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Abstract

The FOXF1 gene, causative for a neonatal lethal lung developmental disorder ACDMPV, maps 

1.7-kb away from the long noncoding RNA gene FENDRR on the opposite strand, suggesting they 

may be co-regulated. Using RNA-seq in lung tissue from ACDMPV patients with heterozygous 

deletions of the FOXF1 distant enhancer located 286-kb upstream, leaving FOXF1 and FENDRR 
intact, we have found that the FENDRR and FOXF1 expressions were reduced by approximately 

75% and 50%, respectively, and were mono-allelic from the intact chromosome 16q24.1. In 

contrast, ACDMPV patients with FOXF1 SNVs had bi-allelic FENDRR expression reduced by 

66–82%. Corroboratively, depletion of FOXF1 by siRNA in lung fibroblasts resulted in a 50% 

decrease of FENDRR expression. These data indicate that FENDRR expression in the lungs is 

regulated both in cis by the FOXF1 distant enhancer and in trans by FOXF1. Our findings are 

compatible with an involvement of FENDRR in FOXF1-related disorders, including ACDMPV.
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Heterozygous single nucleotide variants (SNVs) in FOXF1 on chromosome 16q24.1 or 

copy-number variant (CNV) deletions involving FOXF1 or its distant enhancer, located ~ 

286 kb upstream, have been found causative in 80–90% of patients with a neonatal lethal 

lung developmental disorder Alveolar Capillary Dysplasia with Misalignment of Pulmonary 

Veins (ACDMPV; MIM# 265380) (Stankiewicz et al., 2009; Szafranski et al., 2013, 2016, 

2019). Interestingly, unlike SNVs, CNV deletions arise de novo almost exclusively on 

maternal chromosome 16. Approximately 1.7 kb upstream to FOXF1, maps the divergently 

oriented FOXF1 Adjacent Non-coding Developmental Regulatory RNA (FENDRR) gene 

(MIM# 614975). The interval in between harbors the putative promoters of FENDRR and 

FOXF1 (hg38 coordinates chr16:86,508,876–86,508,935 and 86,510,478–86,510,537, 

respectively; Eukaryotic Promoter Database, http://epd.vital-it.ch). Such gene arrangement 

suggests their co-regulation and a potential involvement of FENDRR in the etiology of 

ACDMPV or other FOXF1-related disorders. Interestingly, single umbilical artery and 

severe cardiac defects, e.g. hypoplastic left heart syndrome, have been observed, with one 

exception (Bourque et al. 2019), in ACDMPV neonates only with CNV deletions harboring 

FOXF1 and FENDRR (Szafranski et al. 2016). In support of this notion, Fendrr was shown 

to play an essential role in development of the murine heart, gastrointestinal tract, and lungs 

(Grote et al., 2013; Lai et al., 2015; Sauvageau et al., 2013). Transcriptome sequencing from 

different tissue samples obtained from 1043 normal adult individuals showed that FENDRR 
has a restricted expression pattern with the highest level in lungs and urinary bladder, gall 

bladder, esophagus, prostate, and intestines (Fagerberg et al., 2014; GTEx Consortium, 

2013). Moreover, changes in FENDRR expression (usually its decrease) correlated with an 

onset and/or progression of invasive carcinomas, including lung cancer (Chang et al., 2020; 

Gong et al. 2019; Liang et al., 2017; Miao et al. 2016; Xu & Han, 2019; Yang et al., 2018; 

Zhang et al., 2018; Zhang et al., 2019; Zhu et al., 2012), gastric cancer (He et al., 2018; Xu 

et al., 2014; Yin et al., 2019), fibrosis (Geng & Guan, 2017; Gong et al. 2020; Huang et al., 

2020), and other disorders (GeneCards at http://www.genecards.org) (Szafranski & 

Stankiewicz, 2021). However, the mechanisms of the regulation of FENDRR expression 

remain incompletely understood.

Reported here studies involving patient-derived materials (Supp. Table S1) were approved 

by the IRB for Human Subject Research at Baylor College of Medicine (Protocol H-8712). 

DNA and RNA extraction, DNA sequencing by the Sanger method, RNA sequencing (RNA-

seq), array comparative genomic hybridization, siRNA-based gene silencing, and transcript 

quantification by real-time PCR (RT-qPCR) were done as described in Materials and 

Methods (Supporting Information).

The proximity of the FENDRR and FOXF1 promoters and the involvement of both genes in 

early mammalian development raised a question whether FOXF1 distant enhancer might be 

also involved in regulation of the FENDRR expression. To explore this possibility, using 
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RNA-seq, we have measured the FENDRR transcript levels in lung samples from patients 

with heterozygous maternal (ACDMPV pts 60.4, 64.5, 155.3) and paternal (pt 179.3) CNV 

deletions of the FOXF1 core enhancer (chr16:86,218,986–86,224,837, hg38), leaving 

FOXF1 and FENDRR intact (Supp. Table S1) and in three age-matched normal lung 

samples. We have found that the presence of heterozygous enhancer deletions was 

associated with an ~ 50% decrease of FOXF1 and an ~ 75% decrease of the FENDRR level 

(based on mean expression values for groups of cases that were used for comparisons), 

suggesting that FENDRR is also regulated by the distant lung-specific enhancer (Figure 1A).

Importantly, we have also found that when the maternal allele of the enhancer was deleted, 

all informative FENDRR and FOXF1 transcript-specific SNVs originated only from the 

paternal allele and, vice versa, they were only from the maternal FENDRR and FOXF1 
allele when the paternal allele of the enhancer was deleted (Figure 1B, Supp. Table S2). 

Similarly, the residual transcription from the putatively bidirectional FENDRR promoter 

originated from the paternal allele of the promoter when the maternal allele of the enhancer 

was deleted (pt 60.4; Supp. Figure S1A–C). We have confirmed mono-allelic FENDRR 
expression in ACDMPV patients using Sanger sequencing of a randomly selected SNPs in 

pts 60.4 and 179.3 cDNA (Supp. Figure S2). In contrast, the expression pattern of FENDRR 
and FOXF1 was bi-allelic when both parental alleles of the enhancer were present, i.e., in 

normal lungs (Supp. Figure S3, Supp. Tables S2, S3), in the lungs of ACDMPV patients 

with the FOXF1 heterozygous frame-shifting variant (pt 123.3) (Supp. Figure S4, Supp. 

Tables S2, S3), or the missense variant (pt 77.3) (Supp. Figure S5, Supp. Table S2). Thus, 

the regulatory region, originally identified as the lung-specific FOXF1 distant enhancer, 

functions also as a strong lung-active FENDRR enhancer in cis, fulfilling the criteria of an 

enhancer (Gasperini et al., 2020). We and others have previously shown by chromosome 

conformation capture analyses that this enhancer physically interacts with FENDRR-FOXF1 
intergenic region in humans (Szafranski et al., 2013) and mice (Seo et al., 2016). It is 

possible that different portions of the FENDRR-FOXF1 enhancer interact only with the 

FENDRR or FOXF1 promoters, or the enhancer as a whole interacts with both promoters 

interchangeably or the two promoters share common interaction site with the enhancer.

The presence of the pathogenic SNVs in FOXF1 correlated with a 66–82% decrease of the 

bi-allelic FENDRR expression (Figure 1A), although RNA from only two ACDMPV 

individuals with variants in FOXF1 was available. To further verify the potential FOXF1 

involvement in the regulation of FENDRR, we have generated transient FOXF1 knockdowns 

in fetal lung fibroblasts IMR-90 using siRNAs targeting both exons of FOXF1. Using RT-

qPCR, we have found that the decrease of FOXF1 transcript by ~ 85% resulted in ~ 50% 

reduction of the FENDRR transcript level (Figure 2A). FENDRR decrease in FOXF1-

depleted lung fibroblasts corroborated also previous findings in the conditional Foxf1 
knockout mice (Ren et al., 2014), however, the interpretation of the mouse experiment was 

to some point hampered by the fact that the knockout procedure involved targeting the Foxf1 
promoter and might have interfered with functioning of the Fendrr promoter.

In contrast, siRNA knockdown of FENDRR in IMR-90 fibroblasts by ~ 85% had no 

significant effect on the expression of FOXF1 (Figure 2B), consistent with the data in the 

Fendrr knockout mice generated by Sauvageau et al. (2013). In a different Fendrr knockout 
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mice, Grote et al., (2013) showed an increased expression of Foxf1 in the heart. However, 

this increase could result from the knockout construct with a replacement of the 1st exon of 

Fendrr with a strong transcriptional stop signal.

Since no ChIP-seq or other data on FOXF1 binding to chr16q24.1 in human lung cells are 

available, we explored the possibility of an indirect contribution of FOXF1 to FENDRR 
expression. We have analyzed our ACDMPV RNA-seq data for changes in the expression of 

more than 30 transcription regulators that were previously identified by ChIP-seq 

(ENCODE) as binding within the FENDRR promoter or enhancer region and thus having a 

potential to regulate FENDRR expression. We have found that the expression of the histone 

methyltransferase subunit gene, ASH2L, was reduced by ~ 40% in ACDMPV lung samples, 

correlating with reduced expression of FOXF1 and FENDRR (Supp. Figure S1D).

In summary, we demonstrate that FENDRR expression in human lungs is regulated by the 

distant lung-specific FOXF1 enhancer in cis and by FOXF1 transcription factor (directly or 

indirectly) in trans. These findings also suggest the potential involvement of FENDRR in 

etiology of some FOXF1-associated disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulation of the FENDRR transcription.
(A) The decrease of the FENDRR levels in the lungs of ACDMPV pts 64.5, 60.4, 155.3, 

179.3 (enhancer deletions), 73.3, and 123.3 (FOXF1 SNVs) (One-way ANOVA with post-

hoc Tukey HSD test *P < 0.01). Mono-allelic expression of (B) FENDRR and (C) FOXF1 
from the paternally inherited chromosome 16 in the presence of the heterozygous CNV 

deletion of the distant lung-specific FOXF1 enhancer on the maternally inherited 

chromosome 16 (pt 60.4). Vertical lines on RNA-seq reads (grey bars) represent adenines 

(green) or uracil (red). Schematic drawing below the sequence reads is shown not to scale. 

Abbreviations: p, paternal; m, maternal.
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Figure 2. 
(A) RNAi-based gene silencing in IMR-90 lung fibroblasts showing that the depletion of the 

FOXF1 transcript correlates with the 2.1±0.3 fold decrease of FENDRR expression. (B) 

Loss of FENDRR does not have a significant effect on FOXF1 expression. The plotted data 

represent average values from experiments performed in triplicate ± SD (*P < 0.01).
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