Skip to main content
. 2021 Jul 16;11:14629. doi: 10.1038/s41598-021-94190-9

Table 6.

The resulting precision, recall, and f1-score values for Scenario 3 (training the algorithms with the training dataset of China and testing on the Taiwan, China, Japan, and all test datasets separately).

U-Net ResU-Net
Size 32 64 128 32 64 128
Precision 58.61 46.68 51.98 47.19 43.33 42.42
Recall 56.57 60.75 59.69 61.75 53.35 59.37
F1-score 57.57 52.8 55.57 53.5 47.85 49.48
Precision 50.31 37.95 43.17 35.95 29.36 34.09
Recall 81.25 90.9 87.62 75.31 57.31 89.92
F1-score 62.14 53.55 57.84 48.67 38.83 49.44
Precision 78.59 75.52 81.25 72.25 75.91 71.74
Recall 63.55 64.66 59.58 71.09 69.92 65.4
F1-score 70.28 69.67 68.75 71.7 72.9 68.48
Precision 79.98 80.32 81.03 71.6 7312 81.17
Recall 35.66 35.64 36.76 50.05 48.46 33.84
F1-score 49.33 49.37 50.58 58.92 58.29 47.76
Algorithms trained by sample from All Taiwan China Japan

The highest values of precision, recall, and f1-score are indicated in bold.