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Abstract

Background: Tumor mutation burden (TMB) is an emerging prognostic biomarker of immunotherapy for bladder
cancer (BLCA). We aim at investigating radiomic features’ value in predicting the TMB status of BLCA patients.

Methods: Totally, 75 patients with BLCA were enrolled. Radiomic features extracted from the volume of interest of
preoperative pelvic contrast-enhanced computed tomography (CECT) were obtained for each case. Unsupervised
hierarchical clustering analysis was performed based on radiomic features. Sequential univariate Logistic regression,
the least absolute shrinkage and selection operator (LASSO) regression and the backward stepwise regression were
used to develop a TMB-predicting model using radiomic features.

Results: The unsupervised clustering analysis divided the total cohort into two groups, i.e., group A (32.0%) and B
(68.0%). Patients in group A had a significantly larger proportion of having high TMB against those in group B
(66.7% vs. 41.2%, p = 0.039), indicating the intrinsic ability of radiomic features in TMB-predicting. In univariate
analysis, 27 radiomic features could predict TMB. Based on six radiomic features selected by logistic and LASSO
regression, a TMB-predicting model was built and visualized by nomogram. The area under the ROC curve of the
model reached 0.853. Besides, the calibration curve and the decision curve also revealed the good performance of
the model.

Conclusions: Our work firstly proved the feasibility of using radiomics to predict TMB for patients with BLCA. The
predictive model based on radiomic features from pelvic CECT has a promising ability to predict TMB. Future study
with a larger cohort is needed to verify our findings.
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Background
The past several years have witnessed the blooming of
immune checkpoint inhibitors (ICIs) targeting the pro-
grammed death-1 (PD-1) pathway in cancer treatment
[1]. As the most common tumor of the urinary system,

bladder cancer (BLCA) is recognized as one of the im-
munologically “hot” tumors [2], and thereby, a good can-
didate for immunotherapy. Till now, the FDA has
approved three programmed death-L1 (PD-L1) inhibi-
tors, i.e. atezolizumab, durvalumab, and avelumab, as
well as two PD-1 inhibitors i.e. nivolumab and pembroli-
zumab in the treatment of urothelial carcinoma [3].
Although the emergence of immunotherapy brings

hope for patients of BLCA, it cannot be ignored that this
novel treatment is not always effective in all patients. Be-
sides, immunotherapy can also cause toxic and
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potentially fatal side effects [4]. Therefore, identifying
biomarkers that can distinguish the potential responders
of ICIs from the non-responders is essential for accurate
treatment decisions. PD-L1 expression and tumor muta-
tion burden (TMB) are the two most commonly used
biomarkers [5, 6]. Unlike the detection of PD-L1 expres-
sion that focuses on the targeting protein of the ICIs,
TMB predicts the therapeutic efficacy of ICIs through its
strong correlation to the mutation-derived neoantigens
which is a key factor for immune response activation [5].
Studies even showed that TMB is superior to PD-L1 in
predicting the therapeutic efficacy of ICIs therapy [7, 8].
Besides, it has been reported that higher TMB is associ-
ated with a favorable prognosis of ICIs treatment in tu-
mors including melanoma, non-small-cell lung cancer,
small-cell lung cancer, urothelial cancer [9–13] and etc.
However, a major obstacle that prevents the large-scale
promotion of TMB detection in patients receiving ICIs
is the high cost of the whole-exome sequencing (WES)
test.
Radiomics is a rapidly emerging field that can be ap-

plied to many biomedical areas [14]. Studies have shown
that radiomic features are capable of predicting the som-
atic mutation of certain genes in different tumor types
[15–17]. Moreover, two latest studies addressed that
radiomics could also predict the TMB status of lung
cancer patients [18, 19]. These studies revealed the deep
connection between the radiomic and genomic charac-
teristics in cancer patients and the feasibility of using

radiomic features to predict the genomic outcomes.
Therefore, we hypotheses that radiomic features can be
used to select the most clinically needed patient popula-
tion for TMB testing by predicting the probability of
high TMB. Besides, radiomics may act as an alternative
or assistant diagnosis of TMB detection for those who
are not accessible to the expensive WES test.
In this study, we aim at exploring the value of radio-

mic features extracted from pelvic contrast-enhanced
computed tomography (CECT) images in predicting the
TMB status of BLCA patients, and also, developing a
TMB-predicting model based on the radiomic data.

Methods
Study population and data acquisition
Pelvic CECT images of eligible BLCA patients were
downloaded from the Cancer Imaging Archive database
(TCIA, http://www.cancerimagingarchive.net/) [20].
Genetic and clinical data were acquired from the Cancer
Genome Atlas (TCGA) database (http://cancergenome.
nih.gov) [21]. The Inclusion criteria are shown in Fig. 1A,
including: 1) pathological diagnosis as BLCA; 2) available
preoperative pelvic CECT images with good quality; 3)
available genetic information. Finally, 75 eligible BLCA
patients from the TCGA-BLCA cohort were enrolled.
No ethical approval nor informed consent was required
for the current study due to the public availability of
data in the TCIA and TCGA databases.

Fig. 1 Flowchart showing the inclusion criteria (A) and the detailed analytic processes (B) of the current study. TCGA: The Cancer Genome Atlas;
TCIA: The Cancer Imaging Archive; BLCA: Bladder cancer; TMB: Tumor mutation burden; CECT: Contrast-enhanced computed tomography; LASSO:
Least absolute shrinkage and selection operator; ROC: Receiver operating characteristic; ICC: interclass correlation coefficient
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CT imaging parameters
The preoperative pelvic CECT images were obtained
from four various manufactures: General Electric (GE),
Siemens, Philips and Toshiba Medical Systems. The ac-
quisition parameters of CT were as follows: slice thick-
ness, 1.25 - 5 mm; tube voltage, 100–140 kV; tube
current, 80–689 mA; matrix, 512 × 512; and pixel size,
0.586 × 0.586 mm2 to 0.977 × 0.977 mm2.

The volume of interest (VOI) delineation and feature
extraction
All pelvic CECT images were obtained before surgery.
On the axial CECT image, two radiologists used the
open-source software 3D slicer (Version 4.10.2) [22] to
manually delineate the VOI of tumor independently.
Imaging pre-processing steps were conducted to de-

crease the potential protocol variability. Prior to feature
extraction, all CT images were resampled into voxel
sizes 1 × 1 × 1mm3 and discretized to a bin width of 25
Hounsfield units (HU). Finally, 1223 radiomic features
including shape, first order and texture features with
and without performing Wavelet and Laplacian of
Gaussian (LoG) filter were acquired. Texture features
were classified into five categories including gray-level
co-occurrence matrix (GLCM), gray-level difference
matrix (GLDM), gray-level run length matrix (GLRLM),
gray-level size zone (GLSZM) and neighborhood gray
tone difference Matrix (NGTDM).
Combat algorithm was applied for feature

harmonization in different imaging protocols from mul-
ticenter investigations (https://github.com/Jfortin1/
ComBatHarmonization) [23, 24]. All the radiomic fea-
tures were normalized by the Z-score transformation.
The consistency of radiomic features between the two
radiologists was assessed by interclass correlation coeffi-
cient (ICC). Only stable features with ICC > 0.8 were in-
cluded in the further analysis (Fig. 1B).

Tumor mutation burden
In this study, TMB calculation was based on somatic
nonsynonymous mutation, while synonymous mutation
was excluded. For each patient, TMB was counted as the
total mutational count divided by the exome size (esti-
mated as 38Mb) [25]. Based on the median TMB of all
patients, the total cohort was divided into high and low
TMB groups. Besides, the top 20 driver mutations of
BLCA (obtained from the driver mutation database
IntOGen [26]) were also included in the analyses.

Unsupervised hierarchical clustering analysis
Unsupervised hierarchical clustering analysis was per-
formed to identify distinct subgroups of BLCA patients
based on the homogeneity and heterogeneity of the
radiomic features. Genomic outcomes and clinical data

were compared between the clustering groups by chi-
square test. Based on the similarity of radiomics among
samples calculated by Euclidean distance, hierarchical
clustering can split the total cohort into different sub-
groups with high radiomic similarity within each sub-
group while distinct radiomic profile between
subgroups. Unsupervised hierarchical clustering analysis
was conducted using the “pheatmap” R package.

Development and validation of the TMB-predicting model
The detailed produces of radiomic TMB-predicting
model building were described as follow: Firstly, univari-
ate logistic regression analysis was used to preliminarily
screen and identify potential TMB-predictors from
radiomic features. Then radiomic features with p < 0.05
in univariate analysis were further examined by the least
absolute shrinkage and selection operator (LASSO) re-
gression methods via 10-fold cross-validation based on
minimum criteria. In addition, multivariate logistic re-
gression using backward elimination strategy was per-
formed to eliminate the redundant features. Finally,
TMB-predicting model based on simplified radiomic fea-
tures was established.
The novel TMB-predicting radiomic model was visual-

ized as nomogram. Besides, the performance of this pre-
dictive model was evaluated using 10,000 bootstrapping
method. The area under the receiver operating charac-
teristic (ROC) curve (AUC), calibration curve and deci-
sion curve were used to assess the discrimination ability,
calibration and clinical benefit of the model, respectively.

Statistical analyses
Radiomic features were extracted from pelvic CECT
using the 3D slicer software. Statistical analyses were
conducted by R software (V 3.6.2). All tests were two-
sided. A p-value < 0.05 was defined as significant for all
the tests except that in multivariate logistic regression
with backward elimination strategy a p-value < 0.1 was
considered as significant so that potential predictors
were less likely to be eliminated from the predictive
model.

Results
Baseline characteristics
In total, 75 eligible patients were included in this study
according to our inclusion criteria (Fig. 1A). The median
TMB of all patients was 6.5 mut/Mb (interquartile range:
3.3–12.1). All patients were divided by the median TMB
into the high TMB (49.3%, 37/75) and low TMB (50.7%,
38/75) group. The baseline factors were comparable be-
tween those with high and low TMB, except that all the
seven black patients in this study harbored low TMB
(Table 1). The median follow-up time calculated by the
reverse Kaplan-Meier method was 29.5Months. Totally,
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death and disease progression occurred in 45.3% (34/75)
and 60.0% (45/75) patients, respectively. The median OS
and DFS was 35.4 months (95%CI: 21.6–49.1 months)
and 25.0 months (95%CI: 12.6–37.3 months), respect-
ively. Log-rank test showed a trend of shorter median
OS (35.0 months vs. 56.4 months, p = 0.193) in the low
TMB group, although the p-value were not significant
(Fig. S1 A, B).

Unsupervised hierarchical clustering analysis
The detailed analysis processes of this study are shown
in Fig. 1B. To explore the association between radiomic

features and clinical outcomes, we performed an un-
supervised hierarchical clustering analysis using the 1223
radiomic features with ICC > 0.8. As is shown in Fig. 2,
the unsupervised clustering divided the whole cohort
into two clustering groups (clustering group A: 24/75
[32.0%]; and clustering group B: 51/75 [68.0%]) with
high radiomic similarity within each group while distinct
radiomic profile between groups. The clinical factors
were compared between the two groups (Table S1). Of
note, compared to cases in the clustering group B, those
in group A had a significantly higher proportion of hav-
ing high TMB (66.7% [16/24] vs. 41.2% [21/51], p =
0.039) (Table S1). In addition, when taking TMB as a
continuous variable, the median TMB was also higher in
the clustering group A against group B (8.31 mut/Mb vs.
4.95 mut/Mb, p = 0.029, Fig. 3A). Based on the unsuper-
vised nature of the clustering analysis, these findings in-
dicated that radiomic features extracted from CECT
have an intrinsic ability in discriminating the TMB sta-
tus of BLCA patients. Besides, lower T stage and clinical
stage were more frequently found in clustering group A
than group B (Table S1). In terms of survival outcomes,
patients in clustering group A had more favorable OS
against those in group B with a borderline p value (me-
dian OS: not reached vs. 33.0, P = 0.058 Fig. S1. C), while
the DFS was also numerically longer in group A (35.7 vs.
19.8, P = 0.257 Fig. S1. D).
We also explored the relationship between the radio-

mic features or TMB status with the occurrence of the
driver gene mutation. Somatic mutations in genes in-
cluding TP53, PIK3CA, EP300 and FGFR3 were more
frequent in the clustering group A against group B (Fig.
3B). Besides, high TMB was accompanied by more fre-
quent mutations in TP53, PIK3CA, KMT2C, EP300,
ERBB2, ELF3, ERCC2 and BRCA2 gene (Fig. 3C).

Feature selection, model establishment and evaluation
Since clustering analysis showed the strong potential of
radiomic features in predicting TMB, we further tested
each feature’s power in predicting TMB and developed a
TMB-predicting model based on radiomic features.
Three sequential steps were involved in the development
of the predictive model (Fig. 1B). Firstly, univariate logis-
tic regression analysis was carried out in each radiomic
feature. A total of 27 radiomic features with the ability
in predicting TMB (p < 0.05) were preliminarily identi-
fied (Fig. 3D). Then, LASSO regression was conducted
using these 27 features to further screen the most
powerful prognostic features. 12 radiomic features
remained after the LASSO regression (Fig. 3E, F). After-
ward, in order to further eliminate the redundant fea-
tures, these 12 TMB-predicting features were subjected
to a backward stepwise logistic regression. Eventually, 6
robust radiomic features were found to be independent

Table 1 Baseline factors of the total cohort and groups with
high and low TMB

Total
N = 75

Low TMB
(N = 38)

High TMB
(N = 37)

P value

Age (Y)

< 69 38 (50.7%) 20 (52.6%) 18 (48.6%) 0.730

≥ 69 37 (49.3%) 18 (47.4%) 19 (51.4%)

Gender

Male 57 (76.0%) 28 (73.7%) 29 (78.4%) 0.634

Female 18 (24.0%) 10 (26.3%) 8 (21.6%)

Race

White 67 (89.3%) 31 (81.6%) 36 (97.3%) 0.015

Black 7 (9.3%) 7 (18.4%) 0 (0.0%)

Asian 1 (1.3%) 0 (0.0%) 1 (2.7%)

Diagnosis Year

2005–2010 30 (40.0%) 16 (42.1%) 14 (37.8%) 0.706

2011–2013 45 (60.0%) 22 (57.9%) 23 (62.2%)

BMI (kg/m2)

< 26.6 34 (45.3%) 17 (44.7%) 17 (45.9%) 0.906

≥ 26.6 35 (46.7%) 18 (47.4%) 17 (45.9%)

Unknown 6 (8.0%) 3 (7.9%) 3 (8.1%)

p T stage

pT2 24 (32.0%) 11 (28.9%) 13 (35.1%) 0.676

pT3–4 43 (57.3%) 22 (57.9%) 21 (56.8%)

Unknown 8 (10.7%) 5 (13.2%) 3 (8.1%)

p N stage

pN0 42 (56.0%) 19 (50.0%) 23 (62.2%) 0.373

pN1–2 21 (28.0%) 12 (31.6%) 9 (24.3%)

Unknown 12 (16.0%) 7 (18.4%) 5 (13.5%)

Stage

Stage II 28 (37.3%) 12 (31.6%) 16 (43.2%) 0.296

Stage III 47 (62.7%) 26 (68.4%) 21 (56.8%)

Clustering Group

Group A 24 (32.0%) 8 (21.1%) 16 (43.2%) 0.039

Group B 51 (68.0%) 30 (78.9%) 21 (56.8%)

TMB Tumor mutation burden; BMI Body mass index
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predictors of TMB, of which three and three features
were positively and negatively related to high TMB
status, respectively (Table 2). Finally, the TMB-
predicting model was build based on the 6 radiomic
features selected by the backward stepwise regression.
Based on the beta value of features included in the
backward stepwise regression, a TMB-predicting
model of radiomic features was established and visu-
alized as a nomogram (Fig. 4A).
Correlations within distinct radiomic features were

also explored. As is shown in Fig. S2A, correlations were
identified among several radiomic features with predict-
ive ability in univariate analysis. LASSO regression is
widely used to eliminate multi-collinearity. After feature
selection by LASSO regression and backward elimin-
ation regression, correlations within radiomic features
were dramatically reduced (Fig. S2B, C).

The predictive performance of the TMB-predicting
model was validated using 10,000 bootstrapping replica-
tions in three distinct aspects as follows. The AUC of
the ROC curve was 0.853 (95%CI: 0.770–0.936), reflect-
ing the satisfactory discriminating ability of the model
(Fig. 4B). The importance of each radiomic feature in
the TMB-predicting model is shown by AUC of ROC
curve (Table 2). The highest AUC of ROC curve for a
single feature is 0.696. Obviously, the TMB-predicting
model harbored much higher predictive accuracy against
any radiomic feature alone. Besides, the calibration curve
also exhibited good agreement between prediction and
observation probability of high TMB (Fig. 4C). In
addition, the decision curve analysis demonstrated great
positive net benefits among most of the threshold prob-
abilities, indicating the favorable clinical effectiveness of
this TMB-predicting model (Fig. 4D).

Fig. 2 Unsupervised hierarchical clustering analysis of radiomic features. Radiomic features with predictive ability in the univariate analysis are
labeled. Radiomic features included in the final TMB-predicting model are marked in red. Based on the homogeneity and heterogeneity of the
radiomic features, all cases were divided into two clustering groups by the unsupervised hierarchical clustering analysis. Clinical and genomic
outcomes were compared between the two groups. TMB: Tumor mutation burden; BMI: body mass index
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Discussion
TMB is a widely used therapeutic biomarker for ICIs
treatment in many cancers including BLCA [1]. To the
best of our knowledge, this study is the first one to in-
vestigate the ability of radiomic features extracted from
pelvic CECT images to predict the genomic outcomes of
BLCA patients. Our findings revealed an intrinsic

connection between radiomic features and TMB status
as well as several critical driver mutations. In addition,
we initiatively developed a radiomic TMB-predicting
model that can be used to predict the TMB status of
BLCA patients. Though future validation is still needed,
our study reveals the practicability of assessing the TMB
status by radiomic features for patients with BLCA.

Fig. 3 The association between radiomic features and TMB status. A. The comparison of TMB as a continuous factor between patients in the
clustering group A and B; B, C. The relationship between the top 20 driver mutations of BLCA (B) and radiomic clustering groups or TMB status
(C), * p value < 0.05. D. Volcano plot illustrating the results of univariate logistic regression of radiomic features. E, F. LASSO regression for TMB-
prediction based on radiomic features. E: The dotted vertical line was plotted at the value selected by the 10-fold cross-validation based on the
minimum criteria (the value of lambda with the lowest partial likelihood deviance). F: Selection of the tuning parameter (lambda) in the LASSO
regression via 10-fold cross-validation based on minimum criteria. TMB: Tumor mutation burden; BLCA: Bladder cancer; LASSO: Least absolute
shrinkage and selection operator

Table 2 Multivariate Logistic regression using backward elimination strategy

Radiomic Features Beta value OR 95%CI OR P value AUCa

log-sigma-1-0-mm-3D glcm Imc1 −1.24 0.29 0.10–0.82 0.019 0.637

log-sigma-2-5-mm-3D glcm MaximumProbability 1.14 3.13 1.34–7.33 0.009 0.638

wavelet-LHL glcm MCC −1.02 0.36 0.16–0.82 0.015 0.690

wavelet-LHH glszm ZoneEntropy 1.56 4.74 1.70–13.20 0.003 0.661

wavelet-HLH glszm SizeZoneNonUniformityNormalized 1.23 3.43 1.45–8.13 0.005 0.696

wavelet-HHL glcm MCC −0.80 0.45 0.18–1.12 0.086 0.644

OR Odds ratio, CI confidence interval
a Area under the receiver operator characteristic curve
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Radiomics study has developed rapidly in a wide range
of fields in oncologic researches for its advantages in
capturing comprehensive image information [14]. In
BLCA, radiomics exhibited promising potential in pre-
dicting pathological grade [27], clinical stage [28], lymph
node metastasis [29], recurrence [30], progression-free
interval [31] and etc. Here, we firstly found that correla-
tions also existed between radiomic features and gen-
omic alterations. Similar findings were observed in
patients with lung cancer [17, 19]. These results implied
the possibility that the patient’s genetic changes could be
reflected on radiological images and quantified by radio-
mic features.

In our study, the TMB-predicting model was visual-
ized by nomogram which could conveniently calculate
the possibility of high TMB for BLCA patients. This tool
has the potential in facilitating clinicians to choose the
optimal candidates for TMB testing, i.e., patients that
are more likely to harbor high TMB. On the other hand,
our model could also serve as an alternative of TMB for
patients who cannot afford to the expensive TMB testing
or does not have accessible tissue sample for the test.
Compared to the traditional TMB detection system, our
radiomic TMB-predicting model is totally non-invasive.
Furthermore, since most BLCA patients have already
undergone the pelvic CECT scan before or at initial

Fig. 4 Model visualization using nomogram (A) and 10,000 bootstrapping validation (B-D). A. TMB-predicting model visualized by Nomogram. B.
ROC curve reflecting the predictive accuracy of the model. Blue area shows the 95%CI of the AUC. C. Calibration curves showing the predicted
versus actual probability of high TMB status; D. Decision curve of the model. The X-axis shows the threshold probabilities while the Y-axis shows
the net benefit (adding true positives and subtracting false positives). TMB: Tumor mutation burden; ROC: Receiver operating characteristic
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diagnosis, this TMB-predicting model requires almost
no additional examination for TMB-testing.
BLCA is a highly immunogenic tumor type due to its

high mutational load, and consequently, a promising
candidate for immunotherapy. At present, a total of 5
ICIs has been approved to be used as either first-line
(atezolizumab and pembrolizumab) or second-line (ate-
zolizumab, durvalumab, avelumab, nivolumab and pem-
brolizumab) treatment schemes for locally advanced or
metastatic BLCA [3]. Given the high cost and nonnegli-
gible toxicity of ICIs, identifying biomarkers that can
precisely determine the treatment outcomes of ICIs is of
great necessity and importance. As one of the targeting
molecules of ICIs, PD-L1 expression is recognized as an
ideal marker for therapeutic efficacy prediction [6]. Yet,
there are also studies addressing that ICIs can be effect-
ive in tumors lacking PD-L1 expression [3, 12]. Apart
from PD-L1, TMB is another promising biomarker. It is
well known that the primary targets of human anti-
tumor immune responses are tumor-specific neoantigen
peptides originated from somatic mutations in tumors
[5]. Accordingly, TMB, which represents the total count
of nonsynonymous somatic mutations across the tumor
genome, can reflect the antigenicity of tumors. Accord-
ing to a recent meta-analysis, the positive correlations
between TMB and ORR in ICIs treatment were found in
27 tumor types [32].
Despite the promising predictive value of TMB in

various cancers, TMB detection is now faced with
several challenges. One major obstacle for universal
TMB testing before ICIs treatment is the high eco-
nomic cost of the WES examination, which is the
golden standard approach for TMB quantifying.
Though several relatively cheaper panel-based testing
methods have been developed [33, 34], the critical
validation of these tools is still lacking. Another an-
noying aspect of regular WES tests is that it requires
an accessible tissue sample which can be hard or even
impossible to obtain in some cases. The TMB-
predicting model that we established in the current
study just makes up for the shortcomings of the
above-mentioned traditional TMB detection methods.
This study has several limitations. Firstly, this is a

retrospective study with a relatively small sample size,
therefore shortcomings connected to its retrospective
nature are inevitable. Secondly, since there’s currently
no consensus about the optimal cut-off value of TMB in
BLCA, we chose to use the median TMB to define the
high and low TMB status, which could possibly be var-
ied across different centers. Thirdly, the biological ex-
planation behind radiomics’ ability to predict TMB in
patients with BLCA is not yet known. Future study is
still needed to clarify this issue. Finally, although a boot-
strapping method was used for the model testing,

external validation of the model using data from other
centers is still needed.

Conclusion
In this study, we firstly explored the association between
radiomic features and TMB status in patients with
BLCA. The results revealed an intrinsic connection be-
tween radiomic features extracted from pelvic CECT
and TMB status. Besides, we established a radiomic
features-based model for TMB-prediction. Our work
proved the feasibility of using radiomics to predict TMB.
Yet, future study with a larger cohort is needed to verify
our findings.
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