Skip to main content
. 2021 Jul 16;11:14629. doi: 10.1038/s41598-021-94190-9

Table 4.

The resulting precision, recall, and f1-score values for Scenario 1 (training the algorithms with all training datasets and testing them on the Taiwan, China, Japan, and all test datasets separately).

U-Net ResU-Net
Size 32 64 128 32 64 128
Precision 67.45 63.95 64.32 66.39 69.65 60.11
Recall 58.97 67.13 61.39 6543 63.85 74.29
F1-score 62.93 65.5 62.82 65.91 66.63 66.45
Precision 65.47 60.48 59.73 64.99 68.11 57.21
Recall 77.52 84.16 80.24 78.94 78.51 88.38
F1-score 70.99 70.38 68.48 71.29 72.94 69.46
Precision 79.76 70.27 81.2 75.02 74.74 65.57
Recall 55.52 61.85 55.48 59.04 60.33 64.3
F1-score 65.47 65.79 65.92 66.07 66.76 64.93
Precision 69.26 68.35 70.8 67.33 71.12 63.41
Recall 44.05 53.62 46.33 54.92 52.14 63.43
F1-score 53.85 60.1 56.01 60.49 60.17 63.42
Algorithms trained by sample from All Taiwan China Japan

The highest values of precision, recall, and f1-score are indicated in bold.