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Abstract

Background: The occurrence of cyanobacterial blooms in freshwater presents a threat to human health. However,
epidemiological studies on the association between cyanobacterial blooms in drinking water sources and human
health outcomes are scarce. The objective of this study was to evaluate if cyanobacterial blooms were associated
with increased emergency room visits for gastrointestinal (GI), respiratory and dermal illnesses.

Methods: Satellite-derived cyanobacteria cell concentrations were estimated in the source of drinking water for the
Greater Boston area, during 2008–2011. Daily counts of hospital emergency room visits for GI, respiratory and
dermal illnesses among drinking water recipients were obtained from an administrative record database. A two-
stage model was used to analyze time-series data for an association between cyanobacterial blooms and the
occurrence of illnesses. At the first stage, predictive autoregressive generalized additive models for Poisson-
distributed outcomes were fitted to daily illness count data and daily predictive variables. At the second stage,
residuals from the first stage models were regressed against lagged categorized cyanobacteria concentration
estimates.

Results: The highest cyanobacteria concentration (above the 75th percentile) was associated with an additional 4.3
cases of respiratory illness (95% confidence interval: 0.7, 8.0, p = 0.02, n = 268) compared to cyanobacteria
concentrations below the 50th percentile in a two-day lag. There were no significant associations between satellite
derived cyanobacterial concentrations and lagged data on GI or dermal illnesses.

Conclusion: The study demonstrated a significant positive association between satellite-derived cyanobacteria
concentrations in source water and respiratory illness occurring 2 days later. Future studies will require direct
measures of cyanotoxins and health effects associated with exposure to cyanobacteria-impacted drinking water
sources.

Keywords: Remote sensing, Drinking water, Human illness, Cyanobacteria, Harmful algal blooms, Satellite imagery,
Respiratory, Gastrointestinal, Dermal
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Introduction
Cyanobacteria are widely distributed in the environment
and are problematic in aquatic systems when they create
dense assemblages (blooms) or produce potent second-
ary metabolites (cyanotoxins) that are harmful to ani-
mals, plants, and humans [1, 2]. Driven by climate and
anthropogenic alterations, cyanobacterial blooms may
change in frequency [3], extent [4], and magnitude [5] in
many areas, which pose a threat to the sustainability of
aquatic ecosystems as well as to human health [2, 6–8].
Humans can be exposed to cyanobacterial harmful

algal blooms (cyanoHABs) via drinking water [6, 9–11].
CyanoHABs and cyanotoxins are found in source waters
worldwide [6, 12–14], posing a global health risk. The
most common reported acute health effect following
cyanotoxin exposure through drinking water is gastro-
intestinal (GI) illness [15]. Recreational water exposure
to cyanobacteria and cyanotoxins can result in multiple
non-specific acute illnesses such as GI, respiratory, der-
mal, otic, neurological, musculoskeletal, and other signs
and symptoms such as fever and anorexia [16, 17].
Measurement and ascertainment of cyanoHAB expos-

ure is an important element during evaluation of the risk
of cyanoHABs to human health. Standard exposure as-
sessment may include in situ water sampling, cyanobac-
teria cell count, and quantifying toxin concentrations.
These methods are often time-consuming, costly, and
only feasible on a small geographic or temporal scale.
Although satellite observations cannot detect toxins
[18], they can assist in quantifying cyanobacteria abun-
dance near the water surface. The use of remote sensing
is a potentially attractive, low cost approach to charac-
terizing the risk of human exposure to cyanoHABs [19].
Satellite remote sensing has been used to detect harmful
algal blooms in large inland water bodies such as the
Great Lakes in North America [20–22]. Recently, the
use of remote sensing for cyanoHABs identification in
smaller lakes using satellites has improved [23]. Satellite,
sensor, and algorithm improvements now allow for the
study of numerous inland lakes, improving our ability to
remotely assess cyanoHABs in water bodies that serve as
sources of drinking water or as recreational venues [3].
Satellite images acquired by the European Space
Agency’s (ESA’s) MEdium Resolution Imaging Spec-
trometer (MERIS) can measure phytoplankton spectral
signatures [24], and are now used to estimate cyanobac-
teria abundance in water [5, 25, 26].
The objective of this study is to explore the use of

satellite-derived cyanobacteria abundance for exposure
assessment and analysis of potential associations with
human health effects. We used emergency room (ER)
visit data to detect temporally- and spatially-associated
acute illnesses in a human population served by a
cyanoHAB-impacted drinking water source. We

analyzed the three main classes of acute illnesses that
could result from exposure to cyanobacterial blooms:
GI, respiratory, and dermal illnesses [16, 27, 28].

Methods
Study area and water distribution system
Our study area included the city of Boston and other cit-
ies and towns in the Boston Metropolitan Area that re-
ceive municipal drinking water from the Massachusetts
Water Resources Authority (MWRA) sourced from the
Wachusett Reservoir located in Middlesex county, Mas-
sachusetts (Fig. 1). The Wachusett Reservoir is the sec-
ond largest water body in the state. It serves as a source
of drinking water for nearly 3 million people in the
metropolitan Boston area (https://www.mass.gov/
locations/wachusett-reservoir). The water is treated at
the John J. Carroll Water Treatment Plant. The water is
unfiltered; ozone is used as a primary disinfectant and
chloramine as a secondary disinfectant (http://www.
mwra.com/04water/html/watsys.htm). Twenty-two
towns, located within 20–35miles (32–56 km) of the res-
ervoir intake, that also receive drinking water only from
Wachusett Reservoir, were selected for inclusion in this
study. The distance limits were used in order to ensure
similar water residence times of approximately 2 days in
the distribution system [29].

Health data
Data on ER visits for GI, respiratory, and dermal ill-
nesses during 2008–2011 were obtained from the Mas-
sachusetts Center for Health Information Analysis
(CHIA) (http://www.chiamass.gov/), which accepts the
submission of health data from approximately 70 Massa-
chusetts hospitals. These anonymous, publicly-available,
administrative health data were determined not to be
personally identifiable human subjects data by the Hu-
man Subjects Research Protocol Officer for the U.S. En-
vironmental Protection Agency (USEPA), and therefore
are exempt from review by the USEPA’s Institutional Re-
view Board of record. Administrative data included diag-
nostic code (International Classification of Diseases,
Ninth Revision (ICD-9)), registration date, age, and the
patients’ residential Zone Improvement Plan (ZIP) code.
Patient residence in the study area determined their in-
clusion in the analysis. Eligible patients may have visited
hospitals outside of the study area. We extracted the re-
cords on residents of the 22 towns included in the study
using their ZIP codes. GI illnesses included ICD-9 codes
001–009.9, 558.9, 787.91, 787.01, and 787.03. Respiratory
illnesses included ICD-9 codes 460, 461, 465.9, 493,
786.2, 786.05, and 786.07. Dermal illnesses included
ICD-9 codes 782.1, 136.9, 686.9, 692, and 691.8 (see the
description for these codes in Table S1). The response
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variable was the total daily number of patient visits for
each category of illness in the study area.

Cyanobacterial bloom data
Cyanobacteria concentration at the Wachusett Reser-
voir water intake were estimated using satellite images
from MEdium Resolution Imaging Spectrometer
(MERIS), an ESA sensor onboard the Envisat satellite
which offers 300-m spatial resolution at nadir, where
nadir is defined as the point on Earth’s surface dir-
ectly below the satellite. The MERIS data archive in-
cludes a consistent time series over the study region
for the years 2008–2011 with an image collected ap-
proximately every 3 days, and a usable image col-
lected every 5 days on average when taking into
account cloud, snow, and ice cover, which confound
the satellite signal. Image processing was performed
following the previous reported method [25, 30] and
estimation of the cyanobacteria index (CI_cyano)
followed Lunetta et al. 2015 [31]. Multiple inland

water satellite algorithms could be considered to
monitor cyanobacteria, however the updated CI_cyano
from Lunetta et al. 2015 [31] was used here because
it was validated across six New England states, in-
cluding Wachusett Reservoir and several other lakes
throughout Massachusetts. Additional validation ef-
forts include agreement with state health advisories
[32], state reported toxins and cell counts [33], and
agreement against expected seasonality [25]. Only
pixels within a 900-m buffer of the water intake that fell
completely within the reservoir and excluding mixed land
and water pixels along the shoreline were included in this
analysis. CI_cyano was then converted into cyanobacteria
concentration in cells/mL (cyan C) using the following
equation: cyan C = CI*108 following Lunetta et al. 2015
[31]. At a 300-m spatial resolution, five satellite pixels fell
within a 900-m buffer of the drinking water intake. For
each satellite image, cyanobacteria concentrations were
calculated as the maximum cyan C value of these five
pixels.

Fig. 1 The study area in Massachusetts with boundaries of ZIP codes
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Estimated maximum cyanobacteria concentration data
were classified into three categories defined using the
sample distribution of cyan C values. Category 1 in-
cluded observations with cyanobacteria concentrations
<= 10,000 cells/mL, which is the assumed detection limit
of the sensor; this level contained 50 % of the observa-
tions. Category 2 included those above the estimated de-
tection limit but below the 3rd quartile of the
distribution (cyanobacteria concentrations <= approxi-
mately 109,468 cells/mL); this category contained about
25 % of the observations. Category 3 included those
above the 3rd quartile of the distribution up to the max-
imum satellite-derived cyanobacteria concentrations of
575,440 cells/mL and contained about 25 % of the
observations.

Covariates
Daily mean temperature and precipitation data for the
Boston area were obtained from the PRISM Climate
Group (http://www.prism.oregonstate.edu/explorer/).
We selected one grid (4 km × 4 km, longitude: 42.3312,
latitude: − 71.0761) to represent the weather conditions
in the study area. Air pollution data were obtained from
USEPA’s outdoor air quality website (https://www.epa.
gov/outdoor-air-quality-data/download-daily-data).
These data included daily concentrations of carbon
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide
(SO2), ozone (O3), and fine particulate matter (PM2.5)
from a single air quality monitoring site (AQS) (ID:
250250042) in the study area. Given that the spatial vari-
ability of weather and air pollution data is relatively
small, we assumed that these parameters were represen-
tative of the entire study area. ER visit counts differed
from school vacation to school year and among days of
the week and holidays [34, 35]. We created two binary
variables: school days (all days in the school year includ-
ing weekends) and holidays. In addition, we created
dummy variables for each day of the week.

Statistical analysis
We conducted exploratory data analyses, including plot-
ting distributions of major variables, visually assessing
temporal patterns, conducting correlation analysis of po-
tential associations between temporal factors, such as
day of the week, calendar month, holidays, meteoro-
logical variables and health data, and autocorrelation
analysis of the health data. Time-series analysis of data
was employed to assess associations between cyanobac-
teria concentration and lagged daily counts of illness as
illness count data and meteorological data were daily
while valid satellite images suitable for estimating cyano-
bacteria data were available at a lower frequency (on
average, once per 5 days and often at irregular intervals).
In order to fully use the available daily data in a time-

series analysis, we conducted a regression analysis in two
stages. First, we developed a predictive autoregressive
generalized additive model (GAM) for each Poisson-
distributed health outcome (respiratory, GI and dermal
illness counts). All models included the spline function
of time to account for seasonality and an autoregressive
component (lagged daily counts of ER visits) at a 1-day
lag. Other covariates tested included daily weather vari-
ables, air quality variables and indicator variables for
weekdays, school days, and holidays as predictors. We
used Akaike information criterion (AIC) to select the
predictors for final stage one models [36].
Residuals from the first stage model were lacking tem-

poral trends, seasonal patterns and serial autocorrel-
ation. They were generally homoscedastic and normally
distributed (Fig. 3). This suggests that the first stage ana-
lysis removed the effects of potential time-varying con-
founders, such as seasonality.
Next, residuals from the first stage models were

regressed against original categorized cyanobacteria con-
centration data at lags from 0 to 6 days using univariable
models for normally distributed (Gaussian) outcomes.
As exploratory analysis of data demonstrated that cyano-
bacteria data for the winter period included many miss-
ing observations or values below the detection limit of
the sensor, the second stage regression models excluded
data for December, January and February. It has been
shown previously that remotely sensed cyanobacterial
bloom ascertainment is less available in winter due to
spectral interference by ice or snow, particularly in
northern latitude states such as Massachusetts [25].

Results
The daily counts of GI, respiratory, and dermal illnesses
during 2008–2011 are illustrated in Fig. 2. Visits for GI
and respiratory illnesses included in this study generally
peaked in the winter and their seasonal curves largely
overlapped, although counts of respiratory illnesses had
larger temporal variability. Counts of ER visits for GI ill-
ness averaged 72.6 (±14.9) per day, and count of respira-
tory illness visits averaged 79.1 (±30.0) per day (Table 1).
In contrast, the daily count of dermal illness visits was
much smaller, with a mean value of 24.2 (±7.4) per day;
dermal illness visits were slightly higher in the summer
compared to the winter.
The estimated daily counts of remotely sensed cyano-

bacteria concentration near the drinking water intake
during 2008–2011 are shown in Fig. 3. Shaded areas on
this graph indicate winter months (December, January,
and February) when the time-series of cyanobacteria
concentrations contained many missing data due to un-
favorable meteorological conditions (e.g., snow and ice
cover). These data were excluded from stage 2 analysis.

Wu et al. Environmental Health           (2021) 20:83 Page 4 of 13

http://www.prism.oregonstate.edu/explorer/
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data


Daily counts of GI illness had a significant positive
correlation with school days, the concentrations of
NO2, and cyanobacteria concentration, but a signifi-
cant negative correlation with O3, PM2.5, and daily
mean temperature. Similarly, the daily count of re-
spiratory illness visits had a significant positive correl-
ation with school days, the concentrations of NO2,
CO, and cyanobacteria concentration, but a significant
negative correlation with O3, PM2.5, and daily mean
temperature. Daily counts of dermal illness were
negatively correlated with school days, SO2, NO2, CO,
precipitation, and cyanobacteria concentration, but
positively correlated with holidays, O3, PM2.5, and
daily mean temperature (Table 2).

The results from the first stage model for the three
types of illnesses (GI, respiratory, dermal) are shown in
Table 3. Days of the week and autoregression compo-
nents, as well as spline functions of time, were signifi-
cant predictors of daily counts of illness in all three
models. Different meteorological and air pollution vari-
ables were retained in final stage 1 models for respira-
tory, dermal, and GI illnesses. The model residuals from
the first stage models for the three types of illnesses are
shown in Fig. 4. All residuals are approximately homo-
scedastic and normally distributed, lacking temporal
trends and seasonal patterns.
The results from the second stage models show that

there were no significant associations between

Fig. 2 The daily counts of gastrointestinal, respiratory and dermal illnesses. The shadowed data in December, January and February were not
used in the statistical analysis

Table 1 Descriptive statistics of variables used in the study (Data in December, January and February were excluded)

Variable N Mean Std Dev Minimum Maximum

Daily count of gastrointestinal illness 1100 72.57 14.85 36 132

Daily count of respiratory illness 1100 79.13 29.88 27 206

Daily count of dermal illness 1100 24.24 7.38 6 55

Daily count of cyanobacteria cells (maximum from 5 pixels) 273 76,280 101,572 10,000 575,440

Daily O3 (ppm) 1100 0.03 0.01 0.005 0.07

Daily SO2 (ppb) 1100 3.63 3.71 0 35.9

Daily NO2 (ppm) 1100 29.23 9.85 8 68

Daily CO (ppm) 1100 0.36 0.18 0 1.9

Daily PM2.5 (μg/m3) 1100 9.48 5.30 1.1 57.4

Daily precipitation (mm) 1100 4.00 9.94 0 114.89

Daily mean temperature (°C) 1100 14.73 7.53 −8 30.6

Wu et al. Environmental Health           (2021) 20:83 Page 5 of 13



cyanobacteria concentrations and daily visits for GI ill-
ness at all time lags analyzed (Table 4). There was a sig-
nificant positive association between satellite-derived
cyanobacteria abundance and visits for respiratory ill-
nesses at the two-day lag (Table 5). The adjusted effect
associated with the highest category of cyanobacteria
concentration was 4.3 additional cases with the 95% CI:
0.7–8.0 cases (n = 268). Associations at all other lags
were not significant. Visits for dermal illnesses were not
significantly associated with the level of cyanobacteria
concentrations (Table 6). In addition, we divided the
population of water consumers in different age groups
(children, adults, and the elderly) and conducted strati-
fied analysis using the same statistical models for each
stratum. We did not find significant associations in indi-
vidual groups.

Discussion
This study evaluated acute illness among consumers of
municipal drinking water associated with exposure to
cyanobacterial blooms estimated using remotely sensed
imagery. We investigated the association between
satellite-derived cyanobacteria concentration in Wachu-
sett Reservoir in Massachusetts during 2008–2011 and
ER visits for three types of acute illnesses among resi-
dents of towns that receive drinking water from this
reservoir.
To account for potential time-varying confounding

factors, the two-stage modeling approach enabled
utilization of daily data on health outcomes, weather,
and air pollution. Regression analysis of detrended and

normally distributed residuals from stage one autore-
gression GAM against cyanobacteria data demonstrated
a lagged increase in the number of ER visits for respira-
tory illnesses associated with the highest category of
cyanobacteria concentrations (> 109,468 cells/mL). It is
important to highlight that the only significant associ-
ation was detected at a 2-day lag corresponding to the
average water residence time in the distribution system.
This result suggests that drinking water from source
water impacted by cyanobacterial blooms might be asso-
ciated with respiratory symptoms following consump-
tion. However, in contrast to other studies on effects
associated with drinking water exposures to cyanobac-
teria, we did not observe significant associations between
cyanobacteria in source water and ER visits for GI or
dermal illnesses.
We are not aware of previously published reports of

respiratory illness associated with exposure to
cyanobacteria-impacted drinking water. However, several
studies have examined the associations between respira-
tory illnesses and exposure to cyanobacteria in recre-
ational water [16, 17, 27, 37–40]. Some of the previous
reports describe severe respiratory illnesses such as
pneumonia that resulted in hospital visits [27, 39, 40].
Hilborn et al. 2014 [16] reported that individuals re-

creating in or at cyanobacteria-impacted waters generally
reported illness (including cough, wheeze, congestion
and tight chest) on the day of exposure. In our study,
the significant effect was observed at a two-day lag,
which is the average time interval between water enter-
ing the intake at Wachusett Reservoir and water receipt

Fig. 3 Estimates of cyanobacteria concentrations at the Wachusett drinking water intake during 2008–2011. Cyanobacteria concentrations were
calculated as the maximum value of the five satellite pixels within a 900 m buffer of the drinking water intake. The shadowed data in December,
January and February were not used in the statistical analysis
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by households in the study area. Fortunately, exposure
to cyanobacteria via drinking water is not commonly re-
ported because of the general effectiveness of drinking
water treatment. If contamination does occur, there are
multiple potential respiratory exposure pathways, includ-
ing dishwashing, bathing, lawn watering, or other uses of
tap water where a water aerosol is created [41].
Reports of GI and dermal illnesses associated with

cyanobacterial blooms in drinking water have previously
been published; however, findings from other studies
were inconsistent. El Saadi et al. 1995 [42] found that
the risk of GI symptoms was significantly increased for
people drinking chlorinated water derived from a

cyanobacteria-impacted river, and the risks of GI and
dermal symptoms were increased for people using un-
treated water from the same river for bathing and dish-
washing. However, the odds for developing GI and
dermal symptoms was not significant for those exposed
to recreational river water. Lévesque et al. 2014 [28] re-
ported that exposure to cyanobacteria and microcystins
in source water was linked to subsequent GI, muscle
pain, skin, and ear symptoms, but symptoms were re-
ported to be mild and did “not require a medical
consultation.”
In this study, we did not observe a significant associ-

ation between cyanobacteria and GI or dermal illnesses

Table 2 Pearson correlation (r) between the counts of three types of illnesses and predictive variables (Data in December, January
and February were excluded); p represents p-value and n represents the sample size. Bolded results represent significant correlations
at the level of 0.001

Variables Gastrointestinal Illness Respiratory illness Dermal illness

School days (yes/no) r 0.166 0.537 −0.461

p < 0.001 < 0.001 < 0.001

n 1100 1100 1100

Holiday (yes/no) r − 0.028 0.052 0.087

p 0.348 0.087 0.004

n 1100 1100 1100

O3 r −0.056 −0.218 0.357

p 0.066 < 0.001 < 0.001

n 1100 1100 1100

SO2 r 0.030 0.095 −0.135

p 0.320 0.002 < 0.001

n 1100 1100 1100

NO2 r 0.112 0.045 −0.158

p < 0.001 0.129 < 0.001

n 1100 1100 1100

CO r 0.052 0.219 −0.135

p 0.084 < 0.001 < 0.001

n 1100 1100 1100

PM2.5 r −0.176 −0.182 0.264

p < 0.001 < 0.001 < 0.001

n 1100 1100 1100

Daily precipitation r 0.001 −0.053 −0.081

p 0.971 0.080 0.007

n 1100 1100 1100

Daily mean temperature r −0.214 −0.450 0.561

p < 0.001 < 0.001 < 0.001

n 1100 1100 1100

Cyanobacteria concentration (maximum from 5 pixels) r 0.150 0.152 −0.200

p 0.013 0.012 0.001

n 273 273 273
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while some previous studies detected significant associa-
tions. A possible explanation for these discrepant results
is that the exposure to cyanobacteria and health effects
were defined in different ways in various studies. For ex-
ample, Levesque et al. 2014 [28] counted cyanobacterial
cells at multiple depths at sample sites in the drinking
water source, and also measured cyanotoxin at those
sampling sites. In their study, health effects among
drinking water consumers were self-reported; therefore,
they could capture mild symptoms which did not result
in an ER visit. It is possible that any exposure to

cyanobacteria in tap water in the Greater Boston area
was associated with mild symptoms among water con-
sumers which our study could not detect. This may also
be because Levesque et al. 2014 [28] measured cyanotox-
ins in water while we used satellite data, which have two
important limitations. First, satellite images cannot be
used to measure toxins; and second, satellite images pro-
vide information for the surface layer of a waterbody.
The satellite only measures the water’s surface, penetrat-
ing up to a depth of about 2 m in clear water [43] and
less than 2 m in more turbid waters [9, 44]. This means

Table 3 Results from the stage 1 model for emergency room visits for illnesses; p represents the p-value. Each model considered a
constant sample size of 1460

Types of Illnesses Variables Mean Estimate Standard Error P

Gastrointestinal illness Visit count on the previous day 0.003 0.000 < 0.001

Monday −0.022 0.010 0.032

Tuesday 0.030 0.010 0.002

Wednesday 0.115 0.010 < 0.001

Thursday 0.047 0.010 < 0.001

Friday 0.037 0.010 < 0.001

O3 −0.619 0.314 0.049

Average mean temperature 0.005 4.00*10−4 < 0.001

Index of days 9.73*10−5 7.68*10−6 < 0.001

Respiratory illness Visit count on the previous day 0.005 9.83*10−6 < 0.001

Tuesday −0.067 0.009 < 0.001

Wednesday −0.092 0.00932 < 0.001

Thursday −0.111 0.00916 < 0.001

Friday −0.099 0.00934 < 0.001

Saturday −0.030 0.00923 0.001

School days 0.167 0.00855 < 0.001

Holidays −0.138 0.01624 < 0.001

Precipitation −0.001 3.00*10−4 0.004

Index of days −1.73*10−6 6.77*10−6 0.799

Dermal illness Visit count on the previous day 0.002 0.001 0.010

Tuesday −0.094 0.017 < 0.001

Wednesday − 0.137 0.017 < 0.001

Thursday −0.178 0.017 < 0.001

Friday −0.189 0.018 < 0.001

Holidays −0.183 0.033 < 0.001

O3 1.535 0.571 0.007

NO2 0.002 0.001 0.006

PM2.5 0.003 0.001 0.011

Precipitation −0.002 0.001 0.010

Average mean temperature 0.008 0.001 < 0.001

Index of days 8.10*10−5 1.73*10−5 < 0.001

Note: Holidays and each weekday (e.g., Monday, Tuesday, etc) are binary variables (Yes = 1, No = 0). For holidays, the value 1 was used as the reference, for each
weekday, the value 0 was used as the reference
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that, depending on the depth of the drinking water in-
take, cyanobacteria concentrations at the water intake
depth may not have been assessed in this study [3].
Beaudeau et al. 2014 [45] studied the same public

water supply system, MWRA, but during a different
time frame (1998–2008). They reported an associ-
ation between the presence of cyanobacteria at the
drinking water intake and hospital admissions for GI
illness among the elderly 23–27 days later. Their
study did not evaluate respiratory or dermal ill-
nesses. Beaudeau et al. 2014 [45] also observed a de-
cline in hospital admissions for GI illness after the
water utility started treating drinking water with
ozone in 2005 (prior to that, they used only chlorine
for disinfection). Our study was wholly conducted
after the introduction of ozone treatment. Therefore,
it is possible that exposure to cyanobacteria via
drinking water was diminished after 2005, as ozone
is more effective at removing cyanobacterial toxins
than chlorine [13].

Satellite remote sensing has a few additional limita-
tions for human exposure assessment to cyanobacterial
blooms. First, the availability and quality of satellite data
is subject to the influence of cloud cover, snow and ice
as well as other factors [3, 26]. Therefore, cyanobacterial
bloom data were not available for every time the satellite
passed over the study area. As our analysis was con-
ducted in two stages, we were able to include full-year
daily data on health, weather and air quality in stage one
models. Thus, seasonality analysis was conducted using
a full health dataset enabling us to properly characterize
and remove seasonal patterns from health data. We had
to exclude cyanobacteria data for December, January,
and February from our stage two regression models be-
cause the presence of ice and snow or dense cloud cover
could impact the accuracy of estimating cyanobacterial
cell concentrations using satellite images. This limitation
was due to the location of our study site in a northern
part of the country where ice cover is formed on surface
water bodies in winter.

Fig. 4 The residuals from the first stage model for emergency room visits: gastrointestinal, respiratory and dermal illnesses
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Table 4 The association between cyanobacteria concentration (maximum estimate based on five pixels) and the cases of
gastrointestinal illnesses (sample size = 268); p represents the p-value

Lag (day) Category of cyanobacteria cellsa Regression coefficient 95% Confidence Interval P

0 1 Reference

2 0.54 −2.23 3.31 0.703

3 1.55 −1.45 4.55 0.312

1 1 Reference

2 −0.21 −3.01 2.59 0.883

3 −2.24 −5.27 0.80 0.149

2 1 Reference

2 −0.29 −3.04 2.46 0.837

3 −1.30 −4.27 1.67 0.392

3 1 Reference

2 −1.89 −4.68 0.90 0.185

3 −0.44 −3.46 2.57 0.774

4 1 Reference

2 −0.44 −3.23 2.34 0.755

3 −1.70 −4.73 1.33 0.271

5 1 Reference

2 −2.75 −5.63 0.13 0.062

3 −1.58 −4.71 1.56 0.324
aCategory 1: <=10,000 cell/mL; Category 2: above 10,000 cell/mL but below or equal to 109,468 cell/mL; and Category 3: > 109,468 cell/mL

Table 5 The association between cyanobacteria concentration (maximum estimate from five pixels) and the cases of respiratory
illnesses (sample size = 268); p represents the p-value

Lag (day) Category of cyanobacteria cellsa Regression coefficient 95% Confidence Interval P

0 1 Reference

2 −2.66 −6.31 0.99 0.153

3 −1.56 −5.51 2.39 0.440

1 1 Reference

2 −2.85 −6.25 0.54 0.100

3 −2.79 −6.47 0.90 0.138

2 1 Reference

2 1.78 −1.62 5.18 0.304

3 4.32 0.65 7.99 0.021

3 1 Reference

2 −0.55 −4.09 3.00 0.762

3 0.27 −3.56 4.10 0.890

4 1 Reference

2 −1.69 −5.22 1.84 0.348

3 −2.72 −6.55 1.12 0.166

5 1 Reference

2 −0.68 −4.48 3.12 0.727

3 0.64 −3.50 4.77 0.763
aCategory 1: <=10,000 cell/mL; Category 2: above 10,000 cell/mL but below or equal to 109,468 cell/mL; and Category 3: > 109,468 cell/mL
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Additionally, satellite-derived cyanobacteria concentra-
tion represents the maximum value within a 900-m buf-
fer around the intake while actual cyanobacteria
concentrations may be heterogenous spatially. Surface
cyanobacteria concentrations may not accurately repre-
sent water quality at the actual drinking water intake
depth.
This study has other inherent limitations. As an obser-

vational study, it could only demonstrate statistical asso-
ciations but not causality. Although statistical analysis
involved adjusting for multiple time-varying covariates
and spline function of time, there could still be residuals
from unmeasured time-varying factors correlated with
cyanobacteria occurrence and daily disease counts. Fur-
thermore, there could be ingestion exposure misclassifi-
cation due to some individuals not drinking tap water.
That might explain the lack of observed association be-
tween cyanobacteria and GI illness as such exposure
misclassification would have biased the observed effect
towards the null.
Despite the mentioned limitations, results from this

study add to the existing literature of merging satellite
technology for water quality with human health [46].
Our study has a few strengths. First, we simultaneously
investigated three types of acute illnesses previously
identified as being associated with cyanobacterial
blooms, where previous studies have been largely re-
stricted to the evaluation of gastrointestinal effects. A

restricted a priori focus limits the ability to characterize
health risks associated with exposure to drinking water
impacted by cyanobacterial blooms. Second, we used
daily health outcome data, which allowed us to
characterize lagged effects of cyanobacterial blooms.
Third, we analyzed associations between cyanobacteria
concentration categories and illness counts at various
lags from zero to 6 days and detected an association only
at the two-day lag corresponding to the water residence
time in the distribution system. Previous studies of rec-
reational exposure demonstrated that illness symptoms
occur on the day of exposure to cyanobacteria [16, 47].
We conducted statistical analysis at all 7 days in order to
rule out confounding effects.

Conclusions
We found a significant positive association between re-
spiratory illnesses in the Greater Boston area and
satellite-derived cyanobacteria concentration in source
water at a time lag consistent with the water residence
time in the distribution system. Because in situ monitor-
ing data at the drinking water intake were not analyzed,
this novel finding needs to be confirmed in future stud-
ies of health effects associated with exposure to
cyanobacteria-impacted drinking water sources.
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