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G E N E T I C S

An ancestral recombination graph of human, 
Neanderthal, and Denisovan genomes
Nathan K. Schaefer1,2,3†, Beth Shapiro1,2,3, Richard E. Green3,4*

Many humans carry genes from Neanderthals, a legacy of past admixture. Existing methods detect this archaic 
hominin ancestry within human genomes using patterns of linkage disequilibrium or direct comparison to Nean-
derthal genomes. Each of these methods is limited in sensitivity and scalability. We describe a new ancestral re-
combination graph inference algorithm that scales to large genome-wide datasets and demonstrate its accuracy 
on real and simulated data. We then generate a genome-wide ancestral recombination graph including human 
and archaic hominin genomes. From this, we generate a map within human genomes of archaic ancestry and of 
genomic regions not shared with archaic hominins either by admixture or incomplete lineage sorting. We find 
that only 1.5 to 7% of the modern human genome is uniquely human. We also find evidence of multiple bursts of 
adaptive changes specific to modern humans within the past 600,000 years involving genes related to brain 
development and function.

INTRODUCTION
Much of the current genetic variation within humans predates the 
split, estimated at 520 to 630 thousand years (ka) ago (1), between 
the populations that would become modern humans and Neanderthals. 
The shared genetic variation present in our common ancestral 
population is still largely present among humans today and was 
present in Neanderthals up until the time of their extinction. This 
phenomenon, which is known as incomplete lineage sorting (ILS), 
means that any particular human will share many alleles with a 
Neanderthal that are not shared with some other humans. There-
fore, humans often share genetic variation with Neanderthals not 
by admixture but rather by shared inheritance from a population 
ancestral to us both. Because of this, any effort to map ancestry from 
archaic hominins in human genomes must disentangle admixture 
from ILS. Furthermore, a technique able to identify both admixture 
and ILS could produce a catalog of uniquely human genomic re-
gions that is free of both and thereby shed light on the evolutionary 
processes that have been important in our origin as a unique species.

Ancestral recombination graph (ARG) inference (2) is a powerful 
starting point for such an analysis. An ARG can be conceptualized 
as a series of trees, mapped to individual sites, over phased haplo-
types (chromosomes) in a panel of genomes. Ancestral recombina-
tion events, or sites at which chromosome segments with different 
histories were joined together by historical recombination, form 
boundaries between trees. Each ancestral recombination event manifests 
as a clade of haplotypes, all of which descend from the first ancestral 
haplotype to have it, moving from one position in the tree upstream 
of the event to a new position in the downstream tree (3). ARGs are 
complete descriptions of phylogenomic datasets and present for re-
combining genomes what single trees present for nonrecombining 
genomes, i.e., a complete description of their genetic relationships. 

As prior techniques for ancestry mapping can be thought of as sum-
maries of the ARG, higher resolution ancestry maps could be pro-
duced if the ARG were known. In addition, the ARG can be used to 
estimate the time to most recent common ancestor (TMRCA) between 
admixed and admixer haplotypes, providing additional information 
about historical admixture between humans and archaic hominins.

Given the utility of an ARG, it is expected that several methods 
have been devised for estimating ARGs from genetic data. These 
published approaches all have different strengths and limitations. 
BEAGLE (3), ArgWeaver (4), and Rent+ (5) were designed for small 
datasets and require substantial time and/or memory to be used 
with large sequencing panels. Margarita (6) randomly samples his-
tories at ancestral recombination event boundaries and does not seek 
to produce parsimonious recombination histories (6). ArgWeaver 
(4), which is widely considered the gold standard in ARG inference, 
requires prior knowledge of demographic model parameters. Relate 
(7) is a relatively new method that scales well to large datasets and 
produces trees without polytomies and with branch lengths but, in 
doing so, necessarily samples some relationships that are not directly 
inferred from the data, as do several other methods (4, 5). The most 
computationally efficient approach, tsinfer (8), also scales to large 
datasets but assumes that frequency of an allele is correlated with its 
age. Since this assumption is violated at loci undergoing either ad-
mixture or selection, tsinfer is not well suited for ARG inference using 
genetic data from Neanderthals, Denisovans, and modern humans.

Here, we present a heuristic, parsimony-guided ARG inference 
algorithm called SARGE (Speedy Ancestral Recombination Graph 
Estimator) and use it to build a genome-wide ARG of both modern human 
and archaic hominin genomes. SARGE can run on thousands of phased 
genomes, makes no prior assumptions other than parsimony, heuristically 
estimates branch lengths, and avoids making inferences about un-
observed relationships by leaving polytomies in output trees. We validate 
SARGE using simulated data and demonstrate that it has high specificity 
compared to existing methods in reconstructing the topology of trees, 
making it suitable for identifying archaic admixture segments. To achieve 
this high specificity, SARGE avoids describing some relationships in 
output trees, resulting in lower sensitivity than existing methods.

We run SARGE on a panel of 279 modern human genomes, two 
high-coverage Neanderthal genomes, and one high-coverage 
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Denisovan genome. Using the resulting ARG, we map Neanderthal 
and Denisovan ancestry, ILS, and the absence of both across mod-
ern human genomes. We find evidence of at least one wave of 
Neanderthal admixture into the ancestors of all non-Africans. We 
also identify several long and deeply divergent Neanderthal haplo-
type blocks that are specific to some human populations. We find 
support for the hypothesis that Denisovan-like ancestry is the result 
of multiple introgression events from different source populations (9, 10). 
We also detect an excess of Neanderthal and Denisovan haplotype 
blocks unique to South Asian genomes. Last, we pinpoint human- 
specific changes likely to have been affected by selection since the 
split with archaic hominins, many of which are involved in brain 
development.

RESULTS
ARG algorithm
To build an ARG containing both modern human and archaic 
hominin genomes without the use of a demographic model or the 

need to infer ancestral haplotypes, we developed a parsimony-based 
ARG inference technique, SARGE. SARGE uses both shared derived 
alleles and inferred, shared ancestral recombination events to artic-
ulate trees (Fig. 1A and Supplementary Methods). SARGE uses the 
four-gamete test (11) to determine regions of recombination and 
the affected haplotypes. The crux of SARGE is a fast algorithm for 
choosing the branch movement(s) capable of explaining the highest 
number of discordant clades across a genomic segment that fails the 
four-gamete test. Once the branch movements, i.e., inferred ances-
tral recombinations, are determined, further definition of clades is 
possible. Thus, the trees are articulated by both shared alleles and 
shared ancestral recombination events (figs. S1 and S2 and Supple-
mentary Methods). SARGE infers branch lengths via a heuristic 
method, compensating for mutation rate variation across the ge-
nome by comparing the number of mutations on each branch to the 
divergence to an outgroup genome in a fixed width region around 
each site (fig. S7 and Supplementary Methods).

In the interest of parsimony, our method attempts to infer a set 
of ancestral recombination events that each explains as many four-gamete 
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Fig. 1. Data structure and performance of SARGE on simulated data. (A) Schematic of data structure. Top: Rectangles are “tree nodes” representing clades in trees. 
Each clade has member haplotypes (shown with letters A to G) and a start and end coordinate (blue numbers in brackets) determined by coordinates of single-nucleotide 
polymorphism (SNP) sites tagging the clade (yellow numbers in braces), along with a propagation distance parameter (100 in this example). Parent/child edges (vertical 
arrows) also have start and end coordinates determined by the nodes. Ovals are candidates for clades sharing an ancestral recombination event that can explain 
four-gamete test failures; colored edges indicate potential paths between tree nodes through candidate nodes that could explain four-gamete test failures (colors indi-
cate types of paths). The candidate node with the most edges (here, AB) is eventually chosen as the most parsimonious branch movement, allowing for the inference of 
new nodes. The two trees at the bottom show the “solved” ancestral recombination event with the branch movement marked in red and all clades inferred without SNP 
data marked with yellow stars (haplotypes A and B share an ancestral recombination event; their ancestry is shared with haplotypes C, D, and G upstream of the recom-
bination event and haplotype E downstream of it). The coordinates of the recombination event (blue numbers in brackets) are taken to be midway between the highest- 
coordinate upstream site (left side) and the lowest-coordinate downstream site (right side) involved in recombination. For a more detailed overview of the data structure, 
see figs. S3 to S5. (B) Accuracy of SARGE on simulated data (defined as percent of all clades correct according to the true ARG in the simulation), with increasing numbers 
of human-like haplotypes from an unstructured population. Error bars are one SD across five replicates. (C) Number of nodes per tree with increasing number of haplo-
types in simulated data.
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test failures as possible. Because the four-gamete test is known to 
underestimate the true number of ancestral recombination events 
(12, 13), SARGE will systematically underestimate the true number 
of ancestral recombination events in a dataset by design. Because of 
this, SARGE is not well suited to certain tasks, such as the creation 
of fine-grained recombination maps. We have attempted to miti-
gate cases where a clade in the ARG should be broken by an unob-
served ancestral recombination event, however, by introducing a 
propagation distance parameter that limits the genomic distance 
over which each observed clade is allowed to persist (Fig. 1A and 
Supplementary Methods).

SARGE is scalable to large datasets and achieves higher specificity 
than many other methods at the cost of lower sensitivity, by leaving 
uncertainty (polytomies) in the output data. Using simulated data, 
we find that SARGE runs quickly (figs. S8D and S10), requires little 
memory, and has 78.93% specificity [95% confidence interval (CI), 
78.09 to 78.95%] on average across a range of simulated datasets 
that include between 50 and 500 haplotypes (see Supplementary 
Methods). SARGE is at least as specific as alternative techniques 
(fig. S9, A and C). Conversely, SARGE’s sensitivity (25.36%; 95% 
CI, 25.32 to 25.40%) is lower than that of other methods (fig. S9, B 
and D), as SARGE leaves an increasingly large number of polyto-
mies in output trees as the number of input haplotypes increases 
(Fig. 1, B and C). As expected, SARGE (as well as similar techniques) 
performs best when the mutation to recombination rate ratio is high, 
as this makes clades easier to detect (figs. S11 and S12) and suffers 
slightly in accuracy with increasing amounts of population struc-
ture (fig. S13).

We also find that the sensitivity of SARGE can be increased by 
increasing the propagation distance parameter (see Supplementary 
Text and fig. S15), that missing clades are likely to be small clades 
that are likely to be close to the leaves of trees (see Supplementary 
Text and fig. S16), and that incorrectly inferred clades tend to be 
within a few kilobases of sites at which those clades exist in truth 
(see Supplementary Text and fig. S17). We also find, using simulat-
ed data, that the SARGE’s branch lengths do not appear to be sys-
tematically biased upward or downward (see Supplementary Text 
and fig. S18).

We ran SARGE on 279 phased human genomes from the 
Simons Genome Diversity Project (SGDP) (14), together with two 
high-coverage Neanderthal genomes (1, 15) and one high-coverage 
Denisovan genome (16). In our analyses, we relied on modern hu-
man population labels defined by the SGDP for many analyses, but 
we split sub-Saharan Africans into one population containing only 
the most deeply diverged lineages (Biaka, Mbuti, and Khomani-San), 
which we call “Africa-MBK,” and the remaining genomes (“Africa”). 
Using these data, we find that the completeness of trees in the ARG 
(the extent to which all possible clades are present rather than in 
polytomies) is positively correlated with the local mutation rate to 
recombination rate ratio (fig. S20A; Spearman’s rho = 0.40; P < 2.2 × 
10−16) and that the number of inferred ancestral recombination events 
per genomic window agrees with a previously published population 
recombination map (17) (fig. S20B; Spearman’s rho = 0.46; P < 2.2 × 
10−16), as expected. Estimates of the mean TMRCA of pairs of 
haplotypes, taken across all trees, were also concordant with prior 
knowledge (Fig. 2A).

Using these data, we found SARGE’s inferences of ancestral re-
combination events to be accurate. Because SARGE articulates tree 
clades using either shared allelic variation or shared inferred ancestral 

recombination, it is possible to test the concordance of trees made 
from each source. On average, 13.2% of clades in the ARG are 
known only from inference of shared ancestral recombination events 
and not by the presence of a shared, derived allele. We created a 
similarity score between every pair of phased human genome 
haplotypes in our dataset based on how often the haplotypes share 
ancestral recombination events. This score recapitulates relationships 
among humans known from single-nucleotide polymorphism (SNP) 
data alone (Fig.  2,  B  and  C; Pearson’s r2 with scores from SNP 
data = 0.989; P < 2.2 × 10−16). We note that genomes with the poorest 
correlation between SNP-based and recombination-based similarity 
scores to other genomes are those most likely to contain phasing 
errors (table S1).

Archaic hominin admixture
We used our ARG to find regions of each phased human genome 
that derived from admixture with archaic hominins (see Supple-
mentary Methods and fig. S24). If humans and the archaic hominins 
in our panel were in populations that had sorted their lineages, then this 
exercise would be simple with a complete and correct ARG. How-
ever, since human genome regions are often within a clade that 
includes hominin haplotypes due to ILS, finding admixed segments 
requires analysis beyond simply finding clades that unite some 
human and archaic hominin haplotypes.

We started by selecting clades from ARG trees that united some 
modern humans with archaic hominins to the exclusion of some 
other modern humans. We then assigned each human genome 
haplotype in each such clade as putative Neanderthal, Denisovan, 
or ambiguous ancestry, depending on whether the clade contained 
Neanderthal, Denisovan, or both types of haplotypes. We then per-
formed several filtering steps to remove these clades likely to result 
from ILS. First, we removed any clades that included more than 
10% of the Africa-MBK haplotypes from the most basal human 
lineages, which are unlikely to be admixed. We then discarded clades 
that persisted for a short distance along the chromosome (which 
likely represent older haplotypes broken down over time by recom-
bination) or in which the TMRCA between modern humans and 
archaic hominins was high (see Supplementary Methods and fig. 
S24). This ascertainment strategy was designed to identify haplo-
type blocks that we could confidently identify as archaic-introgressed 
and therefore likely underestimated the true extent of admixture 
across the genome. Because our method relies on both the haplo-
type block length and the TMRCA between admixed and introgressor 
haplotypes to identify admixed segments, we were able to identify 
some haplotypes that resemble archaic admixture in modern humans 
but that have relatively high sequence divergence to published ar-
chaic genomes (manifesting as high TMRCAs between archaic and 
modern genomes within these segments).

Using the resulting maps, we calculated genome-wide percent 
admixture estimates across populations and compared them to    ̂  f   
estimates based on the population-wide D statistic (18,  19) using 
basal Africa-MBK lineages as an outgroup. Since our alleles were 
polarized relative to the chimpanzee genome and only sites with 
derived alleles present in hominins were considered, our calculations 
were of the form D(Africa-MBK, Test, Introgressor, Chimpanzee) / 
D(Africa-MBK, Introgressor1, Introgressor2, Chimpanzee), where 
Introgressor1 and Introgressor2 were randomly chosen subsets of 
half of the introgressor (Neanderthal or Denisovan) haplotypes and 
the derived allele frequency in chimpanzee was set to 0 at all sites in 
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our dataset. ARG-based estimates are similar to, but lower than, D 
statistic–based estimates in all non-African genomes, which we ex-
pected because of our aggressive filtering strategy for eliminating 
ILS (see Supplementary Methods). We detected slightly more ad-
mixture in sub-Saharan Africans (excluding Africa-MBK) than 
using the D statistic (Fig. 3A), even when considering the lower end 
of 95% confidence weighted block jackknife intervals (table S2). We 
note that a recent study that used an outgroup-free method to de-
tect Neanderthal ancestry blocks in human genomes also found a 
higher average amount of Neanderthal ancestry in African genomes 
than has been previously reported (20). As another quality check, 
we compared our maps of Neanderthal ancestry to those published 
in prior studies (20–23). We found that maps produced by SARGE 
are about as concordant with the published maps as the published 
maps are with each other (fig. S25).

We next looked for population-specific differences in archaic 
hominin ancestry in modern humans. Lengths of archaic haplotype 
segments and the TMRCA to admixer across those segments are 
both affected by the time of admixture and the divergence between 
the true admixers and available archaic hominin genomes. We there-
fore computed the mean of these two values for each ancestry type 
per phased genome haplotype and compared them across individuals 
from different populations to look for evidence of distinctive, 

population-specific admixture events. This analysis revealed dis-
tinctive population-specific patterns for Neanderthal and Denisovan 
ancestry, and many pairwise comparisons of these values between 
populations are significant (table S3). Segments of ambiguous 
ancestry produce a pattern resembling a mixture of Neanderthal and 
Denisovan ancestry, as expected (Fig. 3, B to D, and figs. S26, S28, 
S37, and S38). We caution, however, that our approach can artifi-
cially shorten haplotype block lengths (see Supplementary Methods 
and figs. S21 and S22), especially for populations such as Papuans 
and Australians that were absent from the 1000 Genomes Project 
panel (24) that was used for phasing (14). Nonetheless, Neanderthal 
haplotype block lengths in Oceania are not significantly shorter 
than in other populations (Fig. 3B), and incorrect phasing in archa-
ic genomes does not appear to negatively affect results of admixture 
scans using simulated data (see Supplementary Text).

As expected, the ARG classifies a smaller fraction (0.096 to 0.46%) 
of sub-Saharan African genomes (excluding Mozabite and Saharawi 
individuals) as resulting from Neanderthal admixture compared to 
non-African genomes (0.73 to 1.3%). The haplotype segments of 
African genomes that are grouped together in clades with Neanderthal 
haplotypes are distinctive from the haplotype segments found in the 
genomes of people with non-African ancestry (Fig. 3B and fig. S26A). 
Namely, the African haplotypes are more dissimilar to the Neanderthal 
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haplotypes with which they are grouped and tend to be shorter. 
These observations are qualitatively consistent with the model where-
in genetic drift may group Neanderthal and African haplotypes, 
independent of a specific admixture event. It is also possible that 
these haplotypes are the result of true introgression events from un-
known archaic hominins distantly related to the Neanderthal/Den-
isovan lineage (25). Another recent study using an inferred ARG 
also found mysterious, divergent haplotypes within sub-Saharan Afri-
cans that resembled unknown archaic introgression (7).

Unexpectedly, however, two of the SGDP African populations, 
Masai and Somali, are intermediate between non-African and African 
genomes when measuring lengths of archaic haplotype segments 
and TMRCA to admixers within them (Fig. 3B). These Neanderthal 
haplotype blocks may have originated in ancient European migrants 
to eastern Africa (26) and spread beyond eastern Africa through 

gene flow, which is known to have affected even the basal Africa- 
MBK lineages (27).

To test this hypothesis, we recomputed the mean length and 
TMRCA of admixer genomes within archaic-introgressed haplo-
type segments across all individuals, using only geographically 
restricted segments. We defined these as any archaic haplotype seg-
ments found only in genomes that were sampled within a 3000-km 
radius of each other (using geodesic distance between sampling 
coordinates). This analysis showed Masai and Somali genomes to 
have a comparable number of geographically restricted Neanderthal 
haplotypes to most other African genomes (Fig. 3C), with similar 
haplotype block lengths and TMRCAs to admixers within these 
geographically restricted haplotypes (Fig. 3D). This observation is 
concordant with the idea that the unusual Neanderthal haplotypes 
in these populations originated in Eurasian migrants.
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Outside of Africa, our Neanderthal introgression maps largely 
agree with prior studies. We detect a mean TMRCA to Neanderthal 
of about 74 ka ago across all Neanderthal haplotype blocks in non- 
African populations, using published corrections for branch short-
ening in the archaic genomes (1). This value is consistent with 
published estimates of Neanderthal admixture times and the phylo-
genetic distance between the Vindija33.19 Neanderthal and the 
introgressing Neanderthal calculated by a recent study (28). The 
mean TMRCA between genomic segments detected as Neanderthal 
admixture segments and the Neanderthal itself is consistent within 
about 5000 years for all populations outside of Africa (Fig. 3B). We 
see slightly more Neanderthal ancestry in Central Asia, East Asia, 
and the Americas than in Europe, South Asia, and Southwest Asia 
(Fig. 3A). We also find more geographically restricted Neanderthal 
haplotype blocks in South Asia than elsewhere in mainland Eurasia, 
and the fewest geographically restricted Neanderthal haplotype 
blocks in the Americas (Fig. 3C and fig. S35).

Humans in Central and East Asia are known to have elevated 
Neanderthal ancestry compared to other populations (22). However, 
there is debate over whether this elevated Neanderthal ancestry is 
due to smaller past population size relative to other groups and the 
resulting stronger effect of genetic drift (22) or to additional pulses 
of Neanderthal admixture specific to these populations (9, 29). 
Although we detect more Neanderthal ancestry in Central and East 
Asians than in West Eurasians, we detect a similar number of geo-
graphically restricted haplotype blocks (unique to a 3000-km radius) 
in both groups (Fig. 3C). Further, Neanderthal haplotype blocks are 
shorter on average and therefore older in Central and East Asians 
than in West Eurasians (Fig. 3B). This implies that the excess 
Neanderthal ancestry in Central and East Asians mostly comprises 
broadly shared haplotype blocks from introgression common to all 
non-Africans, consistent with the drift scenario. Another recent 
study (20) suggested that excess Neanderthal ancestry in Central 
and East Asians could be mostly due to underestimating Neanderthal 
ancestry in West Eurasians as a result of using sub-Saharan Africans, 
who share some Neanderthal ancestry with West Eurasians, as a 
model unadmixed outgroup. We reject this explanation because re-
moving Neanderthal haplotypes from West Eurasians would likely 
increase the number of geographically restricted Neanderthal hap-
lotypes in Asians, contrary to our observation. Furthermore, South 
Asians appear to have a comparable amount of Neanderthal ances-
try to West Eurasians (Fig. 3, B and C), despite sharing few 
Neanderthal haplotype blocks with Africans relative to West 
Eurasians (fig. S37A). Last, because our strategy for ascertaining 
Neanderthal haplotype used only Mbuti, Biaka, and Khomani-San 
genomes as an outgroup and allowed up to 10% of these genomes to 
have Neanderthal ancestry, we do not believe our results were sig-
nificantly biased by our choice of outgroup. This is further demon-
strated by the fact that we detect a non-negligible amount of 
Neanderthal ancestry in all African groups (table S2).

Aside from these broadly shared haplotype blocks, we also ob-
serve geographically restricted Neanderthal haplotype blocks in each 
non-African population in our panel. These population-specific 
haplotype blocks tend to be longer than the shared haplotype blocks 
and to have an older TMRCA to the Neanderthal genome than the broadly 
shared haplotype blocks (Fig. 3D, compared to all blocks shown in 
Fig. 3B). These observations suggest that the population- specific 
haplotype blocks may be the result of more recent population- specific 
Neanderthal admixture, as has recently been suggested (26–28, 30).

We next investigated population-specific patterns within Denisovan 
ancestry segments and found that these segments probably origi-
nate from admixture with multiple, divergent individuals that were 
distantly related to the Denisovan genome. This implies that the 
Denisovan genome is not a good model for the actual population 
that admixed with humans with “Denisovan” ancestry. Prior studies 
have suggested that Denisovan-like haplotype blocks in humans have 
two or three distinct sources with different levels of divergence to 
the Denisovan genome, with the best-matching haplotype blocks in 
East Asia (9, 10). We uncover the same signal: Geographically re-
stricted Denisovan haplotype blocks have the lowest TMRCA to the 
Denisovan genome in East Asian genomes (mean TMRCA to 
Denisovan of 125 ka ago) (figs. S26 and S27).

Unexpectedly, we detected many Neanderthal and Denisovan- 
like haplotype blocks that are unique to South Asia (Fig. 3C and figs. 
S26C, S45, S35, and S36) and many Neanderthal haplotype blocks 
that are unique to Oceania (Fig. 3C and figs. S44 and S35). These 
geographically restricted Neanderthal haplotype blocks are no more 
divergent to the Neanderthal genome than those specific to other 
populations (Fig.  3D), complicating any interpretation of these 
regions.

Genomic regions free of admixture and ILS
Our ARG strategy allows us to bin the human genome into regions 
containing archaic admixture in at least some humans, regions of 
ILS, and regions free of both archaic admixture and ILS in all hu-
mans (hereafter archaic “deserts”). We find that approximately 7% 
of the human autosomal genome is human-unique and free of both 
admixture and ILS. Roughly 50% of the human genome contains 
regions where one or more humans has archaic ancestry obtained 
through admixture. If deserts are further restricted to regions that 
contain a high-frequency, human-specific derived allele, i.e., a sub-
stitution that can be assigned to the human lineage (hereafter 
“human-specific regions”), then these comprise only 1.5% of the 
assayed genome (Fig. 4A). Despite comprising very little of the ge-
nome, however, human-specific regions are significantly enriched 
for genes, exons, and regulatory element binding sites, while deserts 
are enriched for both genes and regulatory element binding sites 
(table S4). In line with previous studies (21, 31), we find admixed 
regions to be depleted of genes. Regions of ILS are enriched for 
overlap with genes but significantly depleted of exons (table S4).

To obtain an expectation of the extent of these different types of 
genomic regions, we ran a series of coalescent simulations with dif-
ferent amounts of archaic hominin admixture, as well as with no 
admixture (see Supplementary Methods and Supplementary Text). 
Our observation in the real data, which only 7% of the autosomal 
genome is free of both archaic admixture and ILS, is consistent with 
the results of a simulation that resulted in both higher archaic 
ancestry estimates per individual and more variability in individual 
archaic ancestry estimates than we observed in real data (Fig. 4A, 
Supplementary Text, and fig. S47). Two nonmutually exclusive 
explanations for this difference are (i) the existence of more, geo-
graphically limited, archaic hominin admixture events than the two 
we modeled (see Supplementary Text) and (ii) purifying selection 
acting against deleterious alleles found within archaic admixed seg-
ments (32). Under the model including selection, epistasis may be 
important, as the strength of selection against archaic alleles would 
vary depending on which archaic alleles are present in each human 
population.
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The power to detect deserts, i.e., regions in which no human car-
ries a haplotype shared with an archaic hominin by ILS or ad-
mixture, can be expected to be affected by the number of human 
genomes available for analysis. To be certain that we have found the 
true extent of archaic deserts, we inferred ARGs over random sub-
samples of the human panel, computing the extent of deserts and 
human-specific regions for each (Fig. 4B). We were able to recover 
the full extent of deserts using a subsample of 100 haplotypes, less 
than half the size of the full panel, suggesting that the panel is suffi-
ciently large.

Given the limited sensitivity of our method compared to alterna-
tives, we also compared the ability of SARGE, Relate, and tsinfer to 
recover true desert regions in demographic simulations with differ-
ent numbers of haplotypes (see Supplementary Methods). We 
found that all methods, including SARGE, tended to overestimate 
the extent of desert regions, with this tendency increased in the larger 
dataset (figs. S48 and S49), further highlighting the unexpectedly 
small fraction of the human genome found to be in these deserts in 
the actual human genome data.

Timing of human-specific mutations
Given a clade of interest, mutations shared by all members of the 
clade must have arisen between that clade’s TMRCA and its parent 

clade’s TMRCA. Using this logic, and using the local divergence to 
the chimpanzee genome in the surrounding region of each tree to 
calibrate the local mutation rate, assuming human-chimpanzee diver-
gence 13 Ma ago (see Supplementary Text) (18), we estimated ages of 
all human-specific mutations within deserts. For a schematic of how 
branch lengths were estimated, see fig. S7. Because the order of mu-
tations along any given branch is unknowable, we took the mid-
point of each branch, in years, to be the approximate age of each 
mutation. Combining these dates with a catalog of high-frequency, 
human-specific mutations and other annotation data (see Supple-
mentary Methods) allowed us to construct a picture of human- 
specific evolutionary changes through time. We note that our date 
estimates rely on the assumption of a constant local mutation rate 
around each locus across all lineages since human/chimpanzee di-
vergence. Some studies have found evidence for mutation rate hetero-
geneity in different hominoid lineages, with mutations accumulating 
more slowly in humans than in other apes, e.g., (33). In this case, 
some of our TMRCA estimates could be biased downward, as more 
time would have been required to accumulate the mutations tag-
ging recently formed clades than those that occurred branches closer 
to the root.

We first examined whether there were one or multiple bursts of 
human-specific adaptive changes since divergence with Neanderthals 
and Denisovans. We compiled the ages of all fixed or nearly fixed 
human-specific derived mutations within archaic hominin deserts 
that either were annotated as nonsynonymous substitutions (34) or 
fell within annotated regulatory element binding sites. The age dis-
tribution of these mutations is centered around 600 ka ago (Fig. 5A).

We then compared the ages of mutations affecting pairs of genes 
that interact, according to the STRING database (35), to see whether any 
clustered around specific time points (see Supplementary Methods). 
We find two distinct bursts of these mutations, one concentrated 
around 600 ka ago and another around 200 ka ago (Fig. 5B). We 
note that, because many of our human-specific genes are likely func-
tionally important and purifying selection can decrease genetic di-
versity, some of the time estimates for these mutations may be 
biased downward.

Estimating how and when the modern human lineage arose 
remains controversial. Dating the oldest population split within 
modern humans using genetic data has suggested times as recent as 
200 to 100 ka ago (36, 37). Archeological evidence paints a more 
complex and older story; however, a recent study reported human 
remains with many modern features but archaic cranial morphology 
dated to about 315 ka ago (38), suggesting that not all human-specific 
traits arose at the same time. Other studies have found that accumu-
lation of derived morphological features in humans occurred in ap-
proximately three periods, whose boundaries correspond roughly 
to the timing of mutational bursts we found (39).

Functional consequences of human-specific mutations
Comparison of the human and extinct hominin genomes could re-
veal instances of positive selection that are undetectable via allele 
frequency or haplotype-based analyses within modern humans or 
through comparative genomics between humans and other primate 
genomes (40). The ARG framework is an attractive approach as it 
pinpoints truly human-specific genomic regions unaffected by ei-
ther admixture of ILS.

We performed a gene ontology (41) enrichment analysis on the 
human-specific haplotype regions that accounted for the lengths of 
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Fig. 4. Extent of deserts of archaic hominin ancestry. (A) Left: In the SGDP data-
set, fractions of the genome where any individual has archaic ancestry (admixture), 
where any individual is incompletely sorted with archaic hominin lineages but 
where there is no archaic admixture (ILS), where there is no evidence of either ad-
mixture or ILS with archaic hominins (deserts), and where there is a fixed derived 
allele private to and shared by all humans (human-specific regions). Right: The 
same values from a simulated dataset with single pulses of Neanderthal and 
Denisovan admixture, both with an admixture proportion (2%) that produced rea-
sonable amounts of archaic ancestry per individual genome (fig. S47C). (B) For random 
subsamples of the SGDP dataset, along with the full dataset, fractions of the genome 
comprising deserts, deserts filtered for candidate archaic alleles using another 
dataset, and human-specific regions are shown. The points on the far right (full 
dataset) correspond to the desert and ILS bars in the left panel of (A).
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candidate genes (see Supplementary Methods) and found these re-
gions to be heavily enriched for genes related to neuron growth, 
synapse assembly and function, and cell adhesion (table S5). We 
note that this may occur because of positive selection in the ances-
tors of all humans, strong purifying selection that reduces the 
TMRCA within humans so that it excludes extinct hominins, or a 
combination of both. Further, this test does not suggest specific 
functional consequences of specific mutations.

We ordered human-specific derived mutations within desert re-
gions found in our ARG by the strength of evidence that they were 
targeted by selection. To this end, we first sought to limit analysis to 
potentially functionally relevant mutations, defined as mutations 
that either caused a nonsynonymous substitution relative to archaic 
hominin genomes or fell within annotated binding sites for regula-
tory elements known to affect specific genes (see Supplementary 
Methods). We developed a simple score for each mutation based on 

its inferred age, where available, and the length of the surrounding 
desert region (Fig. 5C). The rationale for this approach is that older 
human-specific substitutions should be in shorter haplotypes as they 
would have undergone more generations of recombination. Muta-
tions in haplotype regions that run counter to this expectation are a 
priori more likely to have been affected by positive selection. This 
approach is similar to the recently described extended lineage sort-
ing (ELS) scan (42), which prioritized long genomic intervals where 
modern human and archaic hominin lineages are completely sorted. 
Unlike the ELS method, however, our method only considers alleles 
that are fixed in modern humans, Our model also does not use a 
hidden Markov model to smooth transitions between sorted and 
unsorted haplotypes.

Several patterns emerge when considering genes with high-scoring 
human-specific mutations, and we highlight some of these key find-
ings. Gene ontology terms related to mRNA splicing, processing, 
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and export are enriched in genes with high-scoring mutations (table 
S7). Of these, we find a regulatory mutation affecting one—LUC7L3—
that is somewhat tissue specific (tau, a measure of tissue specificity 
scaled from 0 to 1 = 0.713), most highly expressed in cerebellar tis-
sue, and annotated to be involved in splice site selection. Its paralog 
LUC7L and the gene KHDC4, both of which also have high-scoring 
(top 50th percentile) regulatory mutations, are involved in the same 
process. In addition, the gene NOVA1, which harbors a nonsynon-
ymous mutation in the top 95th percentile of our score distribution 
(Fig.  5C), is a neuronal splicing factor that regulates splicing of 
genes involved in synapse formation within the brain (43).

Other types of genes, largely related to brain function and devel-
opment, appear to be affected by high-scoring mutations. Many 
genes localized to the centrosome and mitotic spindle are involved 
in maintaining the polarity of dividing neuroblasts, and some mu-
tations affecting these genes are thought to be critical for the devel-
opment of the human neocortex (44). We find the term “asymmetric 
neuroblast division” to be enriched in high-scoring genes (table S7). 
Among individual genes, we find a high-scoring nonsynonymous 
mutation affecting the centrosomal protein RABL6, which is highly 
expressed in cerebellar tissue and overexpressed in cancer (45) and 
a high-scoring regulatory mutation affecting INCENP, a protein 
crucial for cytokinesis that localizes to the mitotic spindle and 
centromere (46). Axon pathfinding is another process suggested to 
have been targeted by human-specific changes; the gene PIEZO1 is 
involved in this process (47) and harbors a high-scoring nonsynon-
ymous mutation. In addition, the protocadherin PCDHGB7, which 
contains a nonsynonymous substitution within a long desert region 
but which we could not date, is a member of a gene family that gen-
erates neuronal cell surface identity and is thought to help guide 
growing neurites (48). In addition to these, we find a number of 
other mutations potentially affecting genes involved in histone 
acetylation, neural cell migration, and the clearing of toxic sub-
stances from the brain (see Supplementary Text).

DISCUSSION
We implemented a new ARG inference approach, SARGE, and 
used it to build the first genome-wide ARG of both human and 
archaic hominin genomes. Analysis of the topology of these ARG 
trees confirms prior findings about archaic hominin admixture but 
with important new biological insights. For one, we find that a low 
fraction, 1.5 to 7%, of the human genome is uniquely human, with 
the remainder comprising lineages shared with archaic hominins 
from either ILS or admixture. This small human-specific fraction of 
the genome is enriched for genes related to neural development and 
function. We also find evidence for multiple waves of human- 
specific mutations that occurred through time, suggesting that the 
modern human phenotype may have developed in stages.

In addition to Neanderthal admixture into the ancestors of all 
modern non-African populations, we find evidence for other, 
population-specific episodes of admixture throughout Eurasia. The 
TMRCA to these population-specific Neanderthal haplotype blocks 
is deeper than the TMRCA to the Neanderthal haplotype blocks 
shared by all non-African populations. This deeper TMRCA sug-
gests that Neanderthals contributing population-specific ancestry 
were less closely related to published (Altai and Vindija) Neanderthal 
genomes than were the Neanderthals that contributed the broadly 
shared Neanderthal haplotype blocks. We also find that Neanderthal 

ancestry is present to a smaller extent in some African genomes due 
to back-migration, consistent with other recent reports (20).

We note that our estimated TMRCA to Neanderthal within 
Neanderthal-introgressed segments in all non-African populations 
is recent, ~74 ka ago, and implies therefore that little genetic drift 
separates admixed humans from sequenced Neanderthals in these 
segments. This recent TMRCA suggests that the majority of Nean-
derthal ancestry in modern humans originated from Neanderthal 
gene flow into the ancestors of all non-Africans before populations 
diversified. It also suggests that at least one of the Neanderthal ge-
nomes used here is closely related to the Neanderthal(s) involved in 
this admixture event. The slightly elevated Neanderthal ancestry 
that others have described in Central and East Asian populations 
also appears to have originated in this first pulse, as Central and 
East Asian Neanderthal haplotypes are mostly shared with other, 
geographically distant populations. This observation favors the hy-
pothesis that the increased Neanderthal ancestry in these popula-
tions relative to others is due to weaker selection against alleles that 
may be mildly deleterious (32), made possible because of smaller 
historical population sizes in this part of Eurasia, rather than to ad-
ditional admixture events (22). Our evidence of many small-scale, 
population-specific admixture events, however, together with a simu-
lation study that found a single-pulse admixture model followed by 
drift unable to explain the discrepancies in admixture proportions 
in European and Asian genomes (49), hints at a complex history of 
admixture throughout Eurasia not fully captured by either of these 
two hypotheses.

Last, the genomes of some Oceanian and other populations har-
bor genes from a population most closely related to the archaic 
Denisovan genome. The available Denisovan genome is less geneti-
cally similar to the admixing genome than the available Neanderthal 
genomes are to the admixing Neanderthals. While we are hopeful 
that future work may uncover a DNA-bearing fossil better repre-
senting the population involved in the Denisovan admixture, our 
approach allows identification of admixed regions that can be used 
to better describe the genome of the archaic hominin group involved in 
the admixture event. Larger panels of Denisovan admixed genomes 
may one day provide a nearly complete Denisovan genome scav-
enged in parts from the genomes of admixed human individuals.

The ARG also allows for prioritizing the selective importance of 
mutations specific to, and shared by, all modern humans by consid-
ering the TMRCAs of those mutations together with the lengths of 
their surrounding human-unique regions. Many of these selected 
human-specific mutations appear to affect genes involved in neural 
development and function, as well as RNA splicing. Using new tools 
for genome editing and brain organoid models for neural function, 
these mutations are obvious and important targets for experimental 
studies to determine what was selected in our human ancestors after 
divergence from our most closely related, extinct relatives.

MATERIALS AND METHODS
Data processing
We downloaded data from the SGDP panel (14), along with two 
Neanderthal (1, 15) genomes and one Denisovan (16) genome. The 
Simons data were downloaded in prephased form from https://
sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/; 
phasing was performed using SHAPEIT2 (50). We note that the hosts 
of the data state that the genotypes they provide at sites lacking a 

https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/;
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/;
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homologous chimpanzee are unreliable; we discarded all these sites 
from analysis.

Existing variant call sets for the ancient samples were either cre-
ated using a genotype caller that did not account for ancient DNA 
damage (15, 16) or were subjected to a mapability filter that discarded 
many sites in the genome (1). Because our method is sensitive to 
genotype errors and seeks to make inferences at every possible site in 
the genome, we chose to recall variants in these three genomes using 
the ancient DNA-aware genotype caller snpAD version 0.3.0 (51). 
For all snpAD runs, we required a minimum base quality of 25 and 
treated different types of libraries separately, separating uracil-DNA 
glycosylase (UDG)–treated and non–UDG-treated libraries in the case 
of the Vindija Neanderthal and separating single-stranded and double- 
stranded library data for the Altai Neanderthal and Denisovan.

Although the SGDP data were already phased, phasing posed a 
challenge for the Neanderthal and Denisovan data, for which there 
is no reference panel and for which DNA is fragmented into short 
segments. Fortunately, the comparatively low nucleotide diversity 
in these archaic hominins results in the presence of long runs of 
homozygosity, which are phased by definition. As an unbiased first 
step, we performed read-backed phasing using WhatsHap version 
0.16 (52) (with default parameters, plus –ignore-read-groups). Before 
filtering SNPs for quality and coverage, this phased 722,828 of 
11,746,838 heterozygous sites (6.2%) in the Altai Neanderthal, 
346,992 of 48,083,469 heterozygous sites (0.7%) in the Vindija 
Neanderthal, and 514,575 of 33,951,346 heterozygous sites (1.5%) 
in the Denisovan. Many of the remaining, unconfidently phased 
heterozygous sites were excluded by other, later filtering steps; how-
ever, in our final, filtered dataset, we were left with only 1,677,774 of 
49,876,210 total SNPs (3.4%) for which at least one archaic hominin 
individual was heterozygous and not phased by read-backed 
phasing.

Following read-backed phasing, we merged archaic hominin 
VCF files [using bcftools merge from bcftools version 1.8 (53)] and 
then phased the merged files using Eagle2.4 (54), with the 1000 Ge-
nomes Project data (24) as a reference panel. We used Eagle2’s de-
fault parameters but specified that it should not impute missing 
data (--noImpMissing) and that it should output alleles that it could 
not phase (--outputUnphased). After this, we randomly assigned 
both alleles at every unphased heterozygous site to one or the other 
haplotype. Although this decision, along with the use of a modern 
human reference panel, undoubtedly introduced haplotype switch 
errors, we deemed this preferable to excluding sites that were not 
confidently phased (which would require us to exclude data from all 
of the SGDP individuals at the same sites). To mitigate problems 
arising from this decision, we avoided performing any haplo-
type-specific analyses on the archaic hominin genomes. When cre-
ating maps of archaic hominin ancestry in modern humans, for 
example, we track only whether a modern human haplotype is in a 
clade with one or more archaic hominin haplotypes at each site but 
not which specific archaic hominin haplotype is in the clade. After 
running the ARG, we computed the discordance between similarity 
scores per genome haplotype computed using SNP data and com-
puted using shared ancestral recombination events; this discor-
dance should be largely driven by phasing switch errors, which can 
cause the inference of erroneous ancestral recombination events. 
We found that this discordance ranged from about 8× higher (in 
Denisovan) to 2 to 3× higher (in Neanderthals) in archaic hominins 
than in the most discordant human genomes (table S1).

We merged the phased archaic hominin files with the SGDP 
data, using bcftools merge with the –missing-to-ref option, and 
then used bcftools norm to remove duplicate alleles (-d). To avoid 
misidentifying all SGDP samples as homozygous reference at sites 
that were originally excluded from the SGDP dataset, we limited the 
variant call set for each chromosome to the sites between the first 
and last site in the SGDP data on that chromosome. To mitigate the 
same problem, we also removed any site for which all nonreference 
alleles in our SGDP data were private to archaic hominins but for 
which nonreference alleles were present in modern humans within 
the 1000 Genomes dataset (24). We then discarded all sites for 
which any individual had a missing genotype or genotype quality 
below 25 or for which any archaic sample fell within the upper or 
lower tail of its genome-wide coverage distribution (extracted from 
the VCF file). The allowed coverage ranges (determined by eye) 
were 23 to 70× for the Altai Neanderthal, 10 to 43× for the Denisovan, 
and 10 to 47× for the Vindija33.19 Neanderthal.

Last, we polarized our variant call set into ancestral and derived 
alleles, using the chimpanzee reference genome panTro4 (55) [mapped 
to hg19 by the UCSC Genome Browser team (56) and downloaded 
in AXT format] as an ancestral sequence, discarding any variant 
that was an indel, had more than two alleles, or lacked a known 
chimpanzee homolog. We chose panTro4 as an ancestral sequence 
rather than a composite ancestral sequence as some other studies 
have done [e.g., (57)] because it allowed us to more easily estimate 
branch lengths, at the cost of discarding some sites. In addition, be-
cause our approach assumes the infinite sites model of mutation, we 
excluded all CpG dinucleotide sites from analysis, as methylated 
cytosines in CpG dinucleotides are highly mutable and are thus 
more likely than other nucleotides to undergo repeated mutations (58).

ARG inference
We developed an ARG inference program called SARGE (available 
at https://github.com/nkschaefer/sarge), which is optimized for 
speed and low memory usage, in addition to making minimal mod-
el assumptions. SARGE assumes parsimony and the infinite sites 
model and uses the four-gamete test (11) as a central insight. 
SARGE avoids using statistical techniques to smooth branch lengths 
or infer clades, opting instead to describe only that which can be 
inferred directly from the input data. The result is a set of trees 
that contain polytomies and have relatively low-resolution 
branch lengths.

Our algorithm centers on the observation that a single tree can-
not contain two clades that share members unless one is a superset 
of the other. We assume that every shared derived allele in our data-
set defines a clade. It has been shown that, under this assumption, 
pairs of sites for which the inferred clades share members but for 
which neither is a superset of the other, mark ancestral recombina-
tion events, or breakpoints between different trees. This is referred 
to as the “four-haplotype test” or “four-gamete test” (3, 11). One 
could use this technique to map ancestral recombination events, 
which mark boundaries between trees, articulate trees using the 
sites within these boundaries. In practice, however, this can only 
produce minimally articulated trees. In the case of organisms with 
low nucleotide diversity, this is because there will not often be 
enough polymorphic sites between ancestral recombination break-
points to observe many of the possible clades per tree. In the case of 
organisms with high nucleotide diversity, however, it will be possi-
ble to detect far more ancestral recombination events, thus making 

https://github.com/nkschaefer/sarge
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the size of “bins” between ancestral recombination breakpoints 
smaller and leading to the same problem.

Our algorithm therefore seeks to infer all relevant information 
about each ancestral recombination event. An ancestral recombina-
tion event can be conceptualized as a branch movement (3) and so 
each consists of a set of haplotypes moving from one clade in an 
upstream tree into a new clade in a downstream tree. Given two 
clades that share members, but for which neither is a superset of the 
other (henceforth described as a failure of the four-haplotype test), 
and assuming that this four-haplotype test failure describes only 
one ancestral recombination event, there are then three possible 
branch movements than can explain it (fig. S1). We refer to the 
clade in the upstream tree from which a subclade moved as , the 
clade in the downstream tree into which a subclade moved as , and 
the subclade that moved positions as . Four-haplotype test failures 
are possible between the following sets of clades (with the clade in 
the upstream tree listed first and the clade in the downstream tree 
listed second): /, /, and /. In the case of an upward branch 
movement, all four-haplotype test failures are /, and all four- 
haplotype test failures are of the type / in the case of downward 
branch movements. The members of the moving clade  can then 
be inferred once the type of four-haplotype test failure is known. 
Denoting the members of the upstream clade as U and the members 
of the downstream clade as D,  contains U ∖ D in the / case, U ∩ 
D in the / case, or D ∖ U in the / case.

If two trees that differ by an ancestral recombination event are 
known a priori, then we devised an algorithm to describe the ances-
tral recombination event by choosing the candidate branch move-
ment(s) ( clades) that explain the most four-haplotype test failures 
(see Supplementary Methods and fig. S2). We then created a data 
structure to store ARG nodes over the genomic ranges they span, 
using a maximum, preset “propagation distance” parameter that 
determines the maximum range of a node defined by a single 
SNP. We then developed an algorithm to continually create and ad-
just ARG nodes as input SNP data are read in order across the genome 
(see Supplementary Methods and fig. S3). When four-haplotype 
test failures are encountered, candidate  clades are added to the 
data structure, and when all sites that can inform a given ancestral 
recombination event have been encountered, the most popular 
(parsimonious)  clade is chosen and used to infer new ARG nodes 
(figs. S4 and S5). Our use of propagation distance parameter serves 
as a bound on computational complexity and memory require-
ments (see Supplementary Methods and fig. S6) and limiting the 
impact of incorrectly inferred clades on the rest of the data struc-
ture. SARGE produces a tree at every variable site in the input data, 
with branch lengths estimated heuristically from the mutations en-
countered on each branch, normalized relative to the branch length 
to an outgroup genome (see Supplementary Methods and fig. S7).

Quality control (QC) simulations
For the sake of assessing our and other ARG inference programs, we 
simulated sampling an increasing number of haplotypes from a sin-
gle panmictic population with no history of growth or bottlenecks 
(QC simulations). Our QC simulations were performed using 
msprime (59). We chose a recombination rate of 1 centimorgan per 
megabase (cM/Mb) and a mutation rate of 1 × 10−9 per year with a 
25-year generation time, giving a per-generation mutation rate of 2.5 × 
10−8. In addition, we chose a heterozygosity value of 10.1 per 10,000 
bases, comparable to the rate in modern sub-Saharan Africans (15). 

We simulated 1 Mb of sequence per run, running five replicates each 
of simulations with 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 
1000, 2000, 3000, 4000, and 5000 haplotypes. The complete command 
used was mspms X 1 -t 1010.0 -r 404.0 1000000 --precision 6 –T, where X 
is the number of haplotypes. Whenever there were duplicate base po-
sitions in a simulated dataset, we ignored the allele data at all but the 
first occurrence of each position. We also repeated these simulations 
with a lower mutation rate of 1 × 10−8 per site per generation, to see 
how this affected SARGE’s ability to correctly infer clades. The mean 
sensitivity and specificity given in the Results section are computed 
on both of these sets of simulations, with numbers of haplotypes 
ranging from 50 to 500.

We then ran SARGE on each dataset with a propagation distance 
of 25,000 bases, along with tsinfer (8) (converting its output to a 
sequence of trees linked to specific variable sites), Relate (7) with the 
mutation rate set to that known from the simulation and with the 
haploid effective population size set to two times the simulation’s 
effective population size, and Rent+ (5) with the –t option to infer 
branch lengths. For each inferred tree, we loaded the tree output by 
msprime for the same variable site and defined the inferred ARG’s 
specificity as the fraction of all clades in all inferred trees that exist-
ed as clades in the msprime tree at the same sites. We also computed 
the sensitivity, defined as the fraction of all clades in true trees that 
existed as clades in the inferred ARGs. For the two methods, Relate 
and Rent+, that produced fully articulated trees (without polyto-
mies), these two values were the same. Results of these QC simula-
tions are shown in figs. S8 to S10.

We also repeated a similar set of simulations with the goal of 
assessing the effect of the mutation rate, the recombination rate, 
and population structure on the accuracy of SARGE, compared to 
Rent+, Relate, and tsinfer. To this end, we used the same base pa-
rameters (with a 2.5 × 10−8 per site per generation mutation rate) 
and chose 100 haplotypes for each simulation.

For testing the effect of heterozygosity, simulations were of the 
form mspms 100 1 -t X -r 202.0 1000000 --precision 6 -T with 
X = 505, 1010, 2020, 5050, and 10,100. We set the effective popula-
tion size parameter in Relate to two times the effective population 
size in the simulation (the -t parameter divided by 1,000,000 bases) 
and ran SARGE with a 25-kb propagation distance on each. Results 
of these simulations are shown in fig. S11.

For testing the effect of the recombination rate, simulations were 
of the form mspms 100 1 -t 1010.0 -r X 1000000 --precision 6 -T 
with X = 202, 404, 808, 2020, and 4040. We set the effective popula-
tion size parameter in Relate to 20,200 and ran SARGE with a 25-kb 
propagation distance on each. Results of these simulations are 
shown in fig. S12.

For testing population structure, in addition to the panmictic 
simulation, we ran one simulation with two populations that split 
100 ka ago, another in which these both split into two additional 
populations 50 ka ago, and a third in which all four populations 
split into two more populations 25 ka ago, for a total of eight sub-
populations. We sampled an equal number of haplotypes from each 
population for 100 total, except in the case of the eight-population 
simulation, in which we sampled either 10 or 15 haplotypes from 
each population, for a total of 100 haplotypes. The command for the 
two-population simulation was mspms 100 1 -t 1010.0 -I 2 50 50 -r 
404.0 1000000 -ej 0.0990099009901 2 1 --precision 6 -T, the 
command for the four-population simulation was mspms 100 1 -t 
1010.0 -I 4 25 25 25 25 -r 404.0 1000000 -ej 0.049504950495 3 1 -ej 
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0.049504950495 4 2 -ej 0.0990099009901 2 1 --precision 6 -T, and 
the command for the eight-population simulation was mspms 100 
1 -t 1010.0 -I 8 10 15 10 15 10 15 10 15 -r 404.0 1000000 -ej 
0.0247524752475 5 1 -ej 0.0247524752475 6 3 -ej 0.0247524752475 7 
2 -ej 0.0247524752475 8 4 -ej 0.049504950495 3 1 -ej 0.049504950495 
4 2 -ej 0.0990099009901 2 1 --precision 6 -T. We ran Relate with an 
effective population size parameter of 20,200 and SARGE with a 25-kb 
propagation distance parameter on each. Results of the simulations 
are shown in fig. S13.

We did another QC simulation that assessed the effect of a single 
population bottleneck on the sensitivity and specificity of all pro-
grams considered in this study. We chose the same parameters as in 
other QC simulations but simulated the effect of reducing Ne to ¼ 
its original value 80 ka ago. The command for this simulation was 
mspms 100 1 -t 1010.0 -r 4040.0 1000000 --precision 6 -G 17.50197 -eN 
0.0792079207921 1 -T. Results of these simulations are shown in 
fig. S14.

We also used some of our QC simulations for other assessments. 
We used our initial QC simulation, including five replicates, with 
100 sampled haplotypes to assess the effect of the propagation dis-
tance parameter of the accuracy of SARGE compared to tsinfer and 
Relate (fig. S15 and “Testing the propagation distance parameter” 
section in Supplementary Text). To show the effects of sample size 
on the properties of incorrectly inferred clades, we also used one of 
our QC simulations with 50 sampled haplotypes and another with 
500 sampled haplotypes to explore the numbers of clades missing, 
correctly inferred, and incorrectly inferred in SARGE output trees 
by clade size (fig. S16) and to find the shortest distance along the sim-
ulated chromosome that each incorrectly inferred clade exists from 
a true clade with the same members (fig. S17 and “Properties of missing 
and incorrectly inferred clades” section in Supplementary Text).

Demographic simulations
Several of our other analyses and tests required simulated data more 
similar to our real data (a global panel of human genomes, plus one 
eastern Neanderthal, one western Neanderthal, and one Denisovan 
genome). We therefore created a second type of simulated dataset 
using a popular human demographic model.

We used scrm (60) for these simulations, providing branch 
shortening values for ancient samples. We combined a popular, 
three-population demographic model for modern humans (61) 
with populations meant to approximate the Altai (15) and Vindija 
(1) Neanderthals and the Altai Denisovan (16). We assumed a 1 cM/Mb 
recombination rate and a 0.5 × 10−9 per year mutation rate, along 
with a 25-year generation time, giving a per-generation mutation 
rate of 1.25 × 10−8. This mutation rate is different from that in 
the original description of the demographic model but concordant 
with more recent studies that measured divergence between mod-
ern and archaic hominins (1). In addition to the demographic mod-
el parameters listed in (61), we modeled a Neanderthal/human split 
time of 575 ka ago (15), an Altai/Vindija split time of 137.5 ka ago, 
a Neanderthal/Denisovan split of 420 ka ago, and modeled the het-
erozygosity in all Neanderthals as 1.6 × 10−4 and in Denisovans as 
1.8 × 10−5 (1). We chose 100 ka ago as the divergence time between 
the Vindija and introgressing Neanderthal, no split between the in-
trogressing and sampled Denisovan populations, and we modeled 
human/Neanderthal admixture as a single pulse 50 ka ago, in the 
population ancestral to both Europeans and Asians, and human/
Denisovan admixture as a single pulse 20 ka ago, in the Asian population. 

We assigned 57 ka ago of missing evolution to the Vindija haplo-
types, 123 ka ago of missing evolution to the Altai haplotypes, and 
80 ka ago of missing evolution to the Denisovan haplotypes (1). Our 
simulated chromosome was 25 Mb long, and we sampled 2 haplo-
types from each Neanderthal and Denisovan (but not the intro-
gressing Neanderthal), as well as 150 haplotypes from each modern 
human population (African, Asian, and European) population, for 
a total of 450 modern human haplotypes. For the sake of simplicity 
ascertaining archaic introgressed haplotypes, we modeled no archa-
ic introgression into Africans and set the gene flow parameters be-
tween Africans and other populations to zero.

We then ran five different simulations, varying the human/
archaic admixture proportion in each (the admixture proportion 
was the same for both the Neanderthal and Denisovan admixture 
events). The admixture proportions we used were 1, 2, 5, and 10%. 
The full command for each run was scrm 456 1 -t 17253.7128713 -r 
13802.970297 25000000 -T -I 7 150 150 150 0 0 0 0 -eI q 0 0 0 0 0 2 
0 -eI 0.0891112545728 0 0 0 2 0 0 0 -eI 0.0579585395596 0 0 0 0 0 0 
2 -n 1 1.68 -n 2 3.74 -n 3 7.29 -n 4 0.231834158238 -n 5 0.231834158238 -n 
6 0.231834158238 -n 7 0.0260813428018 -eg 0 2 116.010723 -eg 0 3 
160.246047 -m 2 3 2.797460 -m 3 2 2.797460 -ej 0.028985 3 2 -en 
0.028985 2 0.287184 -em 0.028985 1 2 7.293140 -em 0.028985 2 1 
7.293140 -es 0.0144896348899 3 [1-x] -ej 0.0144896348899 8 7 -es 
0.0362240872247 2 [1-x] -ej 0.0362240872247 9 5 -ej 0.0724481744495 
6 5 -ej 0.197963 2 1 -en 0.303501 1 1 -ej 0.099616239868 5 4 -ej 
0.304282332688 7 4 -ej 0.416577003084 4 1, where [1-x] means one 
minus the admixture proportion in a given run. We again discarded 
all but the first instance of every unique base position in the output 
file, and we converted the “true” trees into SARGE format for run-
ning analyses.

We used the simulation with what we deemed was the most re-
alistic admixture proportion (0.02) for other QC assessments of 
SARGE, including checking accuracy of inferred branch lengths 
(since SARGE requires knowledge of the TMRCA of all humans to 
convert branch lengths into years; see “Testing accuracy of inferred 
branch lengths” section in Supplementary Text), and testing the 
ability of SARGE, Relate, and tsinfer to recover the true extent of 
deserts of archaic hominin admixture and ILS across the simulated 
chromosome (see “Comparing sizes of deserts inferred using differ-
ent methods” section in Supplementary Methods).

We also ran one smaller version of the demographic simulation, 
with a 0.05 admixture proportion and 20 haplotypes sampled per 
human population, for 60 total modern human haplotypes. We 
used this simulation along with the bigger simulation to assess hap-
lotype block lengths in SARGE-inferred versus true ARGs, to assess 
the effects of sample size on inferred haplotype block length accura-
cy (fig. S21). We also used this simulation alongside the larger one 
to assess accuracy of inferred desert sizes (see “Comparing sizes of 
deserts inferred using different methods” section in Supplementary 
Methods and figs. S48 and S49).

Admixture scans
The central challenge of creating admixture maps is to disentangle 
ILS from admixture. Both processes create local trees in the genome 
that group candidate admixed haplotypes with admixer haplotypes. 
Clades resulting from ILS are older than those resulting from ad-
mixture; however, they should therefore persist for shorter stretches 
along the genome and have older TMRCAs. Clades resulting from 
ILS are separable from those resulting from admixture using these 
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two metrics, although the low resolution of branch lengths in the 
inferred ARG makes this problem more difficult than when true 
branch lengths are known (fig. S19). Because of this, we established 
several filtering steps to distinguish ILS from admixed clades in 
our dataset.

To map Neanderthal and Denisovan ancestry, we first scanned 
through ARG output for all clades that grouped some modern hu-
man haplotypes with one or more admixer haplotypes (Neander-
thal and/or Denisovan) to the exclusion of some other modern 
human haplotypes. Since SARGE produces many polytomies, this 
carries the risk of observing a parent of one or more true admixed 
clades, but not the true admixed clade. This would manifest as a 
clade containing many modern humans, in addition to one or more 
archaic hominins, and would falsely be interpreted as a very high- 
frequency archaic-introgressed haplotype. To mitigate this prob-
lem, we defined the Mbuti, Biaka, and Khomani-San genomes as an 
outgroup population (Africa-MBK) and discarded any clade that 
contained more than 10% of the outgroup members. We set this 
10% threshold, rather than excluding all clades containing outgroup 
members, because of later filtering steps also designed to eliminate 
ILS clades. Next, we discarded any clades that persisted for less than 
5 kb along the chromosome, as well as one extremely long haplo-
type that fell within a centromere, as annotated by the UCSC Ge-
nome Browser (56). For each clade that passed our selection criteria, 
we visited each nonarchaic hominin member and determined whether 
that member had candidate Neanderthal, Denisovan, or undeter-
mined ancestry by assessing whether it was closer (by tree topology, 
ignoring branch lengths) to a Neanderthal or Denisovan haplotype, 
or equidistant to both.

We then computed the mean TMRCA between each human 
member and the candidate archaic introgressor across each haplo-
type. SARGE reports each branch length as a percent of the total 
height of the tree both above and below that branch (fig. S7), which 
in our dataset includes all fixed differences between the genomes in 
our dataset and the reference chimpanzee genome. The units in 
which these TMRCAs are expressed are therefore a percent of two 
times the total divergence time between humans and chimpanzees. 
These values were then corrected for branch shortening, according 
to the mean branch shortening or “missing evolution” values pub-
lished in a prior study (1), converted to branch units by dividing 
each number by 26 Ma. To correct for branch shortening, we added 
the amount of missing evolution reported for a given archaic ge-
nome (in the same units as ARG branch lengths) to the archaic ge-
nome’s branch when computing TMRCAs. That is, if the TMRCA 
between a modern and archaic haplotype is x and the branch short-
ening value for the archaic haplotype is y, then the corrected TMR-
CA between them is (2x + y)/2.

Our ascertainment strategy allowed some candidate admixed 
haplotypes to intersect. If a human haplotype was inferred to have 
Neanderthal ancestry at one site and Denisovan ancestry at the next 
variable site, for instance, then it is likely that the two haplotypes 
actually originated from the same source. Because of this possibility, 
we merged all these haplotypes together, averaging the TMRCA to 
admixer in each, weighting by the relative lengths of the two haplo-
types being merged. We then repeated this process until each hap-
lotype was unable to merge with any others. Because each such 
haplotype resulted from the combination of haplotypes with differ-
ent types of ancestry, all merged haplotypes were labeled as ambig-
uous, rather than Neanderthal or Denisovan, origin.

At this stage, the set of haplotypes likely still contained haplo-
types resulting from ILS rather than admixture. To help mitigate 
this, we assigned each a score designed to be high in cases of admixture 
and low in cases of ILS. We chose a date that predates the human/
archaic hominin separation, 700 ka ago, and computed the P value 
of each haplotype having originated at that time or earlier according 
to its length and according to its TMRCA to the candidate admixer. 
For this, we assumed both TMRCAs to admixer and haplotype lengths 
to be exponentially distributed, and we assumed neutral evolution, 
a standard recombination rate of 1 cM/Mb, a 25-year generation 
time, and 13 Ma ago human-chimpanzee divergence. We assigned 
each haplotype a probability of resulting from ILS, based on its TMRCA: 
If the TMRCA (as a percent of the height of the tree) is y, then   
p  TMRCA   = 1 −  e   − (    

26e6 _ 700,000   )  (y)  . We then assigned each a probability of 
resulting from ILS, based on its length: If x is the length of a haplo-
type, in bases, then   p  len   =  e   − 700,000 _ 1e8*25  x  . We then computed a score, us-
ing a pseudo-count of 0.001 to avoid taking the logarithm of 
0: Sadm = − (log10(pTMRCA + 0.001) + log10(plen + 0.001)).

Because our prior filtering strategies already removed many ILS 
haplotypes, we sought to find the smallest threshold for Sadm that 
gave reasonable results. We therefore tested Sadm cutoffs at every 
fifth percentile of the distribution across all haplotypes and com-
puted the coefficient of variation (SD divided by mean) for TMRCAs 
to admixer in each class of archaic-introgressed haplotypes 
(Neanderthal, Denisovan, and ambiguous) within each human 
population defined within the SGDP (14). Because we expect mem-
bers of these populations to have somewhat shared histories, we 
expected the coefficient of variation to the admixer to decrease and 
level out as an appropriate cutoff was reached, reflecting the remov-
al of highly variable segments with old TMRCAs (ILS). We found 
such a cutoff at the 30th percentile of the score distribution and 
excluded haplotypes with scores below this threshold (fig. S24). Be-
cause our resulting archaic introgression maps still underestimated 
archaic ancestry per genome relative to the D statistic (Fig. 3A) and 
because our real dataset overestimated the extent of ILS relative to 
every demographic simulation we ran and underestimated admix-
ture relative to the size of inferred deserts (Fig. 4), we believe that 
this cutoff was reasonable, if not overly conservative.

We also quantified uncertainty in our percent admixture esti-
mates using the weighted block jackknife technique (18) with 10-Mb 
blocks. We generated windows using BEDTools, omitted each from 
our admixture maps in turn, and recalculated the percent of each 
type of archaic ancestry in each SGDP genome from our admixture 
maps. We then used this distribution of archaic ancestry estimates 
for each individual to obtain a 95% CI. Mean percent archaic an-
cestry, along with the minimum lower and maximum upper bound 
of the 95% CI for each type of ancestry across all genomes in each 
population are given in table S2.

Because our method relies on phased data, improper phasing 
could pose problems for this by breaking haplotypes where they 
should not be broken. Improper phasing is most likely to be a prob-
lem in the archaic genomes, for which reads were short and there is 
no phasing reference panel, so many sites were phased randomly, 
after phasing the others using a (likely inadequate) modern human 
reference panel (see “Data processing” section above). We worked 
around this issue by only conducting admixture scans on modern 
human genomes, those more likely to be properly phased, and by 
tracking only whether each candidate admixed clade contained 
Neanderthal or Denisovan haplotypes, without regard to which 
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specific Neanderthal or Denisovan haplotypes they contained. That 
is, a clade containing one modern human genome haplotype and 
one Neanderthal haplotype would still be considered the same clade 
(potentially from the same admixture event) if at the next site the 
Neanderthal haplotype contained within was replaced by another. 
To ensure that this did not negatively affect our results, we repeated 
some admixture scans on simulated data after intentionally introducing 
phasing errors into the archaic genomes; we did not see evidence 
that this negatively affected the results (see Supplementary Text).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/29/eabc0776/DC1

View/request a protocol for this paper from Bio-protocol.
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