Skip to main content
. 2021 Jul 16;11:14590. doi: 10.1038/s41598-021-93905-2

Table 2.

Literature overview of eye and tumor segmentation methods and performances.

Reference Model used Data set Pulse sequence Performance (DSC)
Sclera VH Lens Tumor
Current MV-CNN MR, 29 RB 17 healthy eyes T1c, T1, T2, FIESTA 0.84 0.93 0.91 0.84
De Graaf 201914 ASM + 3D U-Net MR, 24 RB, 11 healthy eyes T2 0.90* 0.81 0.65
Nguyen 201916 2D U-Net + ASM / CRF MR, 24 UM T1, T2 0.84
Nguyen 201815 3D ASM MR, 7 UM, 30 healthy eyes T1 0.95* 0.92 0.88 -
Nguyen 201811 3D U-Net MR, 32 RB eyes, 40 healthy eyes+, multi-center T1, T2 0.95* 0.87 0.59
Ciller 201710 3D ASM + 3D CNN MR, 16 RB eyes 3D T1c, T1, T2 0.95* 0.95 0.86 0.62
Ciller 201512 3D ASM MR, 24 healthy eyes 3D T1c 0.95* 0.95 0.85
Beenakker 201532 Topo-graphic map MR, 17 healthy eyes 3D IR TGE No DSC reported
Rüegsegger 201213 3D ASM CT, 17 healthy eyes Does not apply 0.95* 0.91
Bach Cuadra 201021 3D parametric model US, CT, 3 RB eyes Does not apply 0.91* - 0.77 -

DSC dice similarity coefficient; VH vitreous humour; MV multi-view; CNN convolutional neural networks; MR magnetic resonance; ASM active shape model; CRF conditional random field; UM uveal melanoma; RB retinoblastoma; IR inversion recovery; TGE turbo gradient echo; CT computed tomography; US ultrasound; T1c T1 with gadolinium contrast.

*Includes vitreous humour.

+Includes child and adult scans.