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Abstract

DNA polymerase β (Pol β) plays a vital role in DNA repair and has been closely linked to cancer. 

Selective inhibitors of this enzyme are lacking. Inspired by DNA lesions produced by antitumor 

agents that inactivate Pol β, we have undertaken the development of covalent small-molecule 

inhibitors of this enzyme. Using a two-stage process involving chemically synthesized libraries, 

we identified a potent irreversible inhibitor (14) of Pol β (KI = 1.8 ± 0.45 μM, kinact = (7.0 ± 1.0) × 

10−3 s−1). Inhibitor 14 selectively inactivates Pol β over other DNA polymerases. LC-MS/MS 

analysis of trypsin digests of Pol β treated with 14 identified two lysines within the polymerase 

binding site that are covalently modified, one of which was previously determined to play a role in 

DNA binding. Fluorescence anisotropy experiments show that pretreatment of Pol β with 14 
prevents DNA binding. Experiments using a pro-inhibitor (pro-14) in wild type mouse embryonic 

fibroblasts (MEFs) indicate that the inhibitor (5 μM) is itself not cytotoxic but works 

synergistically with the DNA alkylating agent, methylmethanesulfonate (MMS), to kill cells. 

Moreover, experiments in Pol β null MEFs indicate that pro-14 is selective for the target enzyme. 

Finally, pro-14 also works synergistically with MMS and bleomycin to kill HeLa cells. The results 

suggest that pro-14 is a potentially useful tool in studies of the role of Pol β in disease.
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INTRODUCTION

DNA damage and repair have significant biological consequences on aging and diseases.1–4 

Consequently, the DNA damage response system is an increasingly popular inhibition target. 

Additional incentive for developing repair enzyme inhibitors is provided by a recent report 

that ascribes exceptional responses to chemotherapy by some cancer patients to defects in 

DNA repair.5 Poly(ADP-ribose) polymerase (PARP) inhibitors, of which four are FDA 

approved for treating BRCA1-deficient cancers, are leading the way.6–8 A variety of other 

enzymes involved in DNA repair, including glycosylases,9–13 phosphodiesterases,14,15 and 

polymerases,16–24 are also attractive targets. DNA repair inhibitors can work in conjunction 

with damaging agents to kill cells. Alternatively, as in the case of the PARP inhibitors, some 

enzymes can be targeted to exploit a synthetic lethal relationship involving a second enzyme 

or pathway that is defective in a cell to selectively kill them.

DNA polymerase β (Pol β) plays a vital role in base excision repair (BER, Scheme 1) in the 

nucleus and mitochondria.25–29 Pol β also contributes to double strand break repair via the 

alternative nonhomologous end joining pathway.30 The enzyme is up-regulated and/or 

mutated in many human cancers, such as colon cancer, where the mutation rate reaches 

~40%.31 Pol β has been postulated to exhibit a synthetic lethal relationship with homologous 

recombination, but this has not been verified experimentally.32 Although Pol β inhibitors 

have been reported, there is a need for molecules that are selective and efficacious in cells.
16–24 Here, we report a selective, covalent Pol β inhibitor that acts on the enzyme in 

mammalian cells.

Pol β is also one of a handful of bifunctional DNA polymerases (Scheme 1A) possessing 

polymerase and lyase activity (Scheme 1B). The activities are associated with separate 

binding sites, and 39 kDa Pol β can be divided into a 31 kDa polymerase domain and a 

shorter 8 kDa amino terminus domain that harbors the lyase activity. In short patch BER, Pol 

β reacts with the 5′-deoxyribose phosphate (5′-dRP) generated by incision of the 5′-

phosphate of an abasic site (AP) by apurinic endonuclease 1 (Ape1, Scheme 1). The enzyme 

carries out a lyase reaction via Schiff base formation. When Pol β binds oxidized abasic 

sites, such as DOB, attempted excision via initial nucleophilic attack results in covalently 

modified, inactivated enzyme (Scheme 2).33–35

Inactivation of Pol β by oxidized abasic sites served as an inspiration for the design of 

mechanism-based irreversible inhibitors (1, 2).21–23 These molecules contain a 1,4-

dioxobutane group linked to a 5′-phosphorylated thymidine (1) or C5-derivative (2) via a 

methylene linker that reduces β-elimination from the dicarbonyl component. The 
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substituents at the 3′- and C5-positions of the thymidine were obtained by screening 

libraries of molecules (<350). The corresponding bis-acetates (pro-1, pro-2) undergo 

hydrolysis in cell lysates to the inhibitors.21 Pro-1 and pro-2 function as pro-inhibitors in 

cells and work synergistically with DNA damaging agents to kill mammalian cells. 

Although 2 is ~50-times more active against Pol β than is 1, it is even more effective at 

inactivating Pol λ. Pol λ has biological function that is independent of Pol β, but the 

enzymes have overlapping activity and the former is frequently thought of as a back-up to 

Pol β in BER.36–39 It is desirable to identify inhibitors that are selective for one enzyme over 

another, and this was one goal of the current study.

RESULTS AND DISCUSSION

Inhibitor Identification Strategy.

We previously identified a high nanomolar irreversible inhibitor of Pol β via a two-step 

process.21–23 A library consisting of oximes at the 3′-terminus of a nucleotide was screened 

in step one. The inhibitor (1) identified from this procedure was then used to synthesize a 

library of molecules in which structural diversity was introduced at the C5-methyl position 

of a thymine in the form of amides. To streamline the synthesis process and maximize the 

use of a stable carboxylic acid library, we proposed to start from readily available AZT 

(Scheme 3). In contrast to previous investigations that yielded 1 and 2, the 3′-recognition 

element in this study is appended to the nucleotide core via an amide bond.

Identification of a First-Generation Irreversible Inhibitor.

The precursor (6) for preparing the library was rapidly synthesized from AZT (Scheme 4). 

The azide was reduced and the resulting amine was protected as the trifluoroacetamide (3) 

prior to coupling with phosphoramidite 4, which bears the protected 1,4-dioxobutane 
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warhead. The bis-pentene acetal was used to mask the warhead, because it could be cleaved 

rapidly under mild conditions that are compatible with other functional groups in the 

molecules that make up the library.21 Although it would have been more direct to reduce the 

azide after forming the phosphate bond, the slightly longer method avoided competing azide 

reduction by the phosphoramidite during coupling. Phosphoramidite 4 was prepared via 

phosphitylation of the corresponding alcohol, which was previously reported.40 A mixture of 

diastereomers of 5 was deprotected using concentrated aqueous ammonium hydroxide at 

room temperature. Crude 6 was used to produce the library of first-generation inhibitor 

candidates. Utilizing a mixture of diastereomers of the DOB component was not a concern 

because it was expected to epimerize in water, following bis-pentene cleavage.

The bis-acetal protected, first-generation library (325 members, Chart S1) was prepared in 

384-well plates by coupling 6 with 1.4 equiv of HBTU, HOBt, and the corresponding 

carboxylic acids. The crude amides were then rapidly deprotected (5 min) in a different 384-

well plate using 2.5 equiv of N-bromosuccinimide at 4 °C and quenched with sodium 

thiosulfate. The inhibitor candidates were immediately screened for Pol β inhibition using a 

strand displacement assay in which the displaced oligonucleotide was fluorescently labeled 

at its 3′-teminus with TAMRA, and the template was labeled at its 5′-terminus with black 

hole quencher (Scheme 5, Figure S1a).21,40,41 Screening reactions containing Pol β (100 

nM) and inhibitor (25 μM) were preincubated (30 min) prior to diluting 10-fold and reacting 

with the ternary DNA substrate and dTTP (Figure S49). Initial hits were identified based 

upon their ability to prevent an increase in fluorescence. These molecules (3) were 

resynthesized from 6 and screened side-by-side with a control experiment containing all 

reagents except 6 to eliminate false positives (Figure S1b).

Product 7 was identified as the most promising inhibitor, and its bis-pentene acetal was 

resynthesized and purified to confirm its activity (Figure S2a).40 Complete loss of Pol β 
strand displacement activity was observed following a 20 min preincubation with 15 μM 7. 

The diminution of strand displacement activity was dependent upon preincubation time, 

indicating that 7 irreversibly inhibits Pol β (Figure S2b), and was carried forward in the 

search for a second-generation inhibitor (Scheme 3).

Identification of a Second-Generation Irreversible Inhibitor.

The primary amine designated for introducing structural diversity at the C5-pyrimidine 

position was incorporated by reacting the crude bromide obtained from 8 with concentrated 

aqueous ammonium hydroxide in ethanol cosolvent (Scheme 6). Following protection of the 

primary amine as the trifluoroacetamide, the azide in 9 was reduced and the amine coupled 

with the carboxylic acid (11) that provided first-generation inhibitor 7. Upon deprotection of 

the C5′-alcohol in 10, the nucleoside was coupled with phosphoramidite 4. The nucleoside 

was used in slight excess (1.2 equiv) to minimize phosphoramidite byproducts, which were 

difficult to separate from 12. Cleavage of the trifluoroacetamide and β-cyanoethyl protecting 

groups, as described for preparing 6 (Scheme 4), provided the substrate (13) for preparing 

the second-generation inhibitor library, and was purified by column chromatography 

(Scheme 6).
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Precursor 13 was coupled with a library of carboxylic acids (375, Chart S1), followed by 

removal of the pentene acetal protecting groups, as described above for screening the first-

generation library. Inhibitor screening was carried out at 700 nM (crude) inhibitor 

candidates, as opposed to 25 μM for the first-generation inhibitor. From this library, 14 was 

selected as the most promising candidate, after carrying out the control experiments 

described for the evaluation of the first-generation library (Figure S50). Inhibitor 14 was 

independently synthesized from 13.40 Coupling was carried out using the corresponding 

NHS-ester (45%) because reaction of the corresponding free acid provided the desired 

product in low yield. Following purification of the bis-pentenyl acetal precursor, 14 was 

generated on an as-needed basis.

Irreversible Inhibition of Pol β by 14.

The quantitative effect of 14 on Pol β activity at pH 7.4 was determined using the strand 

displacement assay employed to identify it. The time-dependent curves generated from the 

fluorescence-based assays were fit to an exponential growth region followed by a plateau.
42,43 Rate constants extracted from these data were used to determine relative rates of 

enzyme activity with and without inhibitor. The effect of 14 on polymerase activity was 

examined between 100 and 750 nM following preincubation with Pol β for between 2 and 

20 min.

The KI (1.8 ± 0.45 μM) and kinact ((7.0 ± 1.0) × 10−3 s−1) for 14 were extracted from a Kitz–

Wilson plot (Figure 1A). To our knowledge, 14 and the less active 1 and 2 are the only 

irreversible inhibitors of Pol β. Hence, we cannot compare kinact to other molecules. 

However, the KI compares favorably to molecules such as honokiol, which is not selective 

for Pol β over Pol λ.17 Other molecules are more potent, but their selectivity is 

unsatisfactory or unknown.24 The IC50 (Figure 1B) for Pol β inactivation by 14 was 

determined using 10 (458 nM) and 12 (409 nM) min preincubation times. In comparison, 2 

exhibited an IC50 value of 400 nM following 30 min preincubation.22,23 The IC50 values of 

2 and 14 cannot be compared directly because they were determined under different 

conditions (i.e., preincubation times and extent dilution following preincubation). To make a 

direct comparison, 14 was analyzed under the conditions employed for measuring the IC50 

of 2. Under the identical conditions, the IC50 for 14 (204 nM) was approximately one-half 

that of 2 (Figure S3). Additional evidence for irreversible inhibition of Pol β by 14 was 

obtained by comparing the polymerase activity before and after dialysis (24 h, 4 °C), which 

revealed that the enzyme did not regain function following dialysis (Figure 2A).
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Inhibitor 14 modifies lysine residues in the polymerase domain and prevents DNA binding 
by Pol β.

The residue(s) modified on Pol β by 14 were identified via LC-MS/MS analysis following 

trypsin digest of enzyme that was preincubated with 14 (300 nM, 30 min). Trypsin digestion 

was carried out under suboptimal conditions (pH 6.5) due to adduct instability at higher pH 

(see below). Fragment ion analysis of the two observed modified tryptic peptides revealed 

that Lys113 and Lys234 formed adducts with 14 (Figure 3A).40 Peptide 1 contains a single 

internal lysine residue and an expected fragment containing a modification on K113 (y8*, 

Peptide 1, Figure S51) was detected. Peptide 2 (Figure 3A) contains four internal lysine 

residues (K230, K234, K244, and K248) and required MS/MS fragmentation to identify the 

modified lysine (Figure S52). Unmodified fragments containing K230 (b13), K244 (y18), and 

K248 (y9, y18) indicated these residues did not react with 14. A fragment containing a single 

modification was observed that contained K230 and K234 (b21*). In addition, another 

fragment that contained one modification and included K234, K244, and K248 (y21*). When 

considered in total, these data indicated K234 was the modified lysine in Peptide 2.

The fragments observed in the gas phase correspond to the ring opened dehydrated forms 

(16), which would be expected to exist in equilibrium with the ring closed bis-hemiaminal 

isomers (15) in solution (Figure 3A). (Imine formation is shown involving the C1-aldehyde, 

but the data do not distinguish between this adduct or one involving the C4-aldehyde.) Based 

upon previous experiments that established the necessity of the 1,4-dicarbonyl moiety for 

inactivation, ring closed isomer 15 is believed to dominate in solution.21

Support for the proposed structure of the lysine adduct(s) is gleaned by examining the effect 

of pH on inactivation by 14 (Figure 2B). Preincubation of Pol β with 14 at pH 7.4 

completely inactivated the enzyme (Figure 2B, columns 1, 2). In contrast, preincubation at 

pH 8 resulted in no inactivation (Figure 2B, columns 5, 6). Furthermore, when Pol β was 

preincubated with 14 at pH 7.4, complete activity loss resulted, but when then dialyzed at 

pH 8, the inhibitor again had no effect on enzyme activity (Figure 2B, columns 3, 4). 

However, activity is not recovered if dialysis is carried out at pH 7.4 (Figure 2A). Based 

upon these observations, we suggest that the adduct(s) is unstable at pH 8, consistent with 

the expected behavior of 15.

Identification of the modified lysines provided a mechanistic rationale for how 14 inactivates 

Pol β. Lys234 is important for DNA binding and is invariant across multiple species of Pol 

β.44–46 In addition, analysis of the crystal structure of Pol β when complexed with DNA 

(PDB: 1BPX) indicates that Lys113 is within 10 Å of the DNA backbone (Figure 3B).44–46 

We used a fluorescently labeled ternary substrate containing a stable abasic site analogue 

(Table S1) to determine if Pol β incubation with 14 affected DNA binding (Figure 4).47 

Fluorescence anisotropy measurements indicated DNA binding was significantly reduced 

following preincubation with 14 (2 μM). DNA binding interactions were most effectively 

disrupted at lower Pol β concentrations. Complete DNA binding was not observed until 

~800 equiv of protein were added. Together, fluorescence anisotropy and trypsin digestion 

experiments indicate that 14 irreversibly inhibits Pol β by covalently modifying lysine 

residues in the polymerase domain that result in compromised DNA binding.
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Selective Inactivation of Pol β.

Selective DNA polymerase inhibition is challenging. For instance, 2 is a more potent 

inhibitor of Pol λ than Pol β.22 The lack of selectivity between the two X-family 

polymerases has been observed in other reported Pol β inhibitors.17 The two enzymes share 

32% sequence homology, which contributes to the difficulty in inhibiting one over the other.
48 The potency of 14 for inhibiting Pol β was compared to its effect on a model replicative 

polymerase (Klenow exo−) and three mammalian polymerases involved in DNA repair, Pol 

θ, Pol η, and Pol λ (Figure 5). The effect of 14 on the respective enzymes was ascertained 

by determining the relative enzyme activity following preincubation with inhibitor versus in 

the absence of inhibitor.

Under conditions in which 14 (500 nM, 20 min preincubation) essentially completely 

inactivated Pol β, it had no effect (within experimental error) on Klenow exo−, Pol θ, Pol η, 

or Pol λ. Increasing the concentration of 14 20-fold (10 μM) still had no effect on Klenow 

exo− or Pol θ activity. Pol η and Pol λ polymerase activities are reduced at 10 μM 14. 

However, Pol η retains approximately 50% of its activity at this concentration and the 

activity of Pol λ is slightly more than 25% relative to untreated enzyme. Despite these 

effects, the existence of significant activity at 20 times the concentration of inhibitor 14 at 

which Pol β is completely inactivated indicates significant selectivity for this enzyme. It is 

not possible to rigorously compare the selectivity of 14 to many other Pol β inhibitors 

because it is a covalent inhibitor, while others such as honokiol are reversible inhibitors.17 

However, these data (Figure 5) clearly indicate that 14 selectively inactivates Pol β over 

these 4 other polymerases.

Pro-14 selectively targets Pol β in cells and works synergistically with DNA damaging 
agents.

Pro-14 (5 μM) killed fewer than 5% of wild type mouse embryonic fibroblasts (Pol β WT, 

MEFs) (Figure 6a). However, the pro-inhibitor enhanced the cytotoxicity of 

methylmethanesulfonate (MMS) when the concentration of alkylating agent was varied up to 

1.5 mM. MMS activates BER by alkylating purines.49 The data indicate that pro-14 and 

MMS have a synergistic effect on MEF cytotoxicity. This is consistent with the ability of 

similarly designed pro-inhibitors to act synergistically with MMS.21–23

MMS was considerably more toxic to MEFs lacking Pol β (Pol β −/−). However, the 

presence of pro-14 did not result in additional cell death (Figure 6A). Similarly, pro-14 did 

not increase the cytotoxicity of MMS in MEFs lacking pol β and/or pol λ (Figures S4a,b). 

Importantly, these data indicate that pro-14 does not enhance MMS cytotoxicity by targeting 

enzymes other than Pol β.

The selectivity of pro-14 on Pol β was examined at higher pro-14 concentrations in MEFs 

treated with 0.2 mM MMS. While the cytotoxicity was enhanced upon increasing pro-14 
from 5 to 15 μM in WT MEFs, no additional cell death was observed in Pol β null (Pol β −/

−) cells (Figure 6b). Furthermore, even in the presence of 25 μM of pro-14, no additional 

cytotoxicity was detected in WT MEFs or Pol β null cells (Figure S5). These data indicate 
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that pro-14 does not target proteins that enhance MMS cytotoxicity when present at 

significantly higher concentrations than needed to synergistically kill cells containing Pol β.

The synergistic effect of pro-14 on the cytotoxicity of MMS and the antitumor agent 

bleomycin (BLM) in HeLa cells was also examined (Figure 7). pro-14 (5 μM) exhibited 

<7% cytotoxicity to the HeLa cells. However, at this concentration pro-14 enhanced the 

cytotoxicity of MMS (0.2 mM) 2.5-fold. Similarly, the cytotoxicity of bleomycin (2 μM) 

increased from 22% to 62%, almost 3-fold, under these conditions.

CONCLUSIONS

Inhibitors that are selective for one DNA polymerase over another are uncommon. Covalent 

inhibitors, including those that react with lysine, are employed with increasing frequency to 

target proteins.50–52 Roughly 30% of marketed drugs are covalent in nature.53 Covalent 

inhibitors often lead to greater potency and longevity of effects, when they are also 

irreversible. Depending on the electrophilicity of the warhead, covalent inhibitors can 

enhance selectivity toward certain nucleophiles or residues they modify. To our knowledge, 

the dioxobutane family of molecules, such as those presented here, are the only examples of 

molecules that irreversibly inhibit DNA polymerase β. The molecule described here (14) 

selectively inactivates Pol β. The corresponding pro-inhibitor (pro-14) selectively targets this 

enzyme in mouse embryonic fibroblasts. Although pro-14 works synergistically with DNA 

damaging agents to kill mouse embryonic fibroblasts and HeLa cells, it is itself not highly 

toxic under the same conditions. This suggests that pro-14 will be a useful tool for studying 

the effects of Pol β inhibition in cells. Furthermore, the approach described here and 

elsewhere21−23 for identifying Pol β inhibitors may be useful for targeting other 

polymerases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Inhibition of DNA polymerase β by 14. (A) Kitz–Wilson plot of irreversible inhibition by 

14. (B) IC50 of 14 as a function of preincubation time. Data are the ave. ± std. dev. of 3 

replicates.
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Figure 2. 
Effect of dialysis and pH on inactivation by 14. (A) Pol β strand displacement activity before 

and after dialysis with and without 14 (750 nM, 20 min preincubation). (B) pH Effect on 

inactivation by 14 (500 nM, 20 min) before and after dialysis. *Preincubation was carried 

out at pH 7.4, followed by dialysis at pH8.0. Data are the ave. ± std. dev. of 3 replicates.
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Figure 3. 
Covalent modification of Pol β by 14. (A) Modified peptides observed in trypsin digest of 

Pol β preincubated with 14 (300 nM, 30 min). (B) Pol β crystal structure with modified 

residues (cyan spheres) (PDB: 1PBX).
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Figure 4. 
Effect of inhibitor 14 on DNA (0.25 nM) binding by Pol β. Data are the ave. ± std. dev. of 3 

replicates.
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Figure 5. 
Inhibition of DNA polymerases by 14. Data are the ave. ± std. dev. of 3 replicates.
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Figure 6. 
Treatment mouse embryonic fibroblasts with MMS and pro-14. (A) MMS cytotoxicity with 

or without pro-14 in the presence or absence of Pol β. (B) Effect of greater pro-14 
concentration. Data are the ave. ± std. dev. of 3 replicates.
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Figure 7. 
Synergistic effect of DNA damaging agents with pro-14 in HeLa cells. Data are the ave. ± 

std. dev. of 3 replicates.
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Scheme 1. 
Base Excision Repair
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Scheme 2. 
Pol β Inactivation by a DNA Lesion
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Scheme 3. 
Development of First- and Second-Generation Inhibitors from AZT
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Scheme 4. 
Synthesis of a First-Generation Inhibitor Librarya

aKey: (a) H2, Pd/C; (b) TFAA; (c) (i) S-Ethyl tetrazole, 4; (ii) t-BuOOH; (d) NH4OH; (e) 

RxCO2H (X = 1−325), HBTU, HOBt; (f) NBS.
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Scheme 5. 
Fluorescence Screen for Identifying Inhibitor Leads
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Scheme 6. 
Synthesis of a Second-Generation Inhibitor Librarya

aKey: (a) NBS; (b) NH3; (c) Ethyl trifluoroacetate; (d) H2, Pd/C; (e) 11, HBTU, HOBt; (f) 

Et3N·3HF; (g) (i) S-Ethyl tetrazole, 4 (Scheme 4);(ii) t-BuOOH; (h) NH4OH; (i) RyCO2H (y 

= 1–375), HBTU, HOBt; (j) NBS.
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