Skip to main content
. 2021 Jul 16;11:14629. doi: 10.1038/s41598-021-94190-9

Table 7.

The resulting precision, recall, and f1-score values for Scenario 4 (training the algorithms with the training dataset of Japan and testing on the Taiwan, China, Japan, and all test datasets separately).

U-Net ResU-Net
Size 32 64 128 32 64 128
Precision 44.13 32.01 48.56 42.16 61.03 41.14
Recall 56.46 66.64 56.97 57.31 47.01 63.58
F1-score 49.54 43.25 52.43 48.58 53.11 49.95
Precision 28.75 21.72 35.17 27.07 42.34 29.58
Recall 51.46 80.87 59.38 52.51 24.7 73.95
F1-score 36.89 34.24 44.17 35.73 31.2 42.26
Precision 63.52 63.46 67.96 67.47 71.82 62.95
Recall 80.18 78.3 74.18 73.55 74.88 73.55
F1-score 70.89 70.1 70.93 70.38 73.32 67.84
Precision 67.58 66.44 70.89 66.53 69.85 68.91
Recall 58.51 53.89 53.85 59.36 62.79 54.35
F1-score 62.72 59.51 61.21 62.74 66.13 60.77
Algorithms trained by sample from All Taiwan China Japan

The highest values of precision, recall, and f1-score are indicated in bold.