascular benefits of colchicine where 
it may be possible to replicate the findings if genetic 
material is collected. Reliance on observational studies 
and registries to conduct replication studies will become 
an option as the long-term use of colchicine for the 

Figure. Manhattan plot for the genome-wide association study (GWAS) of gastrointestinal adverse events in COLCOT 
(Colchicine Cardiovascular Outcomes Trial) using Cox proportional hazards regression with 4 468 817 genetic variants of minor 
allele frequency ≥5% with 767 patients from the colchicine arm of COLCOT, controlling for age, sex, and principal components 
for genetic ancestry.

Table 2.  Genetic Association Results of the Leading Genetic Variants Found to be Significantly Associated in the COLCOT 
Pharmacogenomic Study

End point Leading variant EA EAF
COLCOT 
arm

No. of 
total

No. of events 
(%) HR (95% CI) P value

Interaction 
P value*

Gastrointestinal 
adverse events

rs6916345 
chr6:14649353

A 0.50 Colchicine 751 183 (24.4) 1.89 (1.52–2.35) 7.41×10−9 2.96×10−8

Placebo 741 168 (22.7) 1.30 (1.04–1.62) 0.02 2.96×10−8

rs74795203 
chr10:13377992

G 0.06 Colchicine 764 187 (24.5) 2.51 (1.82–3.47) 2.70×10−8 3.13×10−6

Placebo 751 173 (23.0) 0.71 (0.46–1.09) 0.11 3.13×10−6

Reported results are for Cox proportional hazards regression adjusted for age, sex, and 10 principal components for genetic ancestry. Chr indicates chromosome; 
COLCOT, Colchicine Cardiovascular Outcomes Trial; EA, effect allele; EAF, effect allele frequency in COLCOT population; HR, hazard ratio; and N, number of patients.

*Interaction P value represents the association result for the variant by colchicine interaction term. Chromosomal position reporting according to GRCh37.
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prevention of secondary cardiovascular disease gains 
in popularity in the coming years. Shorter-term use of 
colchicine for the treatment of gout could provide useful 
data for replication of the genetic variants associated 
with gastrointestinal events.

In conclusion, in the present pharmacogenomic study 
of the COLCOT trial, we have found genetic variants 
associated with gastrointestinal events in patients treated 
with colchicine. Those findings will benefit from replica-
tion to confirm our observations that some patients may 
have genetic predispositions to lower tolerability of treat-
ment with colchicine.
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