
Postpartum involution and cancer: an opportunity for targeted 
breast cancer prevention and treatments?

Virginia F. Borges1,2,*,#, Traci R. Lyons1,2,*, Doris Germain3, Pepper Schedin1,4,5,#

1- Young Women’s Breast Cancer Translational Program, University of Colorado Anschutz Medical 
Campus, Aurora. 2- Division of Medical Oncology, Department of Medicine, University of Colorado 
Anschutz Medical Campus, Aurora. 3- Icahn School of Medicine at Mount Sinai, Tisch Cancer 
Institute, Division of Hematology/Oncology 4- Department of Cell, Developmental and Cancer 
Biology, Oregon Health & Science University, Portland. 5- Knight Cancer Institute, Oregon Health 
& Science University, Portland

Abstract

Childbirth at any age confers a transient increased risk for breast cancer in the first decade 

postpartum and this window of adverse-effect extends over two decades in women with late age 

first childbirth (>35 yoa). Cross-over to the protective effect of pregnancy is dependent on age at 

first pregnancy, with young mothers receiving the most benefit. Further, breast cancer diagnosis 

during the five-ten-year postpartum window associates with high risk for subsequent metastatic 

disease. Notably, lactation has been shown to be protective against breast cancer incidence overall 

with varying degrees of protection by race, multiparity and lifetime duration of lactation. An effect 

for lactation on breast cancer outcome after diagnosis has not been described. We discuss the most 

recent data and mechanistic insights underlying these epidemiologic findings. Post-partum 

involution of the breast has been identified as a key mediator of the increased risk for metastasis in 

women diagnosed within 5–10 years of a completed pregnancy. During breast involution, immune 

avoidance, increased lymphatic network, extracellular matrix remodeling and increased seeding to 

the liver and lymph node work as interconnected pathways, leading to the adverse effect of a 

postpartum diagnosis. We also discuss a novel mechanism underlying the protective effect of 

breastfeeding. Collectively, these mechanistic insights offer potential therapeutic avenues for the 

prevention and/or improved treatment of postpartum breast cancer.

Breast Cancer and Pregnancy

Cancer is an increasing complication of pregnancy worldwide, in part due to the advancing 

age of child-bearing women (1–3). Cancer diagnosis during pregnancy is overall a relatively 

rare event, affecting about 1 in 1000 pregnancies and representing 0.1% or less of all cancers 
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(4). Globally, the most common cancers diagnosed during pregnancy follow the patterns of 

prevalent cancers in the underlying population. In Western countries, breast, thyroid, and 

gynecologic cancers, as well as melanoma and lymphomas are the most common (3,5,6). In 

Asia, the rate of gastric cancer is much higher, and melanoma not reported (7,8). Great 

progress has been made in advancing the ability to safely treat pregnant women with 

excellent guidelines and reviews available across many cancers (1,6–10). Of the cancers that 

affect woman during the childbearing life-window, only breast cancer and melanoma have 

been implicated as being increased in frequency, specifically among postpartum women, in 

comparison to age-matched peers (11). Breast cancer is globally the most frequent cancer 

diagnosed during pregnancy and in the postpartum years, and therefore the most studied. 

However, the impact of pregnancy on breast cancer is substantially more than the complexity 

of managing those diagnosed during pregnancy and, to date, it is only breast cancer where 

parity status has been shown to influence prognosis. This review will focus on the complex 

and varied interactions between pregnancy and breast cancer with emphasis on breast cancer 

metastasis, and the unique biology underlying these interactions as observed in rodent 

models.

Breast cancer in women of childbearing age is a significant global problem, as there is 

disproportionately increased mortality of young women’s breast cancer [YWBC], a problem 

exasperated in the lowest socioeconomic countries (11). YWBC, variously defined by 

patient age of ≤ 35–45 years, has increased risk for metastasis and death, with nearly twice 

the mortality in comparison to older women (12–15). Survival outcomes in YWBC has 

lagged overall improvements in the field, with the discrepancy increasing steadily since the 

1970s (16). Moreover, the incidence of distant metastases is increasing by ~2% annually 

exclusively in YWBC (17,18). These adverse outcomes are often cited as due to delayed 

diagnosis and advanced disease presentation in the absence of screening for women under 

40 (12,19). However, in a large recent study of early stage I-II disease, young age was an 

independent negative prognostic factor after adjustment for clinical, pathologic and 

treatment related variables (15). Another factor cited has been the greater proportion of 

aggressive biologic subtypes in YWBC, those that lack hormone receptor expression, 

including triple negative and Her 2 overexpressing cancers (TNBC and Her 2 respectively) 

(12,13,16,17). Yet, a large retrospective YWBC study reported significantly increased two-

fold risk of death with estrogen receptor positive cancer (ER+), while risk was only 

modestly increased for TNBC, and was not significant in HER2+(20). In fact, the 

association with negative prognosis is the strongest in YWBC with early stage ER+ tumors 

otherwise expected to have excellent outcome (12,20,21). Overall, risk factors for YWBC 

are not well understood, and only 10–15% of YWBC is due to an inherited pathologic gene 

variant, such as the BRCA genes, p53, or PTEN (22). Lifestyle factors such as oral 

contraceptive use also contribute (23). Thus, while young age at diagnosis is an independent 

risk factor for relapse and death (12,15,16,20,21), current advances in the field find that 

heritable germline mutations do not account for the vast majority of YWBC cases, nor find 

that poor outcomes are accounted for by increases in poor prognostic tumor characteristics.

Childbearing is a natural life window that overlaps with risk for breast cancer diagnosis in 

women ages 20–45 and 80% of all YWBC will occur in parous women, with 50% of YWBC 

arising in young mothers within 10 years of their last childbirth (24). The completion of a 
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prior childbirth is one of the more common, yet poorly recognized, risk factors for YWBC, 

in part because the interaction between pregnancy and breast cancer is complex. Since we 

and others find parity status impacts breast cancer incidence and outcomes in women 

diagnosed ≤45 years of age (24–26), we define YWBC as cases diagnosed at age 45 and 

under. Thus defined, YWBC accounts for ~13% of all breast cancer in developing countries 

and higher percentages in lower economic countries (27,28). Worldwide estimates of PPBC 

range from ~150,000 to 350,000 cases annually, based on global breast cancer (27,28) or 

childbirth rates (24), respectively (Text Box 1).

Pregnancy both promotes and protects against breast cancer (29–31). All parous women are 

under a 10–30% increased risk of developing breast cancer for at least a decade after 

childbirth in comparison to nulliparous young women, with older age at first birth increasing 

the magnitude of risk (31). Overtime, a cross-over effect dissipates this risk and the prior 

childbirth subsequently protects against breast cancer if the woman began her childbearing 

before age 35 (30,31). What factors other than parity also influence the incidence of breast 

cancer in postpartum women [postpartum breast cancer or PPBC] and YWBC remain under 

investigation. Increased breast density, radiographically identified as heterogeneously dense 

or extremely dense tissue on mammograms, elevates breast cancer risk 4-fold or higher, and 

equally affects risk in women of all ages (32,33). In women age 45 and under, higher breast 

density is seen with nulliparity and later onset of childbearing, which are life factors known 

to increase breast cancer risk (34,35). African-American women, who face a high incidence 

of YWBC, have higher breast density when multiple qualities of breast density are 

incorporated across age and parity group, as compared with white women (36). Further on in 

this review, mechanistic links between parity, lactation and active collagen deposition within 

the breast are described. These data offer leads to an improved understanding of the role of 

breast density in PPBC, and highlight the need for additional studies.

Overall, the postpartum life window is under-recognized as a time of higher risk for early 

onset breast cancer (Figure 1). Moreover, cancers diagnosed during this window of increased 

risk also carry worse prognosis (24,26,30,37–39). Women diagnosed and treated during their 

pregnancy have usual prognosis, based on stage and biology of the tumor (26,30). 

Conversely, women diagnosed postpartum have significantly increased risk for metastatic 

recurrence (37–39), which is highest among women diagnosed within 5 years of last 

childbirth but extends to ten years postpartum (37). Further, the risk for metastasis is 3–5-

fold higher for postpartum stage I/II cancers, regardless of ER status (37). Recognition of 

this extended risk window for both ER+ and ER- cancers is critical with respect to 

understanding the underlying biology of postpartum breast cancer, as well as for identifying 

YWBC patients at highest risk of recurrence. This later point is highlighted by the fact that 

when outcomes are grouped as pregnancy-associated breast cancers (pregnant cases plus 1–

2-year postpartum cases) and compared with an unselected group of age matched YWBC, 

the differences in outcome are obscured (24). Thus, the definition of PPBC matters, as it 

effects the interpretation of outcomes data and ultimately patient care.
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Tumor promotion during postpartum breast involution

The fact that a postpartum diagnosis in young women strongly associates with worse 

outcomes has led to the concept that a pro-metastatic biology is present in the postpartum 

breast (31). A unique breast biology specific to postpartum women that may account for the 

increased risk of metastasis is mammary gland involution (40). Mammary tissue expands 

~10 fold during pregnancy in preparation for lactation; then, mammary gland involution 

occurs when milk production ends, either after birth in the absence of nursing, or after 

weaning (41). In adult rodents and women, postpartum mammary gland involution is 

reported as the most dramatic example of physiologic tissue remodeling to occur in the 

adult, as 80–90% of the alveolar mammary epithelium is removed by programmed cell death 

(42,43). Direct support for the hypothesis that postpartum mammary gland involution is 

tumor promotional comes from preclinical studies. Using xenograft and isogenic tumor 

transplant models, the normal tissue microenvironment of the actively involuting mammary 

gland has been demonstrated to increase breast cancer tumor take and metastasis compared 

to the mammary microenvironment of the nulliparous or parous host (44–46).

There are several mechanisms observed in the involuting gland that may drive metastasis. 

The death of the alveolar mammary epithelium is coordinated with inflammation (47,48), 

lymphangiogenesis (44), fibroblast activation (49), and collagen 1, fibronectin, and tenascin-

C rich matrix deposition (49,50)--all stromal attributes that mirror wound-healing and are 

causal to cancer outcomes. Importantly, the findings of a similar pro-tumor, breast involution 

program being present in the breast tissue of young, recently pregnant women offers a 

plausible link between involution and PPBC outcomes (41,44). The potential mechanisms by 

which the transient event of normal mammary gland involution impacts long term outcomes 

in postpartum patients is likely multifactorial. Rodent models of PPBC reveal that occult 

tumor cells are “released” into the activated mammary stromal compartment during 

weaning-induced alveolar collapse, where they access the vasculature, disseminate, and set 

up micro-metastases in distant organs (44,45). Additionally, expansion of the lymphatic 

vasculature occurs during involution allowing for increased tumor cell trafficking in the 

lymph vessels and seeding of the lymph node (44,51). This involution-specific mammary 

lymphangiogenesis is consistent with the observed increased lymph node involvement in 

PPBC patients compared to age matched nulliparous patients (26,44).

There is also a distinct visceral pattern of metastasis in PPBC that suggests circulating tumor 

cells released from the involuting mammary gland have additional metastatic advantages. In 

postpartum patients, a ~3-fold increase in liver metastasis but not lung, brain or bone is 

reported (52). This metastatic pattern is consistent with a uniquely hospitable “soil” in the 

liver of postpartum women. This novel hypothesis is supported by rodent studies, where the 

postpartum liver is found to support breast cancer metastasis. The basis of this liver specific 

metastatic preference appears to be due to a functional link between the mammary gland and 

liver that is established to support lactation. Specifically, in preparation for lactation and 

throughout lactation, the rodent liver doubles in size and increases anabolic metabolism (52). 

Upon weaning, the liver undergoes a regression process that displays the hallmarks of 

mammary gland involution: parenchymal (hepatocyte) apoptosis, catabolic metabolism, 

ECM remodeling including deposition of collagen I, tenascin-C and fibronectin, and 
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immune cell influx suggestive of immune tolerance (52). Intraportal tumor cell delivery (53) 

to the involuting liver leads to increased metastatic outgrowth compared to livers of 

nulliparous murine hosts, data consistent with the establishment of a pro-metastatic liver 

niche following weaning (52). While the molecular mechanisms that mediate the functional 

coordination between the lactating mammary gland and liver are unknown, and evidence for 

post-weaning liver involution in women not reported, continued investigation into site 

specific metastasis patterns in YWBC and PPBC is warranted.

In rodent models, involution and PPBCs are also marked by an immune phenotype typically 

associated with immune tolerance and T cell exhaustion. Specifically, within the lymphoid 

lineage, Th-17, Th-2 and Treg skewed T cells are elevated (48,54,55), with functional 

evidence for active suppression of T cell proliferation limited to the involution window (48). 

Within the myeloid lineage, there are observed enrichments in CD11b+/F480+ myeloid 

derived suppressor cells (MDSC) (48) and M2-skewed macrophages, which likely suppress 

T cell activation through secretion of IL-10, a Th1 inhibitory cytokine, and by depleting 

arginine from the tissue microenvironment (54,56). These macrophages exhibit 

characteristics that are similar to tumor associated macrophages, which have been identified 

to promote tumor cell invasion and extravasation (57,58). Additionally, the involuting gland 

is enriched for mammary macrophages similar to the recently identified tumor associated 

Podoplanin Expressing Macrophages or PoEMs (59). Within tumors, PoEMs promote 

metastasis via production of collagen and loosening of the lymphatic vasculature, allowing 

for tumor cells to enter the lymphatics (59). Histologic evidence confirms the presence of 

increased lymphatic associated macrophages in PPBC patients (51). Molecular analysis of 

the lymphatic vessels and macrophages during involution and in models of PPBC has also 

revealed expression of programmed death ligand-1 (PD-L1), similar to what is observed 

during peripheral tolerance (60–63). Since PD-L1 engagement of its receptor PD-1 inhibits 

T cell responses through activation of pro-apoptotic signaling, these data suggest that 

lymphatic-mediated immune avoidance (64–66) is one mechanism by which involution 

promotes PPBC. Consistent with this, murine PPBC tumors are particularly sensitive to anti-

PD-1 therapy, which resulted in regression of the lymphatics and decreased T cell 

exhaustion (60). Collectively, these data provide several plausible mechanisms for increased 

metastases in postpartum patients that includes immune avoidance, increased tumor cell 

escape from the primary site, increased lymphatic network for dissemination and 

maintenance of immune avoidance, and increased seeding in the liver, all of which may be 

targetable with clinically available therapies.

In addition to involution creating favorable stromal microenvironments for the expansion 

and spread of tumor cells, a second mechanism by which involution might durably promote 

breast cancer and poor outcomes is through tumor cell imprinting. Several lines of evidence 

suggest that tumor cells and mammary epithelial cells are permanently altered after a 

pregnancy/lactation/involution cycle. Firstly, parity induced mammary stem cell populations, 

with similarities to tumor cells, are maintained after pregnancy and expand with multiparity 

in rodents (67,68). Secondly, mRNA analysis of normal mammary tissues from parous 

women within 10 years postpartum reveals stable changes in gene expression associated 

with inflammation, ECM, and hormone receptor signaling (69,70). Multiple studies have 

also identified programs of postpartum involution that are mirrored in tumor cells and in the 
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TME after involution (71). Specifically, collagen, COX-2, SEMA7A, and 

lymphangiogenesis are described in involuting mouse mammary tissue, in normal adjacent 

mammary tissue from postpartum patients, and in PPBC tumors in murine models 

(44,46,51,56,72). Importantly, NSAID inhibition reveals that COX-2 activity is required for 

metastasis in murine postpartum hosts; additionally, NSAIDs reverse aspects of gland 

desmoplasia, lymphangiogenesis and T cell suppression, including re-establishment of Th1 

cytokine production and T cell accumulation at the border of postpartum tumors (45,55). 

Finally, SEMA7A promotes multiple aspects of tumor progression during involution 

including lymphangiogenesis, mesenchymal phenotypes, as well as tumor cell invasion and 

survival (51,73). Moreover, knockdown of SEMA7A reduces collagen deposition and 

COX-2 expression in pre-clinical models of PPBC (74) and knockdown of COX-2 similarly 

results in downregulation of SEMA7A (73), suggesting a relationship between these two 

signaling molecules. Thus, both COX-2 and SEMA7A represent additional avenues that can 

be explored for the prevention and treatment of PPBC.

While evidence for tumor cell imprinting in PPBC is still emerging, the study of 

transcriptional regulators of normal mammary gland involution may also offer insights. 

Transcriptional regulators with known pro-and anti-tumor activities orchestrate the balance 

between epithelial cell survival and death during involution. For example, CEBPD, a 

member of the C/EBP transcription factor family, is an important regulator of involution 

(75,76). In CEBPD gene knockout studies in mice, CEBPD was found to support pro-

apoptotic signaling of involution as well as stromal remodeling, particularly via upregulation 

of matrix metalloproteinases (75,76). Conversely, SIM2s, a transcription factor with known 

tumor suppressive activities, is required for lactogenic differentiation. Continued expression 

of SIM2s delays involution by decreasing Stat3 and NFKB signaling (77), two pro-apoptotic 

signaling pathways critical for involution (78–82). Interestingly, SIM2s was recently shown 

to downregulate COX-2 and loss of SIM2s promotes mammary tumorigenesis via 

upregulation of EMT and invasion (83,84). Importantly, inhibition and knockdown of 

COX-2 reduces invasion and restores SIM2 expression in breast cancer cells and xenografts 

(83,84). An intriguing prospect is that PPBC will be imprinted by the transcriptional 

programs of involution, such as CEBPD gain and SIM2s loss, which may identify additional 

novel pathways of vulnerability in PPBC. Indirect evidence for this hypothesis has been 

reported, as gene signatures associated with normal mammary gland involution (85,86) 

correlate with aggressive triple negative and inflammatory breast cancers and predict worse 

breast cancer specific survival in breast cancer overall (87,88).

Mechanistic insights into the protective effect of lactation

Lactation is identified as an important factor affecting incidence of breast cancer in both 

YWBC and postmenopausal diagnosis. Breastfeeding has a significant protective effect 

against triple negative breast cancers in African-American women and BRCA1 mutation 

carriers, and overall breastfeeding reduces risk for white women and ER+ subtypes, 

particularly for a postmenopausal diagnosis (23,37). A recent meta-analysis of 50,302 

women from 47 independent studies revealed that extended lactation is protective against 

breast cancer, with risk reduction being dependent on cumulative lifetime duration, and 

independent of maternal age or multiparity. In this study, amongst the parous women with 
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breast cancer, fewer had ever breastfed and for those who did, the average time of 

breastfeeding was shorter (9.8 months) when compared to parous women without breast 

cancer (15.6 months)(89). Further, from this study the authors suggested that extension of 

breastfeeding, by 12 months per child, may reduce the risk of breast cancer by more than 

half, since they reported a reduction from 6.3 breast cancer cases per 100 women to 2.7 

breast cancer cases per 100 women (89). Additionally, the length of lactation was found to 

be reduced in high-income countries relative to low-income countries, which may partially 

explain the increased incidence of postmenopausal breast cancer in high-income countries 

(27,90) Therefore, understanding how lactation impacts risk of breast cancer, and whether it 

counters adverse effects of involution is critical.

Insulin-like growth factor 1 (IGF-I) protects mammary epithelial cells from apoptosis during 

lactation (91–93). Insulin-like growth factor binding protein-5 (IGFBP-5) prevents activation 

of IGF receptor by titrating away IGF-I and II (94). Thus, IGFBP5 was proposed as a 

mediator of involution, and IGFBP5 knockout mice exhibit delayed involution (95–98). 

Therefore, the effect of IGFBP-5 on IGF signaling may be especially important during 

involution. In agreement with the importance of limiting IGF signaling in this setting, the 

protective effect of pregnancy is associated with reduced expression of IGF receptor (94). 

IGFBP-5 is itself negatively regulated by the protease pappalysin-1 (PAPP-A)(99–103), 

which is overexpressed in the vast majority of breast cancers (104), and decreased 

expression of IGFBP-5 is associated with higher risk of developing breast cancer (105,106). 

Analysis of transgenic mice with mammary specific expression of PAPP-A revealed 

development of mammary tumors exclusively following pregnancy (107,108). Importantly, 

the length of lactation drastically impacted the rate of PPBC in these mice (107). Transgenic 

females that had an abrupt cessation after 2 days of lactation developed PPBC; in contrast, 

females that fed their pups for extended periods of time did not (107). This observation 

suggests that extended lactation is protective against the oncogenic effect of PAPP-A. 

Mechanistically, glycoproteins Stanniocalcin-1 (STC1) and −2 (STC2) can act as inhibitors 

of PAPP-A (109,110) and the protective effect of lactation is associated with the expression 

of STC1 and STC2 (107). Further, STCs are produced by the ovaries and can be detected at 

high levels in the serum only during pregnancy and lactation, but not during involution, 

suggesting a possible systemic role for STCs in tumor suppression during pregnancy and 

lactation (111).

Interestingly, a recent study reported that abrupt interruption of lactation in mice induces an 

increase in markers of inflammation. This finding is consistent with the role of PAPP-A in 

involution and the importance of the STCs to inhibit PAPP-A activity, since PAPP-A is 

known to be induced by inflammatory cytokines such as IL-6, TNFα, IL-1β, IL-4, and TGF-

β (112). Abrupt cessation of lactation was also associated with increased cellular 

proliferation and deposition of collagen as well as expansion of the luminal progenitor cells 

in the mammary gland compared to mice where cessation of lactation was gradual (113). 

The latter observation in mice that abrupt cessation promoted the expression of estrogen and 

progesterone receptors is in agreement with the protective effect of breastfeeding against ER

+ breast cancer in women (23,37). The authors also reported ductal hyperplasia four months 

postpartum in mice where lactation was abruptly interrupted (113). It is currently unknown 

whether this holds true in humans. However, in human breasts undergoing gradual weaning, 
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lobules undergoing apoptosis and tissue inflammation are observed adjacent to non-inflamed 

lactational lobules (41,114,115) (Supplemental Figure 1). These observations suggest that, 

even with gradual weaning, tumor cells could be exposed to a pro-tumor microenvironment, 

and therefore by extrapolation, appears that gradual weaning would not completely protect a 

woman’s breast from the protumorigenic aspects of involution. Additional studies are 

necessary to determine how gradual and abrupt cessation of weaning interact with involution 

and impact the breast tissue microenvironment, and subsequent breast cancer risk and 

outcomes.

Of note, increased deposition of collagen during involution induces COX-2 expression, 

which drives PPBC metastasis (45) and the mammary glands of involuting PAPP-A 

transgenic mice following an abrupt cessation of lactation, exhibit an even higher level of 

collagen (107). Additionally, PAPP-A is dependent on collagen for its activation (107), 

thereby offering a mechanism by which PAPP-A transgenic mice only develop mammary 

tumors following pregnancy--as passage through involution and increased collagen 

deposition during this phase is required for its activation. In a more recent study, PAPP-A 

was found to activate the collagen receptor DDR2 (108), which promotes metastasis via 

activation of the ERK-Snail axis (116). Thus, the activation of DDR2 by PAPP-A offers an 

additional mechanism by which PPBCs are associated with increased metastasis and worst 

outcomes. Consistent with this, deletion of DDR2 by CRISPR was shown to abolish the pro-

invasion effect of PAPP-A (108) and a PAPP-A/Snail/Collagen signature was found to 

identify patients at higher risk of metastasis (108). Collectively, these data suggest that 

lactation or extended lactation may be protective against breast cancer via suppression of 

PAPP-A and downregulation of collagen mediated pro-tumorigenic signaling in the 

mammary gland.

Concluding remarks

Postpartum breast cancer is a global health threat that affects ~150,000–350,000 young 

mothers annually, placing them at increased risk for metastasis and therefore death. Since 

lactation and postpartum breast involution are both predictive for breast cancer, the 

postpartum life window is a free, readily available “biomarker” for assessments of PPBC 

risk and outcomes. The insights gleaned from mechanistic studies of lactation and involution 

offer important avenues forward. Specifically, the roles of COX-2, SEMA7A, and PAPP-A 

as putative oncogenes for PPBC, and the identification of lactation-induced SIM2s, STC-1 

and STC-2 as inhibitors of PPBC-associated oncogenes, provide immediate leads for 

targeted prevention and treatment interventions (Figure 2). To continue to advance PPBC 

prevention, additional programs to facilitate lactation globally are needed. Also, research 

efforts to identify women at high risk for PPBC will support future prevention trials. Finally, 

investigations into the unique molecular vulnerabilities of PPBC are anticipated to yield rich 

venues for targeted therapeutics. Combined, these strategies will address the unmet clinical 

needs of young women at risk for PPBC, a population in dire need of improved prevention 

and treatment strategies.
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TEXT BOX #1

Metrics related to reproductive history are not commonly included in breast cancer 

clinical data sets, such that the number of breast cancers that meet the definition of PPBC 

is currently derived from best estimates. One approach to estimate global burden of 

PPBC is to utilize data obtained from developed countries, which show that ~13% of all 

breast cancers are YWBC (27, 28) and that ~50% of these cases have likely completed a 

pregnancy within 10 years of their diagnosis (29). This approach results in a global 

estimation of ~130,000 PPBC cases per year. An alternative approach is to determine the 

incidence of PPBC cases per completed pregnancy (again relying on data from developed 

countries) and then determining global burden based on number of pregnancies 

worldwide. Best estimates for PPBC cases in the US for 2015 is ~13,000. Based on 4.5 

million U.S pregnancies/year, this would predict a PPBC incidence of 0.0028% (one in 

every ~350 pregnancies). With ~130,000,000 live births globally per year, this estimation 

approach predicts 364,200 cases of PPBC worldwide (https://www.un.org/en/

development/desa/population).
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Figure 1. 
Graphical presentation of the associations between pregnancy and lactation with breast 

cancer risk and outcome. While pregnancy confers long term protection in young first 

mothers, all mothers experience a transient early risk for breast cancer which extends long 

term in older mothers. Additionally, in those who do not lactate this risk is also increased 

and there is evidence that prolonged lactation can also decrease long term risk for breast 

cancer. Finally, if breast cancer is diagnosed in the postpartum decade there is an increased 

risk for metastasis and death from breast cancer compared with nulliparous or older women, 

which is not seen among cases diagnosed during pregnancy.
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Figure 2. 
Model of how lactation, postpartum involution and epithelial cell imprinting of parity 

intersect to impact incidence and outcomes in postpartum breast cancer (PPBC). Physiologic 

involution (middle panel), which is mediated in part by pro-tumorigenic TGFbeta, COX-2, 

SEMA7A and collagen dependent signaling, shares numerous attributes with pro-tumor 

wound healing, including immune cell infiltrate, immune tolerance, and lymphangiogenesis, 

resulting in involution being a risk window for poor prognostic breast cancer. Upregulation 

of molecules with known tumor suppressive functions are present during lactation (left 

panel) and abrupt cessation of lactation exasperates involution associated programs of 

inflammation, which contributes to abnormal expression of PAPP-A during involution. The 

increased deposition of collagen during involution acts to enhance the proteolytic activity of 

PAPP-A against IGFBP-5 leading to increased IGF and collagen receptor DDR2 signaling 

and tumor promotion. In contrast, prolonged or gradual cessation of lactation promotes the 

accumulation of stanniocalin 1 and 2 (STC1, 2), which act as inhibitors of PAPP-A, 

reducing tumor progression. Mammary epithelial cells are also imprinted by undergoing a 
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reproductive cycle (right panel), which possibly accounts for the increased tumor risk and 

progression that are elevated for at least 10 years post childbirth. Image courtesy of Sarah E 

Tarullo, PhD (University of Colorado).
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