Skip to main content
. 2021 Jul 16;100(28):e26532. doi: 10.1097/MD.0000000000026532

Table 1.

Comparison of model accuracy using normalized training data (n = 361).

Model Sensitivity Specificity Accuracy Balanced accuracy AUC
A. Raw data
 CNN 0.90 0.86 0.88 0.88 0.85
 ANN 0.95 0.88 0.91 0.92 0.89
 Forest (J48) 0.99 0.99 0.99 0.99 0.99
 Random forest 1.00 1.00 1.00 1.00 1.00
 Random tree 1.00 1.00 1.00 1.00 1.00
 REPT tree 0.88 0.91 0.89 0.90 0.88
 BayesNet 0.92 0.92 0.92 0.92 0.90
 Naïve Bayes 0.78 0.95 0.87 0.87 0.86
 Logistic 0.94 0.92 0.93 0.93 0.91
 SMO 0.89 0.91 0.09 0.90 0.88
Median 0.92
 B. Normalized data
  CNN 0.93 0.93 0.92 0.93 0.91
  ANN 0.95 0.98 0.97 0.97 0.96
  Forest (J48) 0.99 0.97 0.98 0.98 0.97
  Random forest 1.00 1.00 1.00 1.00 1.00
  Random tree 1.00 1.00 1.00 1.00 1.00
  REPT tree 0.92 0.93 0.93 0.93 0.91
  BayesNet 0.92 0.92 0.92 0.92 0.90
  Naïve Bayes 0.80 0.92 0.87 0.86 0.84
  Logistic 0.93 0.92 0.93 0.93 0.91
  SMO 0.87 0.93 0.91 0.90 0.88
Median 0.93
 C. Ko et al[1]
  Random forest 0.89 0.89 0.89 0.89 0.87
  Deep neural network 0.91 0.93 0.92 0.92 0.90
  EDRnet 0.92 0.93 0.93 0.93 0.91
Median 0.92

The 95% CIs of AUC (=0.9) = 1.96×0.9×0.1/361 = 0.03 for the training dataset.