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Abstract

Background—Atrial fibrillation (AF) increases the risk of stroke 5-fold and there is rising 

interest to determine if AF severity or burden can further risk stratify these patients, particularly 

for near-term events. Using continuous remote monitoring data from cardiac implantable 

electronic devices (CIED), we sought to evaluate if machine learned signatures of AF burden 

could provide prognostic information on near-term risk of stroke when compared to conventional 

risk scores.

Methods and Results—We retrospectively identified Veterans Health Administration (VA) 

serviced patients with CIED remote monitoring data and at least one day of device-registered AF. 

The first 30 days of remote monitoring in non-stroke controls were compared against the last 30 

days of remote monitoring prior to stroke in cases. We trained three types of models on our data: 

1) convolutional neural networks (CNN), 2) random forest (RF), and 3) L1 regularized logistic 

regression (LASSO). We calculated the CHA2DS2-VASc score for each patient and compared its 

performance against machine learned indices based on AF burden in separate test cohorts. Finally, 

we investigated the effect of combining our AF burden models with CHA2DS2-VASc. We 

identified 3,114 non-stroke controls and 71 stroke cases, with no significant differences in baseline 

characteristics. RF performed the best in the test dataset (AUC=0.662) and CNN in the validation 

dataset (AUC=0.702); whereas, CHA2DS2-VASc had an AUC of 0.5 or less in both datasets. 

Combining CHA2DS2-VASc with random forest and CNN yielded a validation AUC of 0.696 and 

test AUC of 0.634, yielding the highest average AUC on non-training data.
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Conclusions—This proof of concept study found that machine learning and ensemble methods 

that incorporate daily AF burden signature provided incremental prognostic value for risk 

stratification beyond CHA2DS2-VASc for near-term risk of stroke.

Atrial fibrillation (AF) affects three to five million people in the United States.1 Stroke is the 

most devastating consequence of AF, accounting for 7% of all AF-associated deaths.1 

Among the 700,000 strokes per year in the U.S., 15% are associated with AF.2 Oral 

anticoagulants, which can prevent stroke in AF but with a tradeoff of increased bleeding 

risk, are prescribed to patients identified by clinical risk scores based on age, comorbidities, 

and sex.3,4 Unfortunately, these scores, derived from administrative claims or chart data, 

perform only modestly outside of their derivation cohorts, with C-statistics generally below 

0.65.5,6

There is growing interest in assessing whether AF severity or burden of atrial fibrillation can 

further risk stratify patients. A post-hoc analysis of the ACTIVE-A and AVERROES trials 

found that permanent and persistent forms of AF conferred a greater risk of stroke compared 

to paroxysmal AF.7 However, these patterns were identified based on clinical classification 

by the research coordinator or clinician, which has been shown to poorly reflect the true 

temporal pattern of AF based on continuous implantable AF monitoring.7,8 Previously our 

group has found that transient AF increases the short-term risk of stroke in cardiac 

implantable electronic device (CIED) patients.9 Although risk was increased, there was no 

empiric risk threshold observed based on any cut point of daily AF burden. Other CIED 

studies similarly shown no clear risk threshold.10,11 One potential limitation of these 

analyses is that conventional biostatistical analysis of static baseline measures may not be 

well suited for time-varying AF burden.

Artificial intelligence (AI) approaches, including machine learning and neural networks, 

have been used to find patterns in complex datasets outside of health care12 and in certain 

clinical applications, such as diagnostic imaging. Machine learning has been used to identify 

novel clinical phenotypes of AF based on clinical data.13 However, machine learning has not 

been applied for clinical classification or risk stratification using continuous AF burden data. 

Patterns of paroxysmal AF may be complex and confer unique patterns of risk of 

hypercoagulability, thrombus formation, cardiac embolization, and other factors based on 

temporal pattern and duration, particularly when evaluating near-term risk of stroke.

Given previous findings of the transient increase in risk of stroke based on upward changes 

in AF in the 30 days preceding stroke, we sought to evaluate if machine learned signatures 

of AF burden in a similar time period could provide prognostic information on near-term 

risk of stroke when compared to conventional risk scores using continuous remote 

monitoring data from cardiac implantable electronic devices.

METHODS

We performed a retrospective cohort study consisting of 9,836 patients with cardiovascular 

implantable electronic devices (CIED) that registered in remotely monitoring managed by 

the Veterans Administration (VA) Health Care System between 2004 and 2009. The VA has 

a centralized remote monitoring program for over 30,000 devices, and 65% of devices 
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implanted in the VA are enrolled,14 therefore encompassing the full denominator of 

remotely-monitored patients within the VA system.

Devices were limited to pacemakers and implantable cardioverter defibrillators with atrial 

leads from Medtronic Inc (Mounds View, MN), which is the most common device brand 

represented in the VA remote monitoring and also encodes AF burden as a day-level 

variable. The daily AF burden from these monitored devices was recorded through the VA 

centralized remote monitoring program, and the linkage of device data to medical records 

and electronic claims was performed as previously described.9 Daily AF burden is stored as 

the cumulative amount of time during a full calendar day that the patient meets AF detection 

criteria and this value can combine multiple episodes of AF in a given 24-hour period.

The device uses the number and timing of atrial events between ventricular events to 

determine evidence for AF episodes, where, for 32 ventricular intervals, at least 2 atrial 

sensed events must occur per ventricular interval. Additionally, the median of the 12 most 

recent sensed atrial intervals must be shorter than that of the programmed AF detection 

interval (nominally 350 ms). Previous studies have evaluated the AF detection algorithm 

extensively and shows the device to quantify AF burden with 99% accuracy.15–17

We used linked administrative claims data and electronic health records of multiple VA 

centralized data sets. These data include the VA National Patient Care Database with 

demographic, outpatient, inpatient, and long-term care administrative data, the VA Decision 

Support System national pharmacy extract with patient level data on inpatient and outpatient 

medication administration and costs, the VA Fee Basis Inpatient and Outpatient data sets and 

the VA Vital Status File with validated combined demographic data from the VA, Social 

Security Administration, and Medicare.

We excluded patients with oral anticoagulation at baseline and those with an ICD-9 code 

indicating a transient ischemic attack or stroke due to occlusion of the carotid artery or its 

branches (Figure 1). Subjects with at least one day of device-registered AF in these time 

intervals were included. From these data, 30-day intervals were created for each subject 

(Figure 2). We selected the first 30 days of remote monitoring in non-stroke controls, to be 

compared against the last 30 days of remote monitoring prior to stroke in cases. These 30 

days of AF burden served as features for our machine learning models. Two cases in the 

database were not eligible for inclusion due to not having 30 consecutive days of remote 

monitoring preceding the index stroke. This study was approved by the Stanford University 

School of Medicine Institutional Review Board and local VA Research & Development 

Committee. The data, analytic methods, and study materials will not be made available to 

other researchers for purposes of reproducing the results.

Supervised Machine Learning using Daily AF Burden

All machine learning analyses were performed using R 3.4.3 (GNU public license) and 

Python 2.7.9 (public license, Corporation for National Research Initiatives, Reston, VA). 

Cases and controls were each randomly divided into three groups: 50% for training, 20% for 

validation and tuning, and 30% for testing (Figure 2). The case and control subsets were 
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then combined to form the training, validation, and test datasets, thus maintaining the 

outcome rate of each dataset.

We trained three types of models on our data: 1) convolutional neural networks (CNN), 2) 

random forest (RF), and 3) L1 regularized logistic regression (LASSO) (Figure 2). We 

implemented these classifiers using keras with tensorflow backend, randomForest18, and 

glmnet19 packages, respectively. Although recurrent neural networks are also frequently 

used for sequential data, we chose convolutional neural networks because they are adept at 

extracting patterns across neighboring features, enabling us to detect patterns from AF 

incidence distributions over several days. Detection of such features enables us to gain more 

insight into the feature engineering process of the neural network and allows us to better 

interpret the risk predictions in the context of certain AF burden patterns. Random forest is 

an ensemble method for partitioning data using many decision trees, which can be highly 

successful in situations where decision boundaries are irregular.20 Logistic regression is a 

linear classifier frequently used for classification in medical literature,21 and the L1 penalty 

was imposed to control for the correlated nature of time series features and to prevent 

overfitting.22

We used the validation dataset to tune model hyperparameters (Figure 2). For CNN, we 

assessed the following hyperparameters: number of CNN layers (1, 2, 3), learning rate (1e-6, 

1e-5, 1e-4), dropout rate (0.7, 0.9), number of filters (8, 16), kernel size (3, 5), batch size 

during training (128, 256), and class weights (1:1, 1:30). 1:30 was chosen to approximate 

the outcome rate of 0.037 of cases to controls in the training dataset. We additionally tested 

the same class weights in the random forest and LASSO models and used 10-fold cross 

validation on the training dataset to determine the optimal value for the penalty parameter. 

The final architecture of the CNN was a 3 layer model with a learning rate of 1e-6, dropout 

rate of 0.9, kernel size of 5, batch of 256, and class weights of 1:30. All models were 

evaluated for their ability to discriminate cases from controls using the area under the curve 

(AUC) of the receiver operating characteristic (ROC) (Figure 2). For calculating the 

sensitivity and specificity, we chose the optimal cutoff point on the ROC curve from the 

training data and applied it to the validation and test data. We then compared ROC curves 

using the bootstrap method. We did not apply cross-validation to the outer model due to the 

limited number of positive cases.

To assess AF burden feature importance, we extracted the mean decrease in the Gini 

coefficient from the random forest classifier, which represents the feature importance score 

for each day of the AF interval. For CNN, we performed gradient ascent to search for the AF 

pattern that maximized each filter’s output. We then normalized the output to visualize each 

filter. By doing so, we extracted AF patterns discovered by our CNN, which may yield 

insight into types of AF patterns that may confer greater stroke risk.

Logistic Regression with CHA2DS2-VASc

We calculated the CHA2DS2-VASc score for each patient to compare the performance of 

this clinical risk score with our machine learning approaches based on AF burden. We used 

logistic regression to predict stroke from the CHA2DS2-VASc score as a continuous variable 

and compared its performance by the AUC.
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Ensemble Models Combining CHA2DS2-VASc with AF Burden

We further investigated the effect of combining our AF burden models with CHA2DS2-

VASc. Typically, in ensemble methods, each individual model receives a vote toward the 

final classification of each patient. We incorporated this by averaging the probabilities of all 

classifiers constructed, so that each classifier contributed equally to the prediction.

RESULTS

We identified 3,114 non-stroke controls and 71 cases from our cohort of VA patients with 

remote monitoring data. Baseline characteristics of AF patients with and without stroke are 

presented in Table 1. Notably, there was no significant difference in CHA2DS2-VASc score 

between AF patients with stroke and controls.

Machine Learning Using AF Burden

Applying our AF burden based models to our data generated c-statistics between 0.6 and 0.7 

in derivation and validation cohorts (Figure 3, Table 2), compared to CHA2DS2-VASc which 

yielded an AUC of 0.5 or less in derivation and validation cohorts (Figure 3, Table 2). 

Compared to CHA2DS2-VASc, CNN provided superior discrimination in the validation 

cohort, with an AUC of 0.702 (p = 0.0003). Random forest analysis outperformed CNN in 

the test cohort, but with a high degree of overfitting to the training data which was not 

observed using the CNN. After utilizing a calibration plot (20 bins) on the test dataset to 

further evaluate performance, the ensemble method, while underconfident in that maximum 

probability is 40–50%, exhibited an increasing observed event percentage with each bin with 

the best spread. (Supplemental Figure). Notably, there is heavy class imbalance, with most 

events being predicted from controls and an overall small N. Other methods, including the 

CHA2DS2-VASc score, tended to either have no relationship or were clustered at low or high 

predicted probabilities.

Models Combining CHA2DS2-VASc and AF Burden

Combining CHA2DS2-VASc with random forest and CNN yielded a validation AUC of 

0.696 and test AUC of 0.634, yielding the highest average AUC on non-training data. 

Compared to single classifiers, the ensemble classifier maintained good performance on the 

validation dataset and improved the AUC achieved in the test cohort from 0.524 with 

CHA2DS2-VASc alone to 0.634. Exploring the raw probability values in the test set revealed 

that though stroke cases tended to be associated with a higher probability score, the classifier 

tended to be underconfident, likely stemming from class imbalance.

Both sensitivity and specificity improved in the ensemble method over using only 

CHA2DS2-VASc. The single method classifiers tended to have cutoff points that balanced 

sensitivity and specificity, while using CHA2DS2-VASc alone or in the ensemble method let 

to prioritizing specificity.

Assessing Important AF Burden Features

The random forest feature importance scores (Figure 4) revealed that the amount of AF on 

day 30 was the most important feature, followed by day 29. The other 28 days had lower 
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importance scores, although with a cyclic pattern (for instance, higher importance scores on 

days 1, 8, and 17).

These cyclic patterns arose again when we evaluated the filters of our CNN model. Our final 

CNN had 3 layers with 16 filters each, and filters for the first two layers are shown in Figure 

5. The first layer shows filters that appear sensitive to different patterns at the beginning and 

end of 30-day intervals (Figure 5A). Filters in the second layer appear mostly to evaluate 

periodicity in AF burden (Figure 5B). For example, filter 6 in the second layer appears to be 

looking for 3-day long cycles, with increasing importance attributed to the later days. Filter 

12, on the other hand, focuses on rapid alterations in AF burden which were uniform 

throughout 30 day monitoring windows. The filters of the third layer (not shown) were 

similar to those in the second layer. Thus, CNN filters learned different types of AF burden 

patterns, and appeared to recognize AF burden in the first and last few days, and on 

alternating cycles.

DISCUSSION

In this work we present an approach that applies machine learning to granular data on daily 

AF burden in a large well-characterized cohort of AF patients with and without stroke, to 

build classification models for short-term stroke prediction. We found that a variety of 

machine learning techniques that evaluated the AF burden signature were superior for 

discrimination of stroke compared to the CHA2DS2-VASc score. In particular, ensemble 

models such as random forest attained the best performance in non-training data, 

outperforming CHA2DS2-VASc by up to 0.14 in the AUC which achieved statistical 

significance for selected machine learning methods. Additional ensemble models that 

included CHA2DS2-VASc also maintained good performance on non-training data and may 

be useful extensions to CHA2DS2-VASc alone. These findings suggest that the AF burden 

signature, which indicates temporal patterns in AF onset and offset over 30 days which 

extend prior ‘averages’ of AF burden, could provide incremental prognostic value for risk 

stratification, particularly for near-term risk of stroke.

Comparison to Conventional Risk Stratification

Conventional risk stratification for stroke in AF relies mostly on clinical variables derived 

largely from administrative data and have not incorporated measures of AF burden or 

duration. A recent registry attempted to identify stroke risk based on AF burden, but relied 

on multivariable regression and AF prespecified burden thresholds to bin and aggregate 

patients.10 A limitation of the approach is that cutpoints may not represent physiological risk 

thresholds. Additionally, they do not account for changes in burden over time but rather a 

static measure on the day of baseline ascertainment. In our machine learning analysis, we 

explored both linear and nonlinear combinations of variables to find the optimal boundary 

between stroke cases and non-stroke controls in high dimensions rather than prespecifying a 

series of arbitrary AF burden thresholds, thereby allowing us to discover unforeseen 

combinations of variables which improved model discrimination. We focused on near-term 

disk of stroke, predicated on our prior work that indicated that near-term risk of stroke was 

not static and was temporally and transiently influenced by AF burden.9 Despite the 

Han et al. Page 6

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2021 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improved classification seen in this study, there may be challenges in longer-term prediction, 

as prior device detected AF studies have shown a large amount of temporal discordance 

between AF and the timing of ischemic stroke.23 Nonetheless, with machine learning 

approaches, we can apply our models in real-time to determine stroke risk continuously for 

the subsequent days to weeks to months, rather than previous approaches which evaluate 

stroke risk in the following years simultaneously or indefinitely. Such an approach could 

potentially allow for real-time monitoring and active changes in anti-coagulation therapy 

based on a patient’s current risk profile. A rhythm-guided approach in patients with 

insertable cardiac monitors and paroxysmal atrial fibrillation was previously piloted and 

demonstrated a 94% reduction in anticoagulation exposure but was not powered for stroke 

events.24,25However, a previous trial of rhythm-guided vs sustained anticoagulation using 

warfarin in patients with CIEDs did meet its primary endpoint23, but the trial relied on 

arbitrary cutpoints of AF burden. If confirmed in larger cohorts, incorporation of AF 

signatures rather than burden alone may help to improve short-term risk stratification to 

dynamically guide therapy.

Limitations

While this is a proof-of-concept study, there remain significant limitations. First, this is a 

population of patients with implantable pacemakers and defibrillators, who are at higher risk 

of development and progression of AF, of stroke, and also of competing causes for death. 

Findings may therefore not generalize to patients without implantable devices. Second, we 

did not account for time varying exposures such as medication (anticoagulation, 

antiarrhythmic drugs) or rhythm-restoring procedures such as ablation or cardioversion. 

Third, this is a predominately male veteran cohort and data may not be generalizable to 

women, which notably could also affect discrimination for scores using CHA2DS2-VASc, 

which includes sex in the score calculation. Fourth, although the overall cohort is large, the 

number of stroke cases is small, limited by data availability and stroke incidence. Fifth, we 

used a selected number of patients who were not treated with oral anticoagulation despite 

the presence of atrial fibrillation and during a period over which professional society 

guidelines would have recommended treatment based on CHA2DS2-VASc in most case and 

control patients in our study. This may represent the Achilles’ Heel of trying to develop new 

stroke risk stratification tools in AF, regardless of whether clinical, device, or other data are 

used. Finally, CHA2DS2-VASc was not designed or calibrated for short-term prediction, 

although we felt that it was the most appropriate reference risk score against which to test. 

Validation of prediction methods in other cohorts would help to confirm calibration and 

generalizability, although the present cohort remains the largest cohort of remote monitoring 

linked to comprehensive electronic health record and claims data.

CONCLUSIONS

In summary, this proof of concept study found that machine learning and ensemble methods 

that incorporate daily AF burden signatures from time-varying patterns of AF incidence in 

30-day windows has the potential to improve or refine short-term stroke prediction.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CLINICAL PERSPECTIVE

What is Known?

• Recent clinical trials found that permanent and persistent forms of atrial 

fibrillation (AF) lead to an increased risk in stroke when compared to 

paroxysmal AF.

• Transient AF may increase the short-term risk of stroke in patients with 

cardiac implantable electronic devices (CIED).

What the Study Adds:

• This proof-of-concept illustrates the feasibility of combining standard risk 

scores that currently guide disease management with remote monitoring AF 

burden data.

• Machine learning techniques that evaluate AF burden signature are superior 

for discrimination of stroke when compared to the CHA2DS2-VASc score. 

Ensemble models, such as random forest, incorporating CHA2DS2-VASc 

performed well and can be extensions to using CHA2DS2-VASc alone.
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Figure 1. 
Overview of subject selection.
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Figure 2. Workflow.
The entire dataset is first split into training (50%), validation (20%) and test (30%) datasets. 

Then, each day of AF burden in the 30-day interval is considered a feature, which is used as 

inputs to three machine learning models (CNN, random forest, LASSO) on the training data. 

The validation dataset is used to tune these models. Trained models are subsequently 

evaluated on the test dataset.
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Figure 3. 
ROC curves for AF burden classifiers (random forest, LASSO, CNN) and CHA2DS2-VASc 

with logistic regression in the training, validation, and test datasets.
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Figure 4. 
Heatmap of the mean decrease in the Gini coefficient from the random forest classifier for 

each day of AF in the 30-day interval.
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Figure 5. Filters from layer 1 and 2 of our convolutional neural network.
Filters for the first two layers of the CNN classifier. Each filter represents the AF pattern that 

maximizes the output of that filter. Filters from layer 1 are focused on changes at the 

beginning and end of the AF interval, and filters from layer 2 appear to look for periodic 

patterns.
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Table 1.

Baseline characteristics of patients with and without stroke

 Stroke Cases Non-Stroke Controls

Demographics (N=71) (N=3114) p-value

Age, mean ± SD 69.0 ± 11.0 67.6 ± 10.3 0.32

Male, n(%) 70 (98.6) 3068 (98.5) 1.00

Prior MI, n(%) 6 (8) 418 (13) 0.29

Hypertension, n(%) 54 (76) 2196 (71) 0.36

Heart Failure, n(%) 45 (63) 2154 (69) 0.30

Diabetes Mellitus Type 2, n(%) 33 (46) 1252 (40) 0.33

Peripheral Artery Disease, n(%) 12 (17) 293 (9) 0.04

Coronary Artery Disease, n(%) 51 (72) 2156 (69) 0.70

Charlson Comorbidity Index, mean ± SD 2.7 ± 2.0 2.7 ± 1.8 0.98

Selim Comorbidity Score, mean± SD 4.9 ± 3.0 5.2 ± 2.9 0.51

CHA2DS2-VASc Score, mean ± SD 3.5 ± 1.9 3.2 ± 1.6 0.24

CHA2DS2-VASc Score by Group    

  0, n(%) 4 (5.6) 240 (7.7)

  1, n(%) 9 (12.7) 285 (9.2)

  2, n(%) 9 (12.7) 444 (14.3)

  3, n(%) 10 (14.1) 710 (22.8)

  4, n(%) 20 (28.1) 815 (26.2)

  5, n(%) 8 (11.3) 424 (13.6)

  6, n(%) 6 (8.5) 132 (4.2)

  7, n(%) 5 (7.0) 63 (2.0)

  8, n(%) 0 (0) 1 (0.03)

  9, n(%) 0 (0) 0 (0)
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Table 2.

Classification AUCs in the training, validation, and test datasets. P-values shown are in comparison to 

CHA2DS2-VASc.

CHA2DS2-VASc Random Forest CNN LASSO Ensemble

Training AUC 0.634 0.996 0.678 0.606 0.996

Validation AUC 0.346 0.653 0.702 0.701 0.696

P-Value 0.007 0.0003 0.0004 0.001

Sensitivity 0.071 0.571 0.571 0.500 0.143

Specificity 0.799 0.684 0.717 0.666 0.984

Test AUC 0.524 0.662 0.600 0.564 0.634

P-Value 0.120 0.640 0.650 0.250

Sensitivity 0.238 0.523 0.429 0.381 0.143

Specificity 0.788 0.630 0.667 0.635 0.984
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