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A postreplicative C5-cytosine hypermodification
triggered by bacteriophagemethyltransferase
and hydroxylase
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Viruses of bacteria, also known as bacteriophages,
harbor the greatest diversity of DNA modifications
identified to date. To fight against restriction endo-
nucleases of their hosts, bacteriophages modify their
genomic DNA through introduction of various moieties
including amino acids, polyamines, and sugars (1, 2).
A series of transformations are involved in DNA base
modification. Followed by formation of hydroxymethyl
pyrimidine nucleotides, which are utilized by DNA poly-
merase, replication and postreplicative modifications
furnish installation of these moieties onto the DNA poly-
mer (3–7). Burke et al. (8) show that bacteriophages re-
sort to C5-cytosine methyltransferase (C5-MT) and
5-methylcytosine dioxygenase ten-eleven translocation
enzyme (TET) as an alternative mechanism to postrepli-
catively form hydroxymethylcytosine on DNA. The bac-
teriophage TET enables site-specific hydroxylation of
5-methylcytosine (5mC), installed by C5-MT, to produce
5-hydroxymethylcytosine (5hmC). Through bioinfor-
matic screening, the authors identify and characterize
tailoring enzymes, such as glycosyltransferases, that
collaborate with phage C5-MT and TET to further
elaborate DNA at 5hmC site.

TET/base J-binding proteins (TET/JBPs) are pre-
sent in all domains of life. They belong to iron(II) and
2-oxoglutarate (Fe/2OG)-dependent dioxygenases
(9). Fe/2OG enzymes are known to catalyze diverse,
but well-controlled oxidative modifications, such
as hydroxylation, halogenation, epoxidation, among
many others, at the expense of 2OG and molecular
oxygen (10–13). In eukaryotes, TETs have been dem-
onstrated to catalyze consecutive reactions to covert
5mC to 5-carboxylcytosine (5caC) though 5hmC and
5-formylcytosine (5fC), en route to demethylation of
5mC (Fig. 1) (14–16). In addition to 5mC, its oxidized
forms (5hmC, 5fC, and 5caC) have also been demonstrated
to be stable epigenetic marks that have regulatory
functions in chromatin remodeling and gene expres-
sion (17, 18).

Notably, the work carried out by Burke et al. (8)
demonstrates that bacteriophage TETs along with C5-
MT and tailoring enzymes serve a role in phage DNA
hypermodification. Using an Escherichia coli expression
system and liquid chromatography-mass spectrometry/
mass spectrometry, Burke et al. provide evidence that
phage TETs perform a single oxidation event to convert
5mC to 5hmC, but no further oxidation as observed in
eukaryotic TETs (Fig. 1). Additionally, the authors divulge
a GpC-centered specificity for these enzymes using
next-generation sequencing approaches. The findings
are supported in vitro by testing the hydroxylation ac-
tivity of a purified TET. The choice of a palindromic
dinucleotide sequence could be significant in maintain-
ing information during DNA replication, similar to what
is shown for CpG (hydroxy)methylation in eukaryotes.
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Fig. 1. TETs (ten-eleven translocation enzymes) in bacteriophage and eukaryote
have distinctive substrate specificity and reactivity. In eukaryote, methylated
cytosine (5mC) is converted to 5-carboxylcytosine (5caC) though
5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC), while 5hmC is the
only product (5mC → 5hmC) catalyzed by phage TETs.
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On the other hand, the distinct difference in oxidation cycling
between the phage (5mC → 5hmC) and eukaryotic TETs (5mC →
5hmC → 5fC → 5caC) hints a need of C5-MT/TET in phage to
increase the chemical diversity of their genomic DNA, which can
be used to employ new functionalities in the arms race against
bacteria. The active-site features of phage TETs that enforce the
single-oxidation event and, at the same time, avoid further oxida-
tion are yet to be determined. The insight will undoubtedly con-
tribute to a deeper understanding of these important enzymes.

Computational analyses of the gene neighborhoods of phage
C5-MT/TET suggest that 5hmC, generated via C5-MT and TET, can be
utilized by other adjacent enzymes. The authors examined two bio-
synthetic gene clusters composed of two glycosyltransferases clus-
tered with C5-MT and TET. Through both in vivo and in vitro studies,
the authors discovered formation of glycosylated cytosines on DNA

(Fig. 2). These observations confirm the interdependency of these
clustered genes in context of glycosylated cytosine formation and
suggest that phage cytosine hypermodification is furnished through
a collaborative enzymatic transformation.

Chemical modification of canonical nucleobases is expected
to expand the DNA functions, similar to what has been shown
for posttranscriptional modifications in RNA and posttranslational
modifications in proteins. The rational exploitation of “genome
neighborhood” information in phage using computation-guided
strategies for functional discovery, followed by biochemical
analysis of the predicted biosynthetic pathways by Burke
et al. reveals a strategy to expand the structural diversity of
5mC and uncovers a biological function of Fe(II)/2OG-depen-
dent 5mC TET other than epigenetic regulation demonstrated
in eukaryotic systems.
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Fig. 2. C5-glycosylated cytosines are assembled through a collaborative work of C5-MT, TET, and glycosyltransferases (GTs) in bacteriophage.
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