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Abstract

Sample size calculations are an essential component of the design and evaluation of scien-

tific studies. However, there is a lack of clear guidance for determining the sample size

needed for phylogenetic studies, which are becoming an essential part of studying pathogen

transmission. We introduce a statistical framework for determining the number of true infec-

tor-infectee transmission pairs identified by a phylogenetic study, given the size and popula-

tion coverage of that study. We then show how characteristics of the criteria used to

determine linkage and aspects of the study design can influence our ability to correctly iden-

tify transmission links, in sometimes counterintuitive ways. We test the overall approach

using outbreak simulations and provide guidance for calculating the sensitivity and specific-

ity of the linkage criteria, the key inputs to our approach. The framework is freely available

as the R package phylosamp, and is broadly applicable to designing and evaluating a wide

array of pathogen phylogenetic studies.

Author summary

Sequencing the genetic material of viral and bacterial pathogens has become an important

part of tracking and combating human infectious diseases. Specifically, comparing the

pathogen DNA or RNA sequences collected from infected individuals can allow research-

ers and public health experts to determine who infected whom, or detect when a pathogen

entered a specific country or geographic area. However, it is often impossible to collect

samples from every single infected person, and these missing sequences can pose prob-

lems for this type of analysis, especially if there is some bias behind which samples were

selected for sequencing. We have developed a mathematical framework that allows users

to determine the probability their conclusions about pathogen transmission are correct

given the number and proportion of samples from a pathogen outbreak they have

sequenced. This framework is freely available, easy to use, and broadly generalizable to

any pathogen, and we hope that it can be used to inform the design and sampling strate-

gies behind future sequencing-based studies.
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Introduction

As the cost of pathogen sequencing has declined, the number and size of studies based on

pathogen sequence analysis has increased dramatically [1]. Traditionally, researchers have

sequenced convenience samples collected as part of routine clinical or public health activities

(e.g., diagnostic specimens collected as part of an outbreak response), or as part of studies

where specimens are collected for other purposes. However, the analysis of pathogen genomic

sequences is increasingly becoming a primary goal of both research studies and public health

surveillance efforts [2–5]. This shift has been driven by the apparent utility of pathogen

sequence data for understanding aspects of pathogen spread ranging from the frequency and

source of introductions into a region [6–10], to identifying endogenous spread of emerging

diseases [11,12], to understanding the role of “hotspots” in maintaining broader community

epidemics [13], to understanding transmission patterns at an individual or “microscale” level

[3,14].

Despite these many examples, there is a lack of clear and accessible guidance for appropri-

ately designing and sizing studies aimed at understanding pathogen transmission, or for evalu-

ating the design and conclusions of past studies. Without such guidance, it is difficult for

researchers to design studies in a way that maximizes the chances of success, and difficult for

reviewers to appropriately evaluate papers and grant applications centered around molecular

or phylogenetic outcomes [15,16]. In particular, undersampling or biased sampling can lead to

poorly supported inferences about patterns of disease spread [17,18]. While there are examples

of researchers conducting careful a priori analyses of sampling strategies [19–21], these have

largely relied on sophisticated techniques that are not broadly generalizable. Hence, there is a

need for broadly accepted and accessible guidance for the selection of specimens for sequenc-

ing and phylogenetic analyses.

As noted above, pathogen sequences have been used to understand multiple aspects of

infectious disease transmission at scales ranging from the global (e.g., movement of pathogens

between countries) to the individual (e.g., reconstruction of individual transmission chains).

Arguably, all such analyses can be reduced to the basic question of whether pairs of infected

units (individuals, locations, etc.) are related or connected within a particular number of gen-

erations of transmission. Therefore, developing tools for assessing the number of sequences

needed to confidently identify linked individuals (infections separated by no more than a spe-

cific number of generations of transmission) is a good place to start building a theory for

power calculations for phylogenetic inference that can later be applied to questions at vastly

different spatial or temporal scales. In this paper, we present a framework for making critical

decisions about study design when the goal is to identify infector-infectee pairs, and we illus-

trate this approach with simulation studies.

Methods

General principles

In this paper we will focus on studies that aim to identify infector-infectee pairs from phyloge-

netic analysis of pathogen sequence data collected from infected individuals. We assume the

study aims to achieve some level of certainty that identified infector-infectee pairs are correct,

and may also require identification of some minimum number of pairs. Below we lay out a

precise terminology (Table 1) and general principles.

To start, we define the term linkage criteria to represent all the criteria used to infer whether

a set of infected individuals are linked to one another by direct transmission. The linkage crite-
ria can be derived from a combination of genetic distance between pathogens isolated from
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different individuals, tree structure (e.g., clade support), and epidemiologic information (e.g.,

relative dates of symptom onset). We refer to infections inferred to be connected by transmis-

sion using this criteria as linked pairs. Some of these linked pairs will represent actual transmis-

sion events (true transmission pairs) and some will be false positives. We want to determine

the sample size (M) and proportion of the population (ρ) required to recover a predetermined

number of linked pairs, while keeping the false discovery rate (the proportion of these linked

pairs that are false positives) below a predetermined threshold. When applied to a study where

design was dictated by other factors (e.g., specimen availability), the same methods can be

used to determine the false discovery rate, which will inform the confidence we have in any

conclusions about disease transmission in that study.

To capture true transmission pairs, the infector and their partner infectee must both be in

the sample. Therefore, correctly identifying direct transmission links (and, conversely, calcu-

lating the false discovery rate) depends on the sampling fraction (ρ), which is equal to the sam-

ple size (M) divided by the total number of infected individuals in the relevant population (N).

Identification of these links will further depend on the sensitivity (η) and specificity (χ) of the

criteria used to define linkage. We define sensitivity as the probability that the linkage criteria

will identify a true transmission pair as a linked pair given that both the infector and infectee

are in the sample. Similarly, the specificity is the probability that two infections not linked by

transmission are not linked by the linkage criteria.

Here we show that, if we have reasonable estimates of the sampling fraction, sensitivity, and

specificity, we can, for a sample of size M, estimate the false discovery rate. The relationship

between these parameters can then be used to design studies with a sample size and sampling

fraction that minimizes the false discovery rate and therefore maximizes our ability to draw

inferences from identified infections.

Calculating sample size and false discovery rate

Multiple links and multiple true transmissions. In most transmission scenarios, we will

be interested in linking an infected individual to both their infector and anyone they infect.

Therefore, we must account for the fact that each infection in an outbreak may be linked by

transmission to multiple other infections, only some of which may have been sampled. If the

goal is to identify all true transmission pairs in the sample, the linkage criteria used must simi-

larly allow for each infection to be linked to multiple other infections. Given this, we can calcu-

late the probability of correctly identifying a true transmission pair, ϕ (equal to one minus the

false discovery rate), as a function of just the sensitivity and specificity of the linkage criteria,

the proportion sampled, and the sample size. Conceptually, this probability of correctly

Table 1. Parameters used in calculations and simulations.

Parameter Description

M Number of infections sampled

N Total number of (relevant) infected individuals in an outbreak

ρ Proportion of outbreak infections sampled (M/N)

η Sensitivity of the linkage criteria

χ Specificity of the linkage criteria

ϕ Probability that an identified link represents a true transmission event (1-False Discovery Rate)

R Reproductive number of a pathogen

Rpop Average reproductive number of a pathogen in a finite population (always <1)

μ Substitution rate of the pathogen (in substitutions observed per genome per transmission event)

https://doi.org/10.1371/journal.pcbi.1009182.t001
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identifying a transmission pair is equal to the number of true positives (correctly identified

true transmission pairs) divided by the total number of positives (linked pairs, regardless of

true transmission status):

� ¼
True Positives

True Positivesþ False Positives

Because we allow each infection to have multiple transmission partners, this probability will

also depend on the average number of transmission links per infection, which is determined

by the epidemiological parameter R, the expected number of other individuals each infected

individual infects in a fully susceptible population. However, sampling infections over a finite

period of time produces a bounded sampling frame, in which the average number of infectees

per infector, denoted Rpop, may differ from R. This is because terminal nodes in the transmis-

sion network within this finite sampling frame are presumed to have no known child infec-

tions, and therefore an R value of zero. These nodes (which may or may not have child

infections outside the sampling frame) contribute an R value of 0, decreasing the average num-

ber of infectees per infector. In fact, Rpop must be less than 1, see ‘Estimating the average repro-

ductive number’ below. Because each infection is linked to, on average, Rpop infectees as well

as its infector, each infection has Rpop+1 true transmission partners. If we assume that the dis-

tribution of the number of transmission partners per infection is Poisson distributed, we get

the following equation for the true discovery rate, ϕ (see S1 Text for full derivation):

� ¼
ZrðRpop þ 1Þ

ZrðRpop þ 1Þ þ ð1 � wÞðM � rðRpop þ 1Þ � 1Þ
ð1Þ

Under the same assumptions, we show that the total number of sampled true pairs,

E½number of true pairs�, can be calculated as:

E number of true pairs½ � ¼
MrðRpop þ 1ÞZ

2

Through algebraic rearrangement of these equations we can determine the expected num-

ber of pairs observed in this sample, E½number of pairs observed�:

E number of pairs observed½ � ¼
M
2

ZrðRpop þ 1Þ þ ð1 � wÞðM � rðRpop þ 1Þ � 1Þ
h i

These equations can be used to determine the false discovery rate (1−ϕ) and the expected

number of linked pairs given a particular criteria, sample size, and sampling proportion. Addi-

tionally, we can use these equations to observe how the expected number of links and the true

discovery rate vary with the proportion sampled and the sample size (Fig 1A). For a given sen-

sitivity and specificity of the linkage criteria, we observe that the false discovery rate increases
with sample size if the proportion sampled remains constant, suggesting that studies aimed at

correctly identifying the highest proportion of transmission links should prioritize sampling

proportion over an arbitrary number of samples. Additionally, the relationship between false

discovery rate and sampling proportion is dependent on the sample size needed to obtain that

sampling proportion such that the impact of sampling proportion increases with sample size.

We also observe the effects of changing sensitivity and specificity on the false discovery rate

and find that the specificity of the linkage criteria is of key importance when attempting to

minimize the false discovery rate of transmission pairs (Fig 1B).

Single link and single true transmission. We can also derive the relationship between the

sample size and false discovery rate for the special case where each infection is the transmission
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pair of exactly one other sample, relevant when we are only interested in identifying the correct

infector of a given infection. In this case, the linkage criteria will similarly identify exactly one

probable link for each infection [15]. These assumptions about transmission simplify the rela-

tionship between sample size and false discovery rate. Here, we calculate the false discovery

rate for transmission pairs under these assumptions (see S1 Text for full derivation).

The probability of correctly identifying a true transmission pair (ϕ) under the assumptions

of single transmission and single linkage is:

� ¼
Zr

Zrþ ð1 � wM� 2Þð1 � ZÞrþ ð1 � wM� 1Þð1 � rÞ
ð2Þ

Under the same assumptions, we can also calculate the expected total number of true trans-

mission pairs that will be identified in our sample, E½number of true pairs�, as:

E number of true pairs½ � ¼
M
2
Zr

Through algebraic rearrangement of these equations, we can determine the expected num-

ber of linked pairs (identified with the linkage criteria) observed in this sample

(E½number of pairs observed�):

E number of pairs observed½ � ¼
M
2
Zrþ ð1 � wM� 2Þð1 � ZÞrþ ð1 � wM� 1Þð1 � rÞ½ �

As in the multiple links and multiple transmissions case, we observe that the false discovery

rate increases with the sample size, but decreases with the proportion sampled. We also again

see the important effect of the specificity of the linkage criteria on the false discovery rate

Fig 1. Sample size and false discovery rate given multiple linkage and multiple transmissions. (A) Effect of sample size (red lines) or proportion sampled (blue

lines) on the expected number of linked pairs (upper plots) or the false discovery rate of linked pairs (lower plots). The specificity and sensitivity are held constant.

(B) Effect of varying the sensitivity and specificity of the linkage criteria on the false discovery rate (FDR). White dots: theoretical sensitivity and specificity values at

different genetic distance thresholds (1–10 substitutions between infections; leftmost white dot represents a threshold of 1 substitution) for a hypothetical pathogen

with substitution rate = 1 substitution/genome/transmission and R = 2 (see ‘Determining sensitivity and specificity’ below for details). In both panels, Rpop = 1.

https://doi.org/10.1371/journal.pcbi.1009182.g001
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(S1 Fig). The relationships between these parameters and our ability to correctly identify trans-

mission links are clearly robust to transmission model specification.

Estimating the average reproductive number

In the previous section, we distinguished R, the basic reproductive number of a pathogen, from

Rpop, the average reproductive number in a bounded sampling frame. This is an important dis-

tinction because we can show that the average reproductive number (Rpop) is at most one. This is

because any sampling frame contains a finite number of infected individuals, and individuals on

terminal nodes of the captured transmission chain have not, by definition, infected any other

individuals within the sampling frame (though they may have passed the infection to others out-

side the finite sample). Averaging the R value from these terminal nodes (which is zero, because

they are terminal nodes) with the R value from all other nodes is what allows the Rpop average to

drop below one, even when the true value of R is significantly greater than one. In other words,

there will always be more infections (at minimum, all infectees in a transmission chain plus a sin-

gle index case) than infection events (see S2A Fig). Hence, Rpop, which is equal to the number of

actual transmission events divided by the number of infections, will be at most one.

In epidemic situations where there is a single introduction, Rpop will be close to one, as the

number of infections will exceed the number of infection events by precisely one. In situations

where there are multiple introductions (e.g., transmission chains that are persistently seeded

from sources outside the sampling frame) then Rpop may be substantially less than one (S2B

Fig). Specifically:

cases � introductions
cases

The examples shown in this paper focus on epidemics seeded by a single introduction,

where Rpop is approximately equal to one.

Determining sensitivity and specificity

In the framework presented here, the sensitivity and specificity of the linkage criteria are

needed to estimate the false discovery rate from sample size and vice versa. This criteria can be

based on a number of phylogenetic and epidemiological metrics, and may depend on the data

available for a particular study. In this section, we outline two methods for approximating the

sensitivity and specificity of a simple genomic metric: genetic distance.

Both methods involve determining these parameters from the discrete distributions of

genetic distances between linked and unlinked infections, but they differ in how these distribu-

tions are obtained. Given the distributions, we can consider a number of different genetic dis-

tance thresholds (e.g., 1 or 2 mutations observed between sequences) that could be used as the

criteria for differentiating between linked and unliked pairs, and we can calculate the sensitiv-

ity and specificity at each. The optimal threshold and its associated sensitivity and specificity

can be selected in a variety of ways [22–25] based on the specific study goals.

Below, we describe two ways to obtain the genetic distance distributions of linked and

unlinked infection pairs for a hypothetical pathogen with R = 2 and a substitution rate (μ) of 1

substitution per genome per generation. We use the substitution rate rather than the pathogen

mutation rate because our method concerns mutations observed between pathogen transmis-

sion events. We then use these genetic distance distributions to determine sensitivity and spec-

ificity, and ultimately to calculate the false discovery rate given a specific sample size and

proportion. Here and henceforth, “generation” refers to a generation of transmission (not viral

replication time).
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Empirical method

One way to estimate the relevant genetic distance distributions is to use existing data. Specifi-

cally, we need a subsample of infections for which sequencing data is available and we have a

high degree of confidence—based on epidemiological data—of the true transmission relation-

ships between included infections. For example, infected individuals who share a household

versus community members with no known relationship. We can compute the genetic dis-

tance between every pair of pathogen sequences from this subsample and use the results to

approximate the underlying genetic distance distributions between linked and unlinked infec-

tions in the population.

We illustrate this method on a simulated outbreak of approximately 1500 infections (data

available at https://github.com/HopkinsIDD/phylosamplesize), created using the outbreaker R

package [26,27] (see ‘Outbreak simulations’ below). To create our known subsample, we

selected a small number of infections from early in the outbreak and extracted their true trans-

mission links and simulated genomes. We then calculated the genetic distance matrix of

sequences in this subsample and determined the genetic distance distributions for linked and

unlinked infection pairs (Fig 2A). Next, we estimated the sensitivity and specificity at every

mutation threshold (0 mutations, 1 mutation, etc.) and used the point closest to the (0,1) cor-

ner to determine the optimal threshold for differentiating between linked and unliked infec-

tions. In this case, the optimal threshold was 3 mutations, which had a sensitivity of 0.95 and a

specificity of 0.88.

Substitution rate method. Observed pathogen substitution rates can also be used to esti-

mate the genetic distance distributions, especially when a subsample of infections with known

transmission histories is not available. If we assume that the number of mutations observed

between two linked infections is Poisson distributed around the substitution rate and that we

know the distribution of the number of generations between infections in the population, the

probability of observing a specific genetic distance (d) between the sequences from any two

Fig 2. Determining the sensitivity and specificity of a genetic distance threshold. (A) Empirical distribution of genetic distances for linked (purple) and unlinked

(yellow) infections for 50 infections selected from early in a simulated outbreak (μ = 1 substitution/genome/generation, R = 2). Inset: receiver operating characteristic

(ROC) for all possible genetic distance thresholds. Optimal threshold shown as green dot (ROC) and dashed vertical line (distribution). (B) Estimated distribution of

genetic distances for linked and unlinked infections generated by the substitution rate method. Parameters and plots are as in (A).

https://doi.org/10.1371/journal.pcbi.1009182.g002
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infected individuals linked by transmission is:

1

Xglink

i¼1

gðiÞ

Xglink

i¼1

gðiÞ � f ðd; i � mÞ ð3Þ

where g(i) is the probability of observing i generations between infections, glink is the maxi-

mum number of generations between infections considered linked, f(d;i�μ) is the probability of

observing d mutations between two infections separated by i generations, and μ is the substitu-

tion rate per genome per generation (see S2 Text).

Similarly, the probability of observing a genetic distance d between two infections not

linked by transmission is:

1

Xgmax

i¼glinkþ1

gðiÞ

Xgmax

i¼glinkþ1

gðiÞ � f ðd; i � mÞ ð4Þ

Where gmax is the maximum number of generations considered.

Since we assume that the number of substitutions between two linked infections is Poisson

distributed, f(d;i�μ) is simply the probability density function of a Poisson distribution with

mean i×μ. Determining the distribution of generations between infections, however, is a non-

trivial task [28–30] and depends on several factors, including the shape of the epidemic and

the period of time from which infections are sampled (S3 Fig). In the examples included

herein, we use simulations to empirically approximate this distribution (see S2 Text), but it is

likely that adequate approximations can be obtained by other means—or that more sophisti-

cated approaches can be employed to directly estimate the necessary genetic distance distribu-

tions [31].

Given the approximate generation distribution between infections, we calculated the

genetic distance distributions for linked and unlinked infections for the pathogen described

above. The optimal genetic distance threshold for distinguishing between linked and unlinked

infections was 4 mutations (sensitivity = 0.98, specificity = 0.99) (Fig 2B). The empirical and

substitution rate methods result in a similar, but not identical, optimal threshold for the patho-

gen in this example, likely due to sparse sampling in the empirical case.

Regardless of which method we choose, we can use the sensitivity and specificity values to

calculate the probability of correctly identifying a true transmission pair (ϕ) for this pathogen.

We use Eq 1, allowing for each infection to have multiple transmission partners. We will also

assume that we are able to sample 50% of the cases in this hypothetical outbreak of 1500 infec-

tions:

� ¼
ZrðRpop þ 1Þ

ZrðRpop þ 1Þ þ ð1 � wÞðM � rðRpop þ 1Þ � 1Þ

¼
0:98 � 0:5 � ð1þ 1Þ

0:98 � 0:5 � ð1þ 1Þ þ ð1 � 0:99Þð750 � 0:5 � ð1þ 1Þ � 1Þ
¼ 0:116

We note that, despite a reproductive number (R) of 2, a single introduction into this out-

break means we should use Rpop = 1. Given our assumptions, we find that under 12% of our

inferred linked infections—using a genetic distance threshold of 4 mutations—are likely to

reflect true transmission relationships. A better specificity value is needed to achieve more

confidence in direct transmission links, which can occur for pathogens that incur a significant

number of mutations between infections considered linked [32]. For pathogens that do not
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meet these criteria (as in the example here), it may not be possible to use genetic distance alone

to distinguish between linked and unlinked infections (S4 Fig).

Outbreak simulations

We used outbreak simulations to validate our approach. We simulated outbreaks using the

‘simOutbreak’ function implemented in the outbreaker R package [26]. For all simulations we

assumed a large number of susceptible individuals in the population (n.hosts = 100,000), a

genome length of 1,000 nucleotides, and no importation events (single source outbreak). We also

assumed every infected individual transmitted their infection exactly one time step after infection,

and ran the simulation for the number of generations needed to achieve a final outbreak size of

approximately 1,000 infections (ln(1000)/ln(R)). We discarded simulations with an outbreak size

of less than 100 or more than 2000 infected individuals; these discarded simulations did not count

towards the total number of simulations for a given set of parameters. After simulating the source

population, we randomly selected a predetermined proportion of infections from that population.

For each sampling proportion, we simulated outbreaks over a variety of substitution rates

and reproductive numbers. We allowed the substitution rate to vary between 0.0001–4 muta-

tions per genome per generation, and allowed the reproductive number to vary between 1.3–

18. We chose these ranges to encompass substitution rates [33,34] and reproductive numbers

[35] observed in actual human pathogens, and set the transition rate to be equal to the trans-

version rate for the purposes for this simulation. We note that, while pathogens can have

reproductive numbers below 1.3, this was the minimum value that produced enough out-

breaks with greater than 100 individuals in a reasonable amount of time. We divided each

parameter range into 100 discrete values and ran simulations with all combinations of substi-

tution rate and reproductive number, for a total of 10,000 simulations for each sampling pro-

portion. We required simulated outbreaks to contain at least 100 and no more than 2000

infections for analysis. Validation plots were made in R using ggplot2 [36], and smoothed con-

ditional means were calculated with the geom_smooth function from this package.

Implementation

Functions for calculating the false discovery rate for a specific sample size or proportion are

implemented in the R package phylosamp, freely available at: https://github.com/

HopkinsIDD/phylosamp. This package also includes functions for calculating the necessary

sample size based on a desired false discovery rate (inverse of Eqs 1 and 2), and functions to

estimate the number of transmission pairs that will be observed given a sample size and a set of

assumptions (e.g., multiple links and multiple transmissions, single link and single transmis-

sion, etc.). We also provide generation distributions for values of R between 1.3–18, derived

from the simulations described in S2 Text.

Applications to existing datasets

We used the phylosamp package to apply our method to an existing mumps virus dataset. We

converted the reported substitution rate of 4.76×10−4 substitutions/site/year [37] to 0.36 sub-

stitutions/genome/generation as follows:

4:76� 10� 4substitutions
site � year

�
15384 sites
genome

�
1 year

365 days
�

18 days
generation

¼ 0:36 subs=genome=generation
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We used a sampling proportion of 0.93, which is the fraction of samples from patients affili-

ated with Harvard University (71) that resulted in complete genomes. We also noted that the

original mumps manuscript reports multiple lineages circulating within Harvard University,

which would reduce the average reproductive number (Rpop) used to calculate the true discov-

ery rate. However, decreasing this value again only decreases confidence in identified links, so

we used Rpop = 1 to again calculate the upper bound of this estimate.

When applying the methods to a hypothetical SARS-CoV-2 outbreak, we converted a sub-

stitution rate of 24.896 substitutions/genome/year [38–40] to 0.34 substitutions/genome/gen-

eration using a generation time of 5 days [41]. The samplesize function in the phylosamp

package gave the following error message when used with the optimum sensitivity and speci-

ficity (along with an outbreak size of 120 and true discovery rate of 0.9), indicating no amount

of sampling would lead to high confidence in identified links: “Input values do no produce a

viable solution.”

Results

Method performance with known sensitivity and specificity

We used simulated outbreaks to validate the relationship between sample size and false discov-

ery rate using genetic distance as our linkage criteria. We subsampled each outbreak and,

using the known transmission relationships and genetic distances between simulated infec-

tions, calculated the false discovery rate at each possible genetic distance threshold in the sub-

sample (“simulated FDR”). For each simulation (before subsampling), we also calculated the

actual specificity and sensitivity at every relevant genetic distance threshold. We used these val-

ues and the observed Rpop (roughly equal to one in most simulations) to then calculate the the-

oretical false discovery rate at a particular sampling proportion using Eq 1. We find that the

theoretical false discovery rate is consistent with the simulated value for a wide array of patho-

gen substitution rates and reproductive numbers (Fig 3).

Overall, the bias of our estimate of the false discovery rate approached zero for all sampling

proportions (Table 2). The average error was less than 0.04 in each case (i.e., false discovery

rate estimate is off by no more than 4%), decreasing significantly with increased sample size or

proportion sampled (Tables 3 and S1). We note that special care should be taken with low

sample sizes and low theoretical false discovery rates, as error rates can be particularly high in

this range. Additionally, while our method is an unbiased estimator and overall correct in

expectation, it is always possible for performance in a particular set of individuals sampled

from a population to deviate substantially from expectation. As an example, in a small fraction

of simulations, there were by chance no true transmission links (or, in some cases, no false pos-

itives) in our subsample. This fixes the simulated false discovery rate at 1 (or 0, when there are

no false positives), which may not be representative of the overall relationship between sample

size and false discovery rate and highlights how the specific infections sampled can affect

results, particularly when sample sizes are low.

To better understand why the error rate of our estimator increases as the false discovery

rate decreases, we stratified the simulation data by the sensitivity and specificity given a partic-

ular genetic distance threshold. We found that the error is highest when sensitivity is low and

specificity is high (S5A and S5B Fig), which occurs when a high genetic distance threshold is

used. This combination often produces low false discovery rates, but is highly dependent on

sampling (namely, if any true positives or false positives are sampled). This leads to highly vari-

able simulated false discovery rates and consequently higher error rates. Unsurprisingly, this

analysis also highlights that a discrete threshold like genetic distance produces a limited num-

ber of possible sensitivity and specificity combinations (S5C and S5D Fig). Therefore,
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Fig 3. Predicted versus observed false discovery rate in outbreak simulations. Theoretical versus simulated false discovery rate (FDR) for each genetic distance

threshold in 10,000 simulations of varying substitution rate and reproductive number (approximately 260,000 points per plot, see Tables 2 and 3). Outbreak sizes

range from 100–2000, as described in Methods. White line: smoothed conditional mean; grey dashed line: y = x line. Increasing values of the sample size (M) are

plotted in darker color; because the maximum outbreak size is fixed at 2000, the maximum sample size differs for each sampling proportion. Increasing both the

sample size and proportion reduces bias and error, see Tables 2 and 3.

https://doi.org/10.1371/journal.pcbi.1009182.g003

Table 2. Bias of calculated false discovery rate for simulations with fixed sampling proportion.

ρ = 0.10 ρ = 0.25 ρ = 0.50 ρ = 0.75 All ρ values N

FDR = 0.00–0.25 -0.0006 0.0045 0.0001 0.0036 0.0022 17,900

FDR = 0.25–0.50 0.0044 0.0045 0.0009 0.0032 0.0032 31,633

FDR = 0.50–0.75 0.0064 0.0039 0.0006 0.001 0.0029 51,069

FDR = 0.75–1.00 0.0001 0.0001 <0.0001 <0.0001 0.0001 965,125

All FDR Values 0.0005 0.0005 0.0001 0.0002 0.0003 1,065,727

N 261,360 267,239 268,900 268,228 1,065,727

https://doi.org/10.1371/journal.pcbi.1009182.t002
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obtaining reasonable estimates for these values in tandem is of key importance when using our

method to estimate the false discovery rate of a phylogenetic study.

Method performance with estimated sensitivity and specificity

We repeated the false discovery rate comparison described above, but instead of using the actual

sensitivity and specificity observed in each simulation, we calculated these parameters from the

substitution rate used to generate that simulated outbreak (Fig 4). To reduce reliance on simula-

tion data to calculate necessary parameters, we used Rpop = 1 rather than the empirical value.

Under this more realistic set of assumptions, we observe a slight bias, though overall values

remain less than one percent (S2 and S3 Tables). However, while mean bias is very low on aver-

age, it is greater when the theoretical false discovery rate is low, reaching an average of nearly

8% off the simulated value for predicted false discovery rates less than 25%. Average error rates

were similarly slightly increased, but remained less than 4% overall. Despite these trends, the

vast majority of false discovery rate estimates (as well as sensitivity and specificity estimates) fall

very close to their true values (Fig 5). This observation holds true when only examining the

optimal genetic distance threshold (using the closest to the (0,1) corner method, as described in

Methods) (S6 Fig) rather than estimated values at all thresholds shown in Figs 4 and 5.

Given that correct sensitivity and specificity values are an important component of calculat-

ing the theoretical false discovery rate, we looked at the specific estimates for these parameters

generated by our substitution rate method. When considering only direct transmissions as

linked (as we do throughout these simulations), Eq 3 simplifies to simply a Poisson distribu-

tion around the substitution rate, resulting in highly accurate and precise sensitivity estimates

(Figs 5 and S7). However, we find that our estimates for specificity have a positive bias regard-

less of sample size or proportion (Figs 5 and S8 and S9). We hypothesized that inaccuracies in

the estimated specificity cause the bias observed in the false discovery rate estimate and were

due to the distribution of generations between infections used in our calculation; as discussed

in Methods, this is a non-trivial distribution that we estimated by averaging over many simula-

tions (see S2 Text for details).

To test this hypothesis, we used the actual distribution of generations between infections

from each simulation in our calculation of specificity (sensitivity estimates are unaffected by

this distribution when considering only direct transmissions, as described above). We find

that this does in fact reduce bias in our specificity estimates (Fig 6) and leads to largely unbi-

ased (<2%) estimates of the false discovery rate, even at low theoretical false discovery rate val-

ues (S10 Fig and S4 Table).

Application of the sampling framework

Illustrative retrospective example. To illustrate our sample size calculation framework,

we used a publicly available dataset from an outbreak caused by a well characterized pathogen

Table 3. Error of calculated false discovery rate for simulations with fixed sampling proportion.

ρ = 0.10 ρ = 0.25 ρ = 0.50 ρ = 0.75 All ρ values N

FDR = 0.00–0.25 0.2135 0.1359 0.0799 0.0401 0.098 17,900

FDR = 0.25–0.50 0.2751 0.1583 0.079 0.0416 0.1275 31,633

FDR = 0.50–0.75 0.2057 0.0979 0.0478 0.0259 0.092 51,069

FDR = 0.75–1.00 0.0155 0.0069 0.0035 0.002 0.007 965,125

All FDR Values 0.032 0.0181 0.0097 0.0052 0.0161 1,065,727

N 261,360 267,239 268,900 268,228 1,065,727

https://doi.org/10.1371/journal.pcbi.1009182.t003
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(mumps virus) that had been subject to both genomic and epidemiological analysis [37]. We

first used the substitution rate method described above to calculate the sensitivity and specific-

ity of genetic distance as a linkage criteria using the substitution rate reported in the study

(molecular clock rate = 4.76×10−4 substitutions per site per year). We converted this substitu-

tion rate to 0.36 substitutions per genome per generation using the mean generation interval

estimated in the study (18 days), which falls within previous estimates of this parameter [42–

44]. We used the effective reproductive number reported for Harvard University (1.70) to esti-

mate the generation time distribution using our phylosamp package, as shown in the R code

below:
library(phylosamp)
data("gen_dist_sim")

Fig 4. Validation of substitution rate method to calculate sensitivity and specificity. Theoretical versus simulated false discovery rate (FDR) for each genetic

distance threshold in 10,000 simulations of varying substitution rate and reproductive number (approximately 260,000 points per plot, see Tables 2 and 3). Outbreak

sizes range from 100–2000, as described in Methods. White line: smoothed conditional mean; grey dashed line: y = x line. Increasing values of the sample size (M) are

plotted in darker color; increasing both the sample size and proportion reduces bias and error, see S2 and S3 Tables.

https://doi.org/10.1371/journal.pcbi.1009182.g004
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Fig 5. Histogram of raw parameter error using substitution rate method. Theoretical minus simulated parameter values for each genetic distance threshold in

10,000 simulations of varying substitution rate and reproductive number for a given sampling proportion (see Fig 4). Top row: theoretical minus simulated false

discovery rate; middle row: theoretical minus simulated sensitivity; bottom row: theoretical minus simulated specificity. Colors correspond to sampling proportion as

in Fig 4.

https://doi.org/10.1371/journal.pcbi.1009182.g005

Fig 6. Effect of the generation distribution on specificity of the linkage criteria. Theoretical versus simulated specificity for each genetic distance threshold in

10,000 simulations of varying substitution rate and reproductive number (proportion sampled = 0.75). White line: smoothed conditional mean; grey dashed line:

y = x line. Increasing values of the sample size (M) are plotted in darker color. (A) Theoretical sensitivity and specificity calculated using average distribution of

generations between infections from simulations (see S2 Text). (B) Theoretical sensitivity and specificity calculated using the actual distribution of generations

between infections from that simulated outbreak.

https://doi.org/10.1371/journal.pcbi.1009182.g006
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mgd <- as.numeric(gen_dist_sim[gen_dist_sim$R = = 1.70, -(1:2)])
get_optim_roc(sens_spec_roc(cutoff = 1:20,mut_rate = 0.36,
mean_gens_pdf = mgd))

This method results in an optimal sensitivity of 0.95 and specificity of 0.95 using a cutoff of

two mutations.

We then used these parameter values to calculate the true discovery rate of our linkage cri-

teria, i.e., the proportion of identified links (whole mumps genomes differing by<2 muta-

tions) that represent actual transmission pairs. We focused on the part of the mumps outbreak

within Harvard university, for which 66 whole genomes sequences were generated from 71

unique patient samples. While the true number of cases at Harvard was likely significantly

higher, this provides a maximum sampling proportion of 93% of infections. Using the phylo-
samp package, we calculated the true discovery rate as follows:
truediscoveryrate(eta = optim$sensitivity,chi = 1-optim$specificity,
rho = 0.93,M = 66,R = 1)

Using our method, we calculated a true discovery rate of 0.35. This low value suggests that

genetic distance alone would not be sufficient to identify specific transmission links within the

Harvard community during this mumps outbreak. This is in line with the findings of the origi-

nal paper, which demonstrates the need for both genomic and epidemiological data to under-

stand transmission, and emphasizes the frequent need for such epidemiological data to

achieve the required specificity for high confidence estimation of transmissiosn links.

Illustrative prospective example. To demonstrate how our method could be used to esti-

mate the sample size needed to identify transmission links with 90% confidence (i.e, a true dis-

covery rate of 0.9), we applied our method to a hypothetical COVID-19 outbreak in an

unvaccinated community with 120 infections. We calculated the sensitivity and specificity of

genetic distance using a substitution rate of 0.34 mutations per genome per generation [38–

41] and an R value of 3, consistent with many efforts [45,46]:
mgd <- as.numeric(gen_dist_sim[gen_dist_sim$R = = 3, -(1:2)])
get_optim_roc(sens_spec_roc(cutoff = 1:20,mut_rate = 0.34,
mean_gens_pdf = mgd))

This method results in an optimal sensitivity of 0.95 and a specificity of 0.84 using a cutoff

of two mutations. Using these parameters, we found that not even perfect sampling could lead

to a true discovery rate of at least 0.9:
samplesize(eta = optim$sensitivity,chi = 1-optim$specificity,N = 120,
R = 1,phi = 0.9)

This suggests that genetic distance alone is not sufficient to differentiate linked and unliked

SARS-CoV-2 infections at high confidence. However, if we could identify additional phyloge-

netic or epidemiological criteria that would increase the specificity to 0.999 (keeping the sensi-

tivity at 0.95), a sample size of 11 would achieve our desired confidence in direct transmission

links. Additionally, it may be more fruitful to focus on cases linked within several generations

of transmission, during which additional mutations would have time to accumulate.

Discussion

We have developed a mathematical framework for making informed sampling decisions in patho-

gen genome sequencing studies. Specifically, this framework allows for easy calculation of the rela-

tionship between the number or proportion of infections sampled during an outbreak and the

ability of some phylogenetic or epidemiological criteria to correctly identify infections within this

sample that are linked by direct transmission. Understanding this relationship is crucial to making

correct inferences about pathogen transmission patterns, especially as genomic studies are becom-

ing more feasible and widely used to answer both scientific and public health questions.
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This framework is broadly applicable to a variety of phylogenetic or epidemiological

approaches, as long as the sensitivity and specificity of the criteria can be approximated. With

a basic understanding of the pathogen and the criteria being used, researchers can more effec-

tively design studies that correctly identify transmission pairs with a known level of confi-

dence. Additionally, this generalizable method (available as a free software, the R package

phylosamp) provides a metric by which reviewers of these studies can evaluate their conclu-

sions. We apply our method to simulated outbreaks using genetic distance as the linkage crite-

ria and find that we can effectively estimate the false discovery rate for a variety of pathogen

substitution rates, reproductive numbers, and relevant genetic distance thresholds. It is impor-

tant to note, however, that for a given sensitivity and specificity, there may not always be a

study design that achieves the desired false discovery rate.

Performance of the method presented depends on our ability to estimate the sensitivity and

specificity of a particular linkage criteria. While we present two methods for doing this—

empirically and theoretically using the substitution rate of the pathogen—implementing either

in practice is not without challenges, and improved estimation of these values may be a fruitful

area for future research. For instance, the substitution rate based approach also depends on the

distribution of the number of generations of transmission between infections in the underlying

population. Although distributions derived from simulations (provided as part of the phylo-
samp package) provide a reasonable proxy, estimates of sensitivity and specificity are much

improved when using the exact generation distribution, which currently can only be deter-

mined from complete knowledge of all transmission events. Further research into all the fac-

tors affecting this distribution will be necessary to improve its estimation. Likewise, there are

challenges to the empirical approach, particularly for novel pathogens.

Better performance can likely be obtained by not restricting ourselves to genetic distance

alone when determining a linkage criteria. Genetic distance is easy to determine from

sequence data, but this simple metric does not take into account ancestral relationships or

uncertainty around these relationships, and is limited to discrete mutational changes. Applying

more complex phylogenetic criteria may allow us to learn more about transmission relation-

ships, though there is a limit to the extent to which genetic data can be used to distinguish

infections in fast-spreading (or slow-mutating) pathogen outbreaks. There are several exam-

ples of outbreaks in which multiple infected individuals have the same consensus viral genome

[32]. In this case, incorporating epidemiological data (e.g., location, time of symptom onset)

may be important in determining which infections are unlikely to be linked. This incorpo-

ration of additional data may complicate calculation of the sensitivity and specificity, so devel-

oping the methodology around calculating these parameters will be important to further

development of our method. This will likely build on a larger effort to better integrate epidemi-

ological and genomic data into pathogen transmission studies [26,47–49].

The application of our methodology to a previous mumps outbreak and a hypothetical

COVID-19 outbreak highlights the need to move beyond genetic distance as a linkage criteria;

for pathogens with a substitution rate similar to that of mumps virus, genetic distance is not

enough to differentiate between linked and unlinked cases even in densely sampled outbreaks.

In trying to apply this method to other outbreaks, it also became clear that well-characterized

substitution rates and reproductive numbers are essential for calculating sensitivity and speci-

ficity using our method, and that these parameters are less clearly defined for pathogens with

long and variable generation times, such as bacterial infections. Variable periods of replication

within a host makes it difficult to characterize a per-generation substitution rate that is broadly

applicable over the entire outbreak and can be used to estimate sensitivity and specificity. In

these cases, more nuanced criteria such as phylogenetic relatedness will likely be more infor-

mative than the number of mutations between sequenced infections; while we provide
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instructions for using genetic distance as a linkage criteria in order to give a concrete example

of calculating sensitivity and specificity, the primary focus of this manuscript is to demonstrate

how they can be used to calculate or evaluate sample sizes.

While in this manuscript we have focused on direct transmission pairs, our framework is

designed to be extensible to alternative definitions of linkage; for example, infections con-

nected within a specified number of transmission events. Expanding the definition of linkage

to include such indirect transmissions has a number of useful applications in outbreak

research, such as identifying and connecting transmission clusters. This method could also be

extended to more complex direct transmission relationships, for example when within-host

evolution results in the existence of viral quasispecies within infected individuals, each of

which has some potential of being transmitted. In all of these scenarios, it is equally important

to understand the sample size needed to make the desired inferences.

We hope that this work represents a step towards developing a larger theory of study design

for making inferences from pathogen sequence data, but recognize it is only a step. The focus

of this paper is sample size and the impact of undersampling, but spatial and/or temporal

biases are also important for determining which infections are sampled [50–52]. For example,

understanding routes of direct transmission may require dense sampling of a small group of

highly-connected individuals, while understanding general transmission trends over the

course of a geographically-dispersed outbreak may require us to sample broadly over space

and time. Additionally, it will be important to take into account the contact network underly-

ing pathogen transmission, since some individuals may be more likely to transmit their infec-

tion to others. Finally, the goal of linking infections is seldom the linkages themselves, but the

larger inferences about risk and transmission derived from those linkages. Adapting the tech-

niques here to more directly link sample size calculations to these outcomes is an important

next step.

Supporting information

S1 Fig. Sample size and false discovery rate given single linkage and single transmission.

(A) Effect of sample size (red lines) or proportion sampled (blue lines) on the expected number

of linked pairs (upper plots) or the false discovery rate of linked pairs (lower plots). The speci-

ficity and sensitivity are held constant. (B) Effect of varying the sensitivity and specificity of

the linkage criteria on the false discovery rate (FDR).

(TIF)

S2 Fig. Estimating the average reproductive number in a population. Two hypothetical out-

breaks with a pathogen reproductive number (R) equal to 2 and a total of 15 infections. Black

circles represent infections; blue circles represent infections who have not yet infected others,

or whose descendents are outside the sampling frame. (A) Outbreak caused by a single intro-

duction, meaning there were 14 transmission events and 15 total infections. In other words,

Rpop ¼
14

15
¼ 0:933. (B) Outbreak caused by two separate introductions, meaning there were

only 13 infection events in the sampling frame, resulting in Rpop ¼
13

15
¼ 0:867.

(TIF)

S3 Fig. Effects of R and G on the distribution of generations between cases. Distribution of

the number of generations between infections averaged over 1000 simulated outbreaks with

reproduction number R and number of generations of transmission G. Distributions are

shown for three values of R (rows). Left column: distribution of generations between infections

after 3 generations of transmission; middle column: distribution after ln(1000)/ln(R) genera-

tions of transmission (see Methods); right column: distribution after ln(1000)/ln(R)+2
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generations of transmission.

(TIF)

S4 Fig. Genetic distance distributions for different types of pathogens. (A) Distribution of

genetic distances for linked (purple) and unlinked (yellow) infections for a hypothetical patho-

gen with substitution rate = 1 substitution/genome/generation and R = 1.5. Inset: receiver

operating characteristic (ROC) curve for all possible genetic distance cutoff values. Optimal

threshold shown as green dot (ROC) and dashed vertical line (distribution). (B) Distribution

of genetic distances for linked and unlinked cases for a hypothetical pathogen with substitution

rate = 0.2 mutations/genome/generation and R = 3. Inset: ROC curve for all possible genetic

distance cutoff values for this pathogen. The optimal threshold is shown as in (A).

(TIF)

S5 Fig. Error of false discovery rate calculation by sensitivity and specificity. (A) Average

false discovery from 10,000 simulated outbreaks (proportion sampled = 0.75) binned by sensi-

tivity and specificity (bin size = 0.02). Grey = no genetic distance thresholds in simulation pro-

duced this combination of sensitivity and specificity. (B) Zoom view of (A), with specificity

ranging from 0.9–1 (bin size = 0.002). (C) Number of data points with sensitivity and specific-

ity in the desired bins (i.e., number of data points used to calculate average error in panel (A).

(D) Zoom view of (C), with specificity ranging from 0.9–1.

(TIF)

S6 Fig. Histogram of raw parameter error using substitution rate method (optimal thresh-

old only). Theoretical minus simulated parameter values for the optimal genetic distance

threshold (determined by selecting the threshold for which the point at (1-specificity, sensitiv-

ity) is closest to the (0,1) corner) in 10,000 simulations of varying substitution rate and repro-

ductive number for a given sampling proportion. Top row: theoretical minus simulated false

discovery rate; middle row: theoretical minus simulated sensitivity; bottom row: theoretical

minus simulated specificity. Colors correspond to sampling proportion as in Fig 4.

(TIF)

S7 Fig. Predicted versus observed sensitivity using substitution rate method. Theoretical

versus simulated sensitivity for each genetic distance threshold in 10,000 simulations of vary-

ing substitution rate and reproductive number. White line: smoothed conditional mean; grey

dashed line: y = x line. Increasing values of the sample size (M) are plotted in darker color.

(TIF)

S8 Fig. Predicted versus observed specificity using substitution rate method. Theoretical

versus simulated specificity for each genetic distance threshold in 10,000 simulations of vary-

ing substitution rate and reproductive number. Outbreak sizes range from 100–2000, as

described in Methods. White line: smoothed conditional mean; grey dashed line: y = x line.

Increasing values of the sample size (M) are plotted in darker color.

(TIF)

S9 Fig. Histogram of raw specificity error using substitution rate method by sample size

and proportion. Theoretical minus simulated specificity for each genetic distance threshold in

10,000 simulations of varying substitution rate and reproductive number for a given sampling

proportion. Each column represents 10,000 simulations with a specific sampling proportion

(colors as in Fig 4) and sample size within each proportion (determined by the final outbreak

size) goes from low (top row) to high (bottom row).

(TIF)
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S10 Fig. Predicted versus observed false discovery rate using actual generation distribu-

tion. Theoretical versus simulated false discovery rate (FDR) for each genetic distance thresh-

old in 10,000 simulations of varying substitution rate and reproductive number. Theoretical

FDR is calculated using the actual distribution of generations between infections from the cor-

responding simulated outbreak. White line: smoothed conditional mean; grey dashed line: y =

x line. Increasing values of the sample size (M) are plotted in darker color.

(TIF)

S1 Table. Error of false discovery rate calculation by sample size.

(PDF)

S2 Table. Bias and error of false discovery rate calculation using substitution rate method.

(PDF)

S3 Table. Error and of false discovery rate calculation using substitution rate method by

sample size.

(PDF)

S4 Table. Bias and error of false discovery rate using actual generation distribution.

(PDF)

S1 Text. Deriving probably of transmission given linkage.

(PDF)

S2 Text. Determining sensitivity and specificity of genetic distance as a linkage criteria.

(PDF)
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