Skip to main content
. 2021 Jul 16;100(28):e26532. doi: 10.1097/MD.0000000000026532

Table 2.

Model comparison using training data to predict testing data (n = 106).

Model True negative False-positive False-negative True positive Sensitivity Specificity Accuracy Balanced Accuracy
A.Raw data
 CNN 75 29 0 2 1 0.72 0.73 0.86
 ANN 66 38 0 2 1 0.63 0.64 0.82
 Forest(J48) 82 22 1 1 0.5 0.78 0.78 0.64
 Random forest 88 16 0 2 1 0.85 0.85 0.93
 Random tree 78 26 1 1 0.5 0.75 0.75 0.63
 REPT tree 51 53 0 2 1 0.49 0.50 0.75
 BayesNet 85 19 0 2 1 0.82 0.82 0.91
 Naïve Bayes 85 19 0 2 1 0.82 0.82 0.91
 Logistic 22 82 1 1 0.5 0.21 0.23 0.36
 SMO 92 12 0 2 1 0.89 0.89 0.95
Median 0.84
 B. Normalization data
  CNN 48 56 0 2 1 0.46 0.47 0.73
  ANN 62 42 0 2 1 0.6 0.60 0.80
  Forest(J48) 81 23 1 1 0.5 0.78 0.77 0.64
  Random forest 82 22 0 2 1 0.79 0.79 0.90
  Random tree 88 16 0 2 1 0.85 0.85 0.93
  REPT tree 73 31 0 2 1 0.7 0.71 0.85
  BayesNet 86 18 0 2 1 0.83 0.83 0.92
  Naïve Bayes 86 18 0 2 1 0.83 0.83 0.92
  Logistic 75 29 0 2 1 0.72 0.73 0.86
  SMO 91 10 1 1 0.5 0.9 0.9 0.70
Median 0.86
 C. From Ko et al.
  XGBoost 80 24 0 2 1 0.77 0.77 0.88
  AdaBoost 81 23 0 2 1 0.78 0.78 0.89
  Random forest 87 17 0 2 1 0.84 0.84 0.92
  Deep neural network 95 9 1 1 0.5 0.91 0.91 0.71
  DNN + XGBoost 80 24 0 2 1 0.77 0.77 0.88
  DNN + AdaBoost 96 8 1 1 0.5 0.92 0.92 0.71
  Yan et al model 36 68 0 2 1 0.35 0.36 0.67
  EDRnet 95 9 0 2 1 0.91 0.92 0.96
Median 0.88

The 95% CIs of AUC (=0.9) = 1.96×0.9×0.1/106=0.057 for the testing dataset.