Table 6.
The resulting precision, recall, and f1-score values for Scenario 3 (training the algorithms with the training dataset of China and testing on the Taiwan, China, Japan, and all test datasets separately).
U-Net | ResU-Net | |||||
---|---|---|---|---|---|---|
Size | 32 | 64 | 128 | 32 | 64 | 128 |
Precision | 58.61 | 46.68 | 51.98 | 47.19 | 43.33 | 42.42 |
Recall | 56.57 | 60.75 | 59.69 | 61.75 | 53.35 | 59.37 |
F1-score | 57.57 | 52.8 | 55.57 | 53.5 | 47.85 | 49.48 |
Precision | 50.31 | 37.95 | 43.17 | 35.95 | 29.36 | 34.09 |
Recall | 81.25 | 90.9 | 87.62 | 75.31 | 57.31 | 89.92 |
F1-score | 62.14 | 53.55 | 57.84 | 48.67 | 38.83 | 49.44 |
Precision | 78.59 | 75.52 | 81.25 | 72.25 | 75.91 | 71.74 |
Recall | 63.55 | 64.66 | 59.58 | 71.09 | 69.92 | 65.4 |
F1-score | 70.28 | 69.67 | 68.75 | 71.7 | 72.9 | 68.48 |
Precision | 79.98 | 80.32 | 81.03 | 71.6 | 7312 | 81.17 |
Recall | 35.66 | 35.64 | 36.76 | 50.05 | 48.46 | 33.84 |
F1-score | 49.33 | 49.37 | 50.58 | 58.92 | 58.29 | 47.76 |
Algorithms trained by sample from | All | Taiwan | China | Japan |
The highest values of precision, recall, and f1-score are indicated in bold.