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Summary

The nested case–control (NCC) design has been widely adopted as a cost-effective sampling 

design for biomarker research. Under the NCC design, markers are only measured for the NCC 

subcohort consisting of all cases and a fraction of the controls selected randomly from the matched 

risk sets of the cases. Robust methods for evaluating prediction performance of risk models have 

been derived under the inverse probability weighting (IPW) framework. The probabilities of 

samples being included in the NCC cohort can be calculated based on the study design1 or 

estimated non-parametrically2. Neither strategy works well due to model mis-specification and the 

curse of dimensionality in practical settings where the sampling does not entirely follow the study 

design or depends on many factors. In this paper, we propose an alternative strategy to estimate the 

sampling probabilities based on a varying coefficient model, which attains a balance between 

robustness and the curse of dimensionality. The complex correlation structure induced by repeated 

finite risk set sampling makes the standard resampling procedure for variance estimation fail. We 

propose a perturbation resampling procedure that provides valid interval estimation for the 

proposed estimators. Simulation studies show that the proposed method performs well in finite 

samples. We apply the proposed method to the Nurses’ Health Study II to develop and evaluate 

prediction models using clinical biomarkers for cardiovascular risk.
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1 ∣ INTRODUCTION

Conducting rigorous biomarker validation studies is an important step in the translation of 

novel biomarkers into routine clinical practice for medical decision making. Such studies 

should follow design principles in sample selection to avoid bias3. Large prospective studies, 
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such as the Women’s Health Initiative Study and the Nurses’ Health Study, with exposures 

captured and biologic samples collected and stored prior to disease onset, can serve as a 

platform for biomarker research4,5. However, measuring biomarkers for large prospective 

cohorts is highly resource consuming. To make efficient use of stored samples from a cohort, 

two-phase sampling designs, including nested case–control (NCC) and case–cohort (CCH) 

studies, are often adopted as resource-efficient sampling strategies, especially when the 

outcome of interest is rare6,7,8.

Under the NCC design, new markers are measured for all cases and a subset of controls 

randomly sampled without replacement from the risk sets of the cases. Sometimes controls 

are also matched to cases on variables such as gender and age. Many well-known biomarker 

studies nested in large cohorts have employed the NCC design9,10,11, e.g.. For example, in the 

Nurses’ Health Study II (NHSII), novel biomarkers, apoA1 concentration in whole plasma 

(WPA1) and concentration of apoE in whole plasma (apoE), were investigated for predicting 

the risk of Myocardial Infraction (MI)11. Due to limited resources and low incidence of MI, 

the biomarkers were measured on a nested case–control set, which included all cases and 

controls sampled from the 1:1 matched risk set of the cases with matching variables 

including smoking status, fasting status, age, and timing of blood collection.

To analyze NCC data, conditional logistic regression (CLR) model has traditionally been 

used when the focus is on the estimation of hazard ratio (HR) parameters, and sometimes the 

estimation of absolute risk parameters12,13. The CLR provides HR estimators under the Cox 

model from the full cohort, however cannot be extended to other models. Nor can the 

methods be used for estimating other parameters, such as the prediction accuracy 

parameters, which involve the distribution of the markers in the full cohort. For model 

parameter estimation, fully efficient maximum likelihood estimators (MLE) have also been 

proposed14,15. The MLE relies on the correct specification of the failure time model and 

requires that censoring is independent of the novel markers as well as additional modeling 

assumptions when there are multiple novel biomarkers and routine clinical variables 

measured on the full cohort.

As a flexible alternative, the inverse probability weighting (IPW) approach has been 

developed16. Recently, IPW estimators have also been developed for fitting models beyond 

the Cox model as well as for prediction performance measures including the receiver 

operating characteristic (ROC) curve, positive predictive value (PPV) and negative 

predictive value (NPV)17,18,19. Most existing IPW estimators for NCC studies calculates the 

true IPW (TIPW) sampling weights according to the study design and are consistent 

provided that the sampling weights are correctly obtained. However, the TIPW estimators 

may be invalid if the sampling is not implemented exactly according to the design. Such a 

scenario arises, for example, when the matching criteria are implemented only coarsely 

during the implementation of the sampling scheme due to practical concerns. Such an 

imperfect NCC design poses additional analytical challenges for estimating and evaluating 

risk prediction models. To overcome the bias, one may estimate the sampling weights non-

parametrically via kernel smoothing as in Zheng et al.2. Obtaining such a non-parametric 

augmented IPW (NP) estimator, however, is not feasible when the number of matching 

variables is not very small due to the curse of dimensionality.
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In this paper, we propose a new semi-non-parametric AIPW estimator, where the selection 

probability is estimated based on a flexible varying coefficient model. The AIPW estimator 

can incorporate a larger number of matching variables while remaining robust to the 

deviation from the intended sampling scheme. We derive the the asymptotic properties for 

the proposed estimators and come up with a resampling method to assess the variability of 

our proposed AIPW estimators.

The remainder of the paper is organized as follows. In Section 2, we provide model 

specification and describe the proposed point estimation procedures. Our proposed interval 

estimation procedure is given in Section 3. In Section 4, we report results of simulation 

studies to assess the finite sample performance of the proposed method. In Section 5, the 

data from NHS II is analyzed as illustration. Concluding remarks are given in Section 6. 

Theoretical studies of the proposed estimators are provided in the Appendix.

2 ∣ ESTIMATING SAMPLING WEIGHTS VIA AIPW

Let T denote the survival outcome of interest and Y = (Yold
T , Ynew

T )T denote the vector of 

predictors for T, where Yold denotes the vector of routine markers and Ynew denotes the 

vector of novel biomarkers. Due to censoring, T is only observed up to a bivariate vector X = 

T Λ C and δ = I(T ≤ C), where C is the censoring time. Under the NCC design, Ynew is only 

measured if V = 1, where V = δ + (1 − δ)V0 and V0 is a binary indicator for whether a 

subject is sampled into the NCC subcohort as a control. We assume that the sampling of the 

controls is performed by matching to the cases according to a vector of matching variables 

M. Suppose that the underling data for the full cohort consists of N independent and 

identically distributed random vectors, D = {Di = (Xi, δi, Yi
T, Mi

T)T, i = 1, …, N}, while the 

observed data consist of O = {Oi = (Xi, δi, Yold, i
T , V iYnew, i

T , Mi
T)T, i = 1, …, N}. Let Ω = {i : 1 ≤ 

i ≤ N} and Ωncc = {i : 1 ≤ i ≤ N, Vi = 1} respectively denote the index sets for the full cohort 

and NCC subcohort.

Under the matched NCC design, for a case with event time Xi and matching variables Mi, m 
controls are sampled from the matched risk set

ℛWi = {k :Xk ≥ Xi, ∣ Mk − Mi ∣ ≤ a0},

where a0 is a predetermined range vector and Wi = (δi, Xi, Mi
T, Yold, i)T. Let 

π̄i = P(V i = 1 ∣ O) and π̄0i = P(V i = 1 ∣ O, δi = 0) denote the true sampling probabilities 

under possibly imperfect NCC sampling. If the NCC sampling were implemented exactly 

accordingly to design, then π̄i = δi + (1 − δi)π̄0i can be calculated as πi = δi + (1 − δi)π0i, 

where π0i = π0(Wi),

π0(Wi) = 1 − ∏
j: j ∈ ℛWi

1 −
mδj

∣ ℛWj ∣ − 1
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and ∣ ℛWi ∣ is the size of ℛWi
16. Under the perfect NCC design, TIPW estimators can be 

constructed by weighting observations with the true weights ωi = V i ∕ πi. To improve 

efficiency and robustness over the TIPW estimators, Zheng et al.2 proposed NP estimators 

using non-parametrically estimated weights ωi
NP = V i ∕ πNP(Wi), where 

πNP(Wi) = δi + (1 − δi)π0
NP(Wi),

π0
NP(w) =

∑i = 1
N (1 − δi)V iKb(Wi − w)

∑i = 1
N (1 − δi)Kb(Wi − w)

is a non-parametric estimate of π0(w) = P(Vi = 1 ∣ Wi = w, δi = 0), 

Kb(w) = b−q∏j = 1
q K(wj ∕ b), K(·) is a symmetric density function, and b > 0 denotes the 

bandwidth.

While the NP method can be used to incorporate imperfect NCC designs, it is infeasible 

when the dimension of W is not small. To overcome the limitations of TIPW and NP 

methods, we propose a semi-non-parametric AIPW method by approximating π̄0i via a 

flexible varying coefficient model

π0i = g{β(π0i, Xi)TZi} with g(x) = ex

1 + ex (2.1)

where Zi = (1, Φ1(Yold, i)⊤, Φ2(Mi)⊤)⊤, Φ1(·) and Φ2(·) are basis functions that allow 

potential non-linear effects, and β(π, x) is the unknown coefficient function. In practice, we 

find that the commonly used b-spline or natural splines basis with degree of freedom 3 

works well. Equally spaced knots that covers most of the domain of the data are also 

desirable. We find that our results are not overly sensitive to the choice of the basis functions 

provided that they are reasonably flexible to capture non-linear effects. Under perfect NCC 

sampling, β(π0i, Xi) = (g−1(π0i), 0T)T. On the other hand, when the sampling is imperfect, the 

flexible model provides accurate approximation to the true sampling probabilities while 

overcoming the curse of dimensionality associated with NP procedures.

To estimate β(π, x), we maximize a local logistic log-likelihood using observed data on 

{(V i, Zi, Xi, π0i) : δi = 0}. Specifically, for any given (π, x), we estimate β(π, x) as β(π, x), 
the solution to the estimating equation

Uπ, x(β) = N−1 ∑
i = 1

n
Kb(π0i − π, Xi − x)(1 − δi)Zi V i − g(βTZi)

where Kb(·) = (b1b2)−1K(π/b1)K(x/b2), K(·) is a symmetric density function function, b = 

(b1, b2)⊤ is the bandwidth parameters vector which tend to 0 as N → ∞. With β(π, x), we 

estimate the sampling probability for the ith subject as
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πi = δi + (1 − δi)π0i, where π0i = g{β(π0i, Xi)TZi} . (2.2)

Then we construct our AIPW estimator using the augmented weights ωi = V i ∕ πi. Under the 

correct specification of (2.1), we expect that max1 ≤ i ≤ N ∣ πi − π̄i ∣ 0 as N → ∞.

3 ∣ APPLICATION OF AIPW TO ROBUST RISK PREDICTION

In this section, we illustrate the application of the AIPW approach to developing and 

evaluating risk prediction models. Since one of the major goals of biomarker studies is to 

evaluate the predictive capacity of novel biomarkers, we consider quantifying the 

incremental value of Ynew in predicting T above and beyond routine markers Yold.

3.1 ∣ Calibrated Risk Estimate

To predict risks based on Y = (Yold
T , Ynew

T )T and Yold, we fit two proportional hazards (PH) 

models,

P(T ≥ t ∣ Y) = Sall(t)
exp(γall

T Y), (2.3)

P(T ≥ t ∣ Yold) = Sold(t)exp(γold
T Yold), (2.4)

where Sall(·) and Sold(·) are unknown baseline survival functions and γall and γold are the 

corresponding log hazard ratio parameters. To estimate γall and γold, we note that Ynew is 

only available for those in the NCC subcohort while Yold is observed for all subjects. Thus, 

we propose to estimate γall by maximizing weighted log partial likelihood with AIPW 

weights ωi:

γall = argmaxγ ∑
i = 1

N
ωiδi γTYi − log ∑

j = 1

N
ωjI(Xj ≥ Xi)exp(γTYj) .

On the other hand, γold can be estimated as the standard maximum partial likelihood 

estimator, denoted by γold. It follows from Lin and Wei20 and the consistency of the 

sampling probabilities that γall and γold respectively converge to deterministic vectors γ̄all
and γ̄old as N → ∞, regardless of the adequacy of the survival models (2.3) and (2.4). When 

models (2.3) and (2.4) hold, then γ̄all = γall and γ̄old = γold.

To make a prediction for t-year survival, one may obtain a model-based estimate for P(T ≤ t ∣ 
Y) and P(T ≤ t ∣ Yold) under (2.3) and (2.4). However, such a risk estimate may not be 

accurate under model mis-specifications. Following the calibrated risk prediction strategies 

proposed in Cai et al.21, we predict t-year survival risk given Y and Yold based on
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Sall(t ∣ Rall) ≡ P(T > t ∣ Rall) and Sold(t ∣ Rold) ≡ P(T > t ∣ Rold),

respectively, where Rall = YTγ̄all and Rold = Yold
T γ̄old are the limiting risk scores. The 

calibrated survival risk functions Sall(t ∣ r) and Sold(t ∣ r) can be non-parametrically estimated 

as Sall(t ∣ r) = exp{ − Λall(t ∣ r)} and Sold(t ∣ r) = exp{ − Λold(t ∣ r)}, where

Λall(t ∣ r) = ∫
0

t ∑iωiKℎ(Rall, i − r)dNi(u)

∑iωiKℎ(Rall, i − r)I(Xi ≥ u)
, Λold(t ∣ r) = ∫

0

t ∑iKℎ(Rold, i − r)dNi(u)

∑iKℎ(Rold, i − r)I(Xi ≥ u)
,

Rall, i = γall
T Yi, Rold, i = γold

T Yold, i and Ni(t) = I(Xi ≤ t)δi. The above calibrated risk prediction 

procedure essentially fits risk models (2.3) and (2.4) to summarize multi-variate risk markers 

into univariate risk scores, Rall and Rold, and then non-parametrically estimates the t-year 

risk given the risk score.

3.2 ∣ Evaluating Prediction Performance

The accuracy of the risk prediction based on a given risk score R can be summarized by 

commonly used time dependent accuracy measures including the true positive rate (TPR), 

false positive rate (FPR), the receiver operating characteristic (ROC) curve, the positive 

predictive value (PPV), and the negative predictive value (NPV). These prediction 

performance measures typically consider the accuracy of a binary classification rule R ≥ r in 

predicting the t-year survival status Dt = I(T ≥ t). Specifically, the TPR and FPR of R ≥ r in 

prediction Dt are respectively defined as

TPR(r ∣ t) = P(R ≥ r ∣ T < t), and FPR(r ∣ t) = P(R ≥ r ∣ T ≥ t) .

The ROC curve, ROC(u∣t) = TPR{FPR−1(u∣t)∣t}, summarizes the trade-off between the FPR 

and TPR as the cut-off value varies. The PPV and NPV of R ≥ r are defined as

PPV(t ∣ r) = P(T < t ∣ R ≥ r), and NPV(t ∣ r) = P(T ≥ t ∣ R < r) .

To estimate the prediction accuracy for Rall and Rold, we note that all the aforementioned 

parameters are functionals of Sall(t ∣ r), Sold(t ∣ r), ℱall(r) = P(Rall ≤ r) and 

ℱold(r) = P(Rold ≤ r). For example, the TPR and FPR of Rall ≥ r can be respectively written 

as

TPRall(r ∣ t) =
1 − ℱall(r) − ∫r

∞Sall(t ∣ u)dℱall(u)
1 − ∫ Sall(t ∣ u)dℱall(u) , and FPRall(r ∣ t) =

∫r
∞Sall(t ∣ u)dℱall(u)
∫ Sall(t ∣ u)dℱall(u) .
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The trade-off between TPRall(r∣t) and FPRall(r∣t) can be summarized based on the receiver 

operating characteristic (ROC) curve ROCall(u ∣ t) = TPRall{FPRall
−1(u ∣ t) ∣ t)}, where u is any 

specified FPR level of interest. The marginal distribution functions ℱall(r) and ℱold(r) can be 

respectively estimated as

ℱall(r) =
∑i = 1

N ωiI(Rall, i ≥ r)

∑i = 1
N ωi

, and ℱold(r) = N−1 ∑
i = 1

N
I(Rold, i ≥ r) .

Subsequently, we may construct plug-in estimators for TPRall(r∣t) and FPRall(r∣t) as

TPRall(r ∣ t) =
1 − ℱall(r) − ∫r

∞Sall(t ∣ u)dℱall(u)

1 − ∫ Sall(t ∣ u)dℱall(u)
and FPRall(r ∣ t) =

∫r
∞Sall(t ∣ u)dℱall(u)

∫ Sall(t ∣ u)dℱall(u)
,

respectively. Similar plug-in estimators can be constructed for other accuracy parameters. 

We may quantify the incremental value (IncV) of Ynew based on the difference between the 

accuracy of Rall and Rold. For example, the IncV of Ynew with respect to the ROC curve at 

FPR level of u0 can be estimated as ROCall(u0 ∣ t) − ROCold(u0 ∣ t), where 

ROCall(u0 ∣ t) = TPRall{FPRall
−1(u0 ∣ t) ∣ t} and ROCold is the estimated ROC curve for Rold.

3.3 ∣ Resampling Based Interval Estimation

To estimate the asymptotic variance of the proposed AIPW estimators, we propose a 

perturbation resampling procedure. Specifically, let I = (I1, …, IN)⊤ be a vector of 

independent and identically distributed non-negative random variables with mean 1 and 

variance 1. We first obtain perturbed counterpart of β(π, x) as β∗(π, x), the solution to the 

estimating equation

Uπ, x
∗ (β) = N−1 ∑

i = 1

n
Kb(π0i − π, Xi − x)(1 − δi)Zi V i − g(βTZi) Ii .

Then we perturb the AIPW weights as

ωi
∗ = δi + (1 − δi)

V 0i
π0i

∗ Ii with π0i
∗ = g{(β∗(π0i, Xi)TZi} .

Subsequently, we perturb all AIPW estimators by replacing ωi with ωi
∗. Specifically, we 

perturb γall as

γall
∗ = argmaxγ ∑

i = 1

N
ωi

∗δi γTYi − log ∑
j = 1

N
ωj

∗I(Xj ≥ Xi)exp(γTYj) ,

Wang et al. Page 7

Stat Med. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and perturb Sall(t ∣ r) as Sall
∗ (t ∣ r) = exp{ − Λall

∗ (t ∣ r)}, where

Λall
∗ (t ∣ r) = ∫

0

t ∑iωi
∗Kℎ(Rall, i

∗ − r)dNi(u)

∑iωi
∗Kℎ(Rall, i

∗ − r)I(Xi ≥ u)
, and Rall, i

∗ = Yall, i
T γall

∗ .

The accuracy parameters can be perturbed similarly. For example, we may obtain

TPRall
∗ (r ∣ t) =

1 − ℱall
∗ (r) − ∫r

∞Sall
∗ (t ∣ u)dℱall

∗ (u)

1 − ∫ Sall
∗ (t ∣ u)dℱall

∗ (u)
,

where ℱall
∗ (r) = ∑i = 1

N ωi
∗I(Rall, i

∗ ≤ r) ∕ (∑i = 1
N ωi

∗).

For IncV parameters, the estimation of model parameters related to the reduced model only 

involve full cohort data and thus the perturbation will only involve weighting observations 

by {Ii}. Specifically, γold is perturbed as

γold
∗ = argmaxγ ∑

i = 1

N
Iiδi γTYold, i − log ∑

j = 1

N
IjI(Xj ≥ Xi)exp(γTYold, j) ,

and Sold
∗ (t ∣ r) = exp{ − Λold

∗ (t ∣ r)}, where

Λold
∗ (t ∣ r) = ∫

0

t ∑iIiKℎ(Rold, i
∗ − r)dNi(u)

∑iIiKℎ(Rold, i
∗ − r)I(Xi ≥ u)

, and Rold, i
∗ = Yold, i

T γold
∗ .

Similar strategies can be used for accuracy parameters such as TPRold
∗ (c ∣ t) and FPRold

∗ (c ∣ t).

To obtain variance estimators and construct confidence intervals, we may obtain a large 

number, say B, of realizations of I. For each realization of I, we obtain the above perturbed 

estimates. The empirical distribution of the B sets of perturbed estimates can be used for 

inference. For example, the empirical variance of ROCall
∗ (u0 ∣ t) − ROCold

∗ (u0 ∣ t) can be used to 

approximate the variance of ROCall(u0 ∣ t) − ROCold(u0 ∣ t).

4 ∣ NUMERICAL STUDIES

We performed extensive simulations to evaluate the finite sample performance of the 

proposed estimators and to compare with other estimators under NCC design when the 

design is carried out perfectly or imperfectly. We generate Y = (Yold, Ynew)⊤ from a 

bivariate normal distribution with zero mean, unit variance and correlation 0.5. Given Y, we 

generate T from a PH model
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P(T ≥ t ∣ Y) = exp −exp log(0.01t) + log(2)Y new + log(3)Y old .

The censoring time was generated from two settings: (I) C ~ CIND = min(Ca, Cb), where Ca 

~ Uniform(0.5, 2) and Cb ~ Gamma(shape = 2, rate = 2); (II) C ∼ CDEP = min{Ca, Cb′(Y)}, 

where Cb′(Y) = exp{ − (Y new + Y old) ∕ 5} + 0.5. This leads to covariate independent censoring 

in (I) and covariate dependent censoring in (II). The censoring rate and event rate 

(proportion of cases) are around 15% and 5%, respectively. We let N = 2000, and selected 

the NCC cohort by including all the cases and m = 1 control per case. Under each 

configuration, results were summarized based on 500 simulated datasets. We obtain 

estimators for γ̄all = (γ̄1, γ̄2) in model (2.3) and TPRu0, PPVu0, NPVu0 at FPR= u0, with u0 

taken to be 0.05, 0.1, 0.2. We also compared the proposed approach with existing methods 

including the TIPW estimator of Cai and Zheng19, NP estimators of Zheng et al.2 and 

conditional logistic regression method based estimator, denoted as CLR.

We considered three settings. In the first setting, setting (1), the matching covariate vector M 

= (M1, M2) with matching window a0 = (0, 0), where M1 = ∑l = 1
2 I(Y old ≤ yql), yq was the 

100qth percentiles of Yold and q1 = 0.33, q2 = 0.66, M2 ~ Bernouli(0.5); In setting (2), 

matching variable M = (M1, …, M5)⊤ with matching window a0 = (0, 2, 2, 5, 0), where M1 

is the same as in setting (1), M2 ∼ 0.3eN , M3 ∼ 5ϕ(Y old + N) , M4 ~ ⌊Uniform(0, 10)⌉, 

and M5 ~ Bernouli(0.5), ϕ is a normal density function, and N ∼ N(0, 1); In setting (3), 

matching variable M = (M1, M2, M3, M4)⊤ with a varying window in that we intend to 

match with window a0 = (0, 0, 0, 0) but when the number of subjects is not sufficient in the 

risk set for some cases, we relax the criterion to matching window a = (0, 0, 2, 2) to select 

controls in the new risk set. Here M1 is the same as in setting (1), M2 = I(Y old + N > 0) with 

N ∼ N(0, 1), M3 ∼ 5ϕ(Y old + N)  and M4 ∼ 0.2eN .

Results summarizing the performance of the proposed point and interval estimators across 

settings (1) - (3) are presented in Table 1-3. The point estimators have negligible biases. The 

average of the standard errors (ASEs) are close to the corresponding empirical standard 

errors (SEs), and the empirical coverage probabilities (CP) of the 95% confidence intervals 

are close to the nominal level. These results confirm the validity of the proposed estimation 

procedures in finite sample.

In setting (1), sampling is correctly carried out and M is low dimensional, and hence all 

three methods (TIPW, AIPW, NP) are valid. As shown in Table 1, all three estimators have 

negligible biases, TIPW and NP have comparable efficiency with respect to mean squared 

error (MSE), and AIPW is a little more efficient than the TIPW and NP estimators. In setting 

(2), the sampling is carried out correctly but the matching variable is of a higher dimension, 

which leads to curse of dimensionality for the NP method while the TIPW remains valid. As 

shown in Table 2, the TIPW and AIPW both have negligible biases, while the NP exhibits 

higher biases. Setting (3) is a commonly encountered imperfect NCC sampling setting that is 

similar to the motivating example of the NHS II study. In this case, the TIPW estimator is 
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biased as expected. There is also bias observed for the NP estimators due to the curse of 

dimensionality, whereas the AIPW estimator still maintains negligible bias. In addition, the 

AIPW estimator is substantially more efficient than both the TIPW and NP estimators with 

respect to MSE, with relative efficiency as high as 6 compared to the TIPW estimator and 5 

compared to the NP estimator. In all the settings considered, the CLR estimator is either 

more biased or less efficient compared to other estimators.

To examine whether our proposed method performs well under settings with a very low 

event rate, we also generated data under a slight variation of the above PH model with a 

substantially lower baseline hazard leading to about 0.5% of event rate and independent 

censoring. We sampled the NCC cohort under setting (3) and obtained estimates as above. 

As shown in Table 4, the proposed AIPW estimates have small biases and high relative 

efficiencies.

5 ∣ REAL DATA ANALYSIS

High-density lipoprotein (HDL) is a protein-lipid complex which carries a range of proteins. 

These proteins differ in size and structure, which determines the functional properties and 

metabolism of HDL22. The plasma total apoA-1 concentration (WPA1) is well known to be 

strongly and consistently predictive of cardiovascular risk23. In addition to apoA-1, HDL 

also contains other proteins including apoA2, apoC3 and apoE. ApoC3, present on 8-15% of 

HDL particles, has been shown to be associated with the risk of obesity and diabetes24,25. To 

assess the predictiveness of these lipoprotein markers for the risk of developing myocardial 

infarction (MI), an NCC biomarker study was performed within the NHS II blood cohort 

consisting of 29,240 registered nurses enrolled around 198926. Among participants who 

were free of diagnosed cardiovascular disease or cancer at blood draw, 144 women were 

identified in the cohort with incident MI between blood draw and January 2016. Using a 

risk-set sampling, 144 controls were to be selected randomly and 1:1 matched on age, 

fasting (yes, no), smoking (never, past, current <15 cigarettes/day, current > 15 cigarettes/

day, resulting in three dummy variables), and month of blood drawn. However, due to the 

lack of samples satisfying the matching criteria and having sufficient stored plasma for 

biomarker quantification, NCC design was not followed exactly during the control sampling 

process, yielding an imperfect NCC design. If the matching criteria is followed, the 

matching window should be a0 = (0, 0, 0, 0, 2, 2). But if for some case, there is no control in 

its risk set, the matching criteria is relaxed but not known. For example, the age difference 

maybe relaxed to 5 years so that there are controls to select from for this case.

The outcome of interest is the time from blood drawn to diagnosis of MI. For an individual 

without an event, failure time was censored at the earlier date between the last contact date 

and January 2016. Routine risk factors included smoking, age, diabetes, high cholesterol, 

and medication for HBP. These factors are available from the full cohort. Measures of the 

new biomarkers, WPA1 and apoE, are only available for the NCC subcohort. To account for 

the subcohort sample, we fitted a weighted Cox PH model including WPA1 and apoE and 

other baseline clinical variables as covariates using the data from the NCC subset. Since the 

sampling depends on many levels of covariates, it was difficult to estimate the weights using 

the NP approach (Exiting packages for nonparametric estimation of the selection probability 
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all failed). Due to the additional adjustment in matching criteria, the ‘true’ weights were not 

retrievable. Therefore, we calculated the weights using the proposed AIPW techniques. As 

presented in Table 5, more frequent smoking (>15 cig/d), having diabetes or high 

cholesterol, or medication for high blood pressure, and high values of apoE are significantly 

associated with high risk of MI. In particular apoE predicts the time to MI beyond clinical 

factors, with an HR of 1.427 (95% CI: 1.140, 1.786). We also considered fitting the Cox 

model using the weights calculated strictly from the original protocol, the IPW method. For 

the variable more frequent smoking (>15 cig/d) versus never smoking, the estimated HR by 

the AIPW method is significantly above 1 while not significantly above 1 by the IPW 

method, which does not reflect the findings based on the existing literature. This is as 

expected, as the weights in this situation do not accurately account for the sampling 

procedures actually implemented, and this might potentially lead to biased estimates in the 

main regression model. The results highlight the importance of robust procedures in the 

calculation of the sampling weights, though the difference between the IPW and AIPW 

estimators is less pronounced for new markers. The estimated effects of CLR are a little 

different from the IPW and AIPW estimators.

We then calculated the in-sample accuracy measures of the model scores for predicting risk 

of MI by 158 months (t = 158) using the proposed method. The estimates of TPR, PPV, 

NPV at FPR=0.05, 0.1, 0.2 and AUC for the Cox model with baseline covariates as well as 

WPA1 and apoE are listed in Table 6 along with the IncV of the corresponding accuracy 

measures compared to the performance of a Cox model without the biomarkers. Results 

show that adding WPA1 and apoE to the Cox model with baseline covariates leads to no 

significant improvement in the accuracy measures, though apoE has a significant association 

with time to MI.

6 ∣ DISCUSSION

Cost-effective two-phase sampling designs have been widely adopted in biomarker research 

in recent years. The nonrandom sampling of the NCC designs introduces complex data 

structures, which should be dealt with carefully to avoid bias. One well-recognized barrier in 

the analysis of two-phase designs is that the control selection procedures are often 

complicated in practical implementation: many matching factors are considered, and the 

window of selection for each variable might be adjusted in an ad-hoc fashion over the course 

of study, making it infeasible to retrieve the ‘true’ sampling weights. Robust nonparametric 

procedures for estimating the weights can consistently recover the weights according to the 

actual sampling, however they are limited in handling more than a few matching factors. In 

the case that the number of matching variables and routine markers Yold exceed 5, the NP 

method of Zheng et al.2 often becomes infeasible both theoretically and practically. On the 

other hand, our proposed AIPW method leverages the true sampling weights as a reasonable 

starting point and uses a sufficiently flexible model to estimate the effect on sampling of 

both variables involved in control selection and other correlated variables. Compared to the 

NP approach, the proposed AIPW procedure is able to incorporate a larger number of 

variables to augment the weights, while maintaining reasonable robustness and efficiency. It 

is important to note that matching on a large number of variables is generally not desirable 
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since it inherently increases the chance of the matched risk sets being empty. We therefore 

do not recommend that in practice.

There are a couple of future directions/limitations in this line of research. The approach we 

proposed can easily be extended to other types of two-phase sampling such as a covariate-

stratified case–cohort studies. Flexible methods are also needed to account for other 

practical complications in two-phase sampling. Our methods here assume a NCC study 

where all cases will be selected due to a low incidence rate. However in practice, due to 

cases and sample availability, not all cases can be sampled27. This may complicate the 

inference procedure and warrants future research.

The R code for carrying out the proposed AIPW procedure is available upon request.
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APPENDIX

APPENDIX A.

Note that in the appendixes, the derivations are with respect to the whole data and the 

proposed AIPW estimator, so we omit the subscript ‘all’ for notation convenience.

In this section, we show the asymptotic normality of the proposed AIPW estimator.

Assume C has a finite support [0, τ], P(T > τ) > 0 and the markers Y are continuous and 

bounded. The limit of γ, which is γ̄, is in the interior of a compact parameter space Ωγ. 

Suppose the regularity conditions in Andersen and Gill28 hold. Similarly to Du and 

Akritas29, we assume the kernel function K is a symmetric probability density function with 

finite support and bounded second derivative. In addition, we assume the joint density of 

R = YTγ̄, T, and C has continuous derivatives.

Denote βi = β(π0i, Xi), we first get the asymptotic expression of N1 ∕ 2(β i − βi), which will be 

used in later derivations. Recalling that

Uπ0i, Xi(βi) = 1
N ∑

j = 1

N
(1 − δj)[V j − exp(βiTZj) ∕ {1 + exp(βiTZj)}]ZjKb((π0i, Xi) − (π0j, Xj)) .

The derivative of Uπ0i, Xi(βi) with respect to βi is

∂Uπ0i, Xi(βi)
∂βi

= − 1
N ∑

j = 1

N exp(βiTZj)

{1 + exp(βiTZj)}2ZjZjT(1 − δj)Kb((π0i, Xi) − (π0j, Xj)),
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which converges to −Σi ≔ − π0i(1 − π0i)E[ZjZj
T ∣ π0j = π0i, Xj = Xi]f(π0i, Xi), where f (·, ·) 

is the density function of (π0i, Xi). It follows that

N1 ∕ 2(β i − βi) = Σi
−1N−1 ∕ 2 ∑

j = 1

N
[V j − exp(βi

TZj)
1 + exp(βi

TZj)
]Zj(1 − δj)Kb((π0i, Xi)

− (π0j, Xj)) + op(1) .
(A.1)

For the proposed AIPW estimators with a general form

U = N−1 ∕ 2 ∑
i = 1

N
ωiUi, (A.2)

where E(Ui) = 0, ωi = V i ∕ πi and πi = δi + (1 − δi)π0i, we have

U = N−1 ∕ 2 ∑
i = 1

N
ωiUi = N−1 ∕ 2 ∑

i = 1

N
Ui + N−1 ∕ 2 ∑

i = 1

N
(ωi − 1)Ui + N−1 ∕ 2 ∑

i = 1

N
(ωi − ωi)Ui

≡ I1 + I2 + I3,

where I3 = N−1 ∕ 2 ∑
i = 1

N
V i(

1
π0i

− 1
π0i

)Ui = − N−1 ∕ 2 ∑
i = 1

N
V i

π0i − π0i
π0iπ0i

Ui

= − N−1 ∕ 2 ∑
i = 1

N
ωi

π0i − π0i
π0i

Ui = − N−1 ∕ 2 ∑
i = 1

N
ωiUi

π0i − π0i
π0i

+ op(1)

= − N−1 ∕ 2 ∑
i = 1

N
ωiUi

g.(βiTZi)

g(βiTZi)
ZiT(βi − βi) + op(1)

= − N−1 ∑
i = 1

N
ωiUi(1 − π0i)ZiTΣi−1N−1 ∕ 2 ∑

j = 1

N
(V j −

exp(βiTZj)

1 + exp(βiTZj)
)Zj(1 − δj)Kb((π0i, Xi) − (π0j,

Xj)) + op(1)

= − N−1 ∕ 2 ∑
j = 1

N
E[UiZiT ∣ π0i = π0j, Xi = Xj]E[ZiZiT ∣ π0i = π0j, Xi = Xj]−1 × (ωj − 1)Zj(1 − δj

) + op(1)

= − N−1 ∕ 2 ∑
j = 1

N
(ωj − 1)(1 − δj)Πj + op(1),

where Πj = E[UiZi
T ∣ π0i = π0j, Xi = Xj]E[ZiZi

T ∣ π0i = π0j, Xi = Xj]−1Zj, which can be 

regarded as a linear (conditional) projection of Uj onto the space of Zj under the inner 

product ⟨Xi, Yi⟩ = E(XiYi). Also note that 

E[UiZi
T ∣ π0i = π0j, Xi = Xj]E[ZiZi

T ∣ π0i = π0j, Xi = Xj]−1 is the minimizer of

1
N ∑

i = 1

N
(Ui − θZi)2Kb((π0i, Xi) − (π0j, Xj))
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with respect to θ. So E[Zi(Ui − Πi) ∣ π0i, Xi] = 0. Since the first component of Zj is one, we 

have that E[(Ui − Πi) ∣ π0i, Xi] = 0. So U can be rewritten as

U = N−1 ∕ 2 ∑
i = 1

N
Ui + N−1 ∕ 2 ∑

i = 1

N
(1 − δi)(ωi − 1)(Ui − Πi) + op(1) . (A.3)

It follows from Cai and Zheng1 that U is asymptotically normal, with asymptotic variance

ΣU = E(Ui2) + EN−1 ∑
i = 1

N
(1 − δi)(ωi − 1)2(Ui − Πi)2 + op(1)

= E(Ui2) + E[(
1 − π0i

π0i
)(1 − δi)(Ui − Πi)2] + op(1) .

Because the interaction term is

E[N−1 ∑
i ≠ j

N
(ωi − 1)(ωj − 1)(Ui − Πi)(Uj − Πj)]

= (N − 1)E Cov ωi{Ui − Πi}, ωj{Uj − Πj} ∣ D

= − m(N − 1) ∕ N∫ η(t, Xi, δi)η(t, Xj, δj)
dΛNCC(t)
P(X ≥ t) = 0,

where ΛNCC(t) = ∫0
t dANCC(u) ∕ P(X ≥ u),ANCC(t) = E{Ni(t)} and

η(t, Xi, δi)E[{Ui − Πi}I(Xi ≥ t)(1 − π0i) ∕ π0i]
= E E[{Ui − Πi}I(Xi ≥ t)(1 − π0i) ∕ π0i ∣ π0i, Xi] = 0 (A.4)

by the arguments before (A.3) and similar arguments to those of Samuelsen16.

From Cai and Zheng1, we know that the asymptotic variance of the TIPW estimator 

U = N−1 ∕ 2∑i = 1
N ωiUi is

ΣTIPW = E(Ui2) + E(Ui2
1 − π0i

π0i
) − m∫ ηu(t, Xi, δi)2

dΛNCC(t)
P(X ≥ t) + op(1)

= E(Ui2 ∕ π0i) − m∫ ηu(t, Xi, δi)2
dΛNCC(t)
P(X ≥ t) + op(1),

where ηu(t, Xi, δi) = E[UiI(Xi ≥ t)(1 − π0i) ∕ π0i].

Comparing these two asymptotic variances, we have
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ΣTIPW − ΣU = E[(1 − δi)(
1 − π0i

π0i
){Ui2 − (Ui − Πi)2}] − m∫ ηu(t, Xi, δi)2

dΛNCC(t)
P(X ≥ t)

= E{(1 − δi)(
1 − π0i

π0i
)Πi2} − m∫ ηu(t, Xi, δi)2

dΛNCC(t)
P(X ≥ t)

= var{N−1 ∕ 2 ∑
i = 1

N
(1 − δi)(ωi − 1)Πi} ≥ 0,

where the last equality holds similarly to (A.4). That is, 

E[UiI(Xi ≥ t)(1 − π0i) ∕ π0i] = E[ΠiI(Xi ≥ t)(1 − π0i) ∕ π0i]. Therefore, the proposed AIPW 

estimators are more efficient than the true weight based TIPW estimators.

APPENDIX B.

Now we derive the specific forms of Ui in the general form (A.2) for all the related 

estimators of interest. Then the asymptotic variances of these estimators can be obtained 

using the results in Appendix A.

For γ, similarly to Cai and Zheng1, we have that

N1 ∕ 2(γ − γ̄) = N−1 ∕ 2 ∑
i = 1

N
ωiUγ̄i + op(1),

whereUγ̄i = D(γ̄)−1∫ {Yi − I(1)(t)
I(0)(t)

} dMi(t),

D(γ̄) = N−1 ∑
i = 1

N
δi

I(2)(Xi)I(0)(Xi) − I(1)(Xi) ⊗ 2

I(0)(Xi) ⊗ 2 ,

I(k)(t, γ) = N−1 ∑
i = 1

N
ωiI(Xi ≥ t) exp(Y iTγ)Yik, k = 0, 1, 2,

I(k)(t) = N−1 ∑
i = 1

N
ωiI(Xi ≥ t) exp(Y iTγ̄)Yik, k = 0, 1, 2,

Ai(t) = ∫
0

t
I(Xi ≥ u) exp(Y iTγ̄) dΛ0(u),

andMi(t) = Ni(t) − Ai(t) .

For Λ(t ∣ r), we have
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N1 ∕ 2{Λ(t ∣ r) − Λ(t ∣ r)}

= N1 ∕ 2 ∫
0

t
∑i = 1

N ωiKℎ(γTYi − r) dNi(u)

∑i = 1
N ωiKℎ(γTYi − r)I(Xi ≥ u)

− N1 ∕ 2Λ(t ∣ r)

= N1 ∕ 2 ∫
0

t
∑i = 1

N ωiKℎ(γTYi − r) dMi(u)

∑i = 1
N ωiKℎ(γTYi − r)I(Xi ≥ u)

= N1 ∕ 2 ∫
0

t
∑i = 1

N ωiKℎ(γTYi − r) dMi(u)

∑i = 1
N ωiKℎ(γTYi − r)I(Xi ≥ u)

− N1 ∕ 2 ∫
0

t
∑i = 1

N ωiKℎ(YiTγ̄ − r) dMi(u)

∑i = 1
N ωiKℎ(YiTγ̄ − r)I(Xi ≥ u)

+ N1 ∕ 2 ∫
0

t
∑i = 1

N ωiKℎ(YiTγ̄ − r) dMi(u)

∑i = 1
N ωiKℎ(YiTγ̄ − r)I(Xi ≥ u)

= ∫
0

t
∑i = 1

N ωiK
.
ℎ(YiTγ̄ − r) ∕ ℎYi dMi(u)

∑i = 1
N ωiKℎ(YiTγ̄ − r)I(Xi ≥ u)

− ∫
0

t
∑i = 1

N ωiKℎ(YiTγ̄ − r) dMi(u){∑i = 1
N ωiK

.
ℎ(YiTγ̄ − r) ∕ ℎYiI(Xi ≥ u)}

{∑i = 1
N ωiKℎ(YiTγ̄ − r)I(Xi ≥ u)}2 N1 ∕ 2(γ − γ̄)

+ N1 ∕ 2 ∫
0

t
∑i = 1

N ωiKℎ(YiTγ̄ − r) dMi(u)

∑i = 1
N ωiKℎ(YiTγ̄ − r)I(Xi ≥ u)

.

So the Ui form in (A.2) for Λ(t ∣ r) is

UΛi(t ∣ r) = Uγ̄i
T ∫

0

t
N−1∑j = 1

N ωjK
.
ℎ(YjTγ̄ − r) ∕ ℎYjdMj(u)

N−1∑j = 1
N ωjKℎ(YjTγ̄ − r)I(Xj ≥ u)

− ∫
0

t
∑j = 1

N ωjKℎ(YjTγ̄ − r)dMj(u){∑l = 1
N ωlK

.
ℎ(YjTγ̄ − r) ∕ ℎYlI(Xl ≥ u)}

{∑j = 1
N ωjKℎ(YjTγ̄ − r)I(Xj ≥ u)}2

+ ∫
0

t
Kℎ(YjTγ̄ − r)dMj(u)

N−1∑j = 1
N ωjKℎ(YjTγ̄ − r)I(Xj ≥ u)

.

Recalling that S(t ∣ r) = exp{ − Λ(t ∣ r)}, we have that the Ui form in (A.2) for S(t ∣ r) is

USi(t ∣ r) = − S(t ∣ r)UΛi(t ∣ r) .

Recalling that F(r) =
∑i = 1

N ωiI(Rall, i ≤ r)

∑i = 1
N ωi

, we get that the Ui form in (A.2) for F(r) is

UFi(r) = I(Ri ≤ r) − F(c) + Dγ̄(r)Uγ̄i, whereDγ̄(r) = ∂E[I(Ri ≤ r)] ∕ ∂γ ∣γ = γ̄ .

Recalling S(r, t) = ∫r
∞S(t ∣ u) dF(u), we have that the Ui form in (A.2) for S(r, t) is

USi(t, r) = ∫
r

∞
USi(t ∣ u) dF(u) + ∫

r

∞
S(t ∣ u) dUFi(u) .
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It follows that of Ui forms for the accuracy parameter estimators are

UTPRti(r) =
TPRt(r)USi(t, rl) − UFi(r) − USi(t, r)

1 − S(t) ,

UFPRti(r) =
USi(t, r) − FPRt(r)USi(t, rl)

S(t) ,

UPPV ti(r) =
{PPV t(r) − 1}UFi(r) − USi(t, r)

1 − F(r) ,

UNPV ti(r) =
USi(t) − USi(t, r) − NPV t(r)UFi(r)

F(r) .

Thus, we get the forms of Ui in (A.2) for the regression parameter estimator γ and the 

accuracy parameter estimators TPR(c ∣ t), FPR(c ∣ t), PPV(c ∣ t), NPV(c ∣ t).

APPENDIX C.

In this section, we show the validity of the proposed resampling technique.

The derivative of Uπ0i, Xi
∗ (βi) with respect to βi

∗ is

∂Uπ0i, Xi
∗ (βi∗)

∂βi∗
= − 1

N ∑
j = 1

N
Ij

exp(βiTZj)

{1 + exp(βiTZj)}2ZjZjT(1 − δj)Kb((π0i, Xi) − (π0j, Xj)) + op(1),

which also converges to −Σi. It follows that

N1 ∕ 2(βi
∗ − βi) = Σi−1N−1 ∕ 2 ∑

j = 1

N
Ij(V j −

exp(βiTZj)

1 + exp(βiTZj)
)Zj(1 − δj)Kb((π0i, Xi) − (π0j, Xj)) + op(1) .

The perturbed form of (A.2) is

U∗ = N−1 ∕ 2 ∑
i = 1

N
[δiIi + (1 − δi)V 0iIi ∕ π0i

∗ ]Ui

= N−1 ∕ 2 ∑
i = 1

N
{Iiδi + (1 − δi)Ii + (1 − δi)(

V 0i
π0i

− 1)Ii + (1 − δi)[
V 0iIi
π0i

∗ −
V 0iIi
π0i

]}Ui

= N−1 ∕ 2 ∑
i = 1

N
IiUi + N−1 ∕ 2 ∑

i = 1

N
(1 − δi)Ii(

V 0i
π0i

− 1)Ui − N−1 ∕ 2 ∑
i = 1

N
(1 − δi)

V 0iIi
π0i

π0i
∗ − π0i

π0i
∗ Ui

= N−1 ∕ 2 ∑
i = 1

N
IiUi + N−1 ∕ 2 ∑

i = 1

N
(1 − δi)Ii(ωi − 1)(Ui − Πi) + op(1),

where the last equation follows similarly to the derivation of I3 in Appendix A.

From (A.3), we know

U = N−1 ∕ 2 ∑
i = 1

N
Ui + N−1 ∕ 2 ∑

i = 1

N
(1 − δi)(ωi − 1)(Ui − Πi) + op(1) .
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It follows that

U∗ − U = N−1 ∕ 2 ∑
i = 1

N
(Ii − 1)Ui + N−1 ∕ 2 ∑

i = 1

N
(1 − δi)(Ii − 1)(ωi − 1)(Ui − Πi) + op(1) .

Therefore,

Var(U∗ − U ∣ D) = Var(U) .

References

1. Cai T, Zheng Y. Evaluating prognostic accuracy of biomarkers under nested case-control studies. 
Biostatistics 2012; 13(1): 89–100. [PubMed: 21856652] 

2. Zheng Y, Brown M, Lok A, Cai T, others. Improving efficiency in biomarker incremental value 
evaluation under two-phase designs. The Annals of Applied Statistics 2017; 11(2): 638–654. 
[PubMed: 28943991] 

3. Pepe M, Feng Z, Janes H, Bossuyt P, Potter J. Pivotal evaluation of the accuracy of a biomarker used 
for classification or prediction: standards for study design. Journal of the National Cancer Institute 
2008; 100(20): 1432–1438. [PubMed: 18840817] 

4. Johnson SR, Anderson GL, Barad DH, Stefanick ML. The Women’s Health Initiative: rationale, 
design and progress report. British Menopause Society Journal 1999; 5(4): 155–159.

5. Colditz GA, MANSON JE, HANKINSON SE. The Nurses’ Health Study: 20-year contribution to 
the understanding of health among women. Journal of Women’s Health 1997; 6(1): 49–62.

6. Prentice RL, Breslow N. Retrospective studies and failure time models. Biometrika 1978: 153–158.

7. Breslow NE, Day NE, others. Statistical Methods in Cancer Research. 1 International Agency for 
Research on Cancer Lyon. 1980.

8. Prentice R A case-cohort design for epidemiologic cohort studies and disease prevention trials. 
Biometrika 1986; 73(1): 1.

9. Martin LJ, Melnichouk O, Huszti E, et al. Serum lipids, lipoproteins, and risk of breast cancer: a 
nested case-control study using multiple time points. JNCI: Journal of the National Cancer Institute 
2015; 107(5).

10. Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in 
peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-
control study. The lancet Diabetes & endocrinology 2015; 3(7): 526–534. [PubMed: 26095709] 

11. Jensen MK, Rimm EB, Furtado JD, Sacks FM. Apolipoprotein C-III as a potential modulator of 
the association between HDL-cholesterol and incident coronary heart disease. Journal of the 
American Heart Association 2012; 1(2): e000232.

12. Goldstein L, Langholz B. Asymptotic theory for nested case-control sampling in the Cox 
regression model. The Annals of Statistics 1992: 1903–1928.

13. Langholz B, Borgan Ø. Estimation of absolute risk from nested case-control data. Biometrics 1997: 
767–774. [PubMed: 9192463] 

14. Scheike TH, Juul A. Maximum likelihood estimation for Cox’s regression model under nested 
case-control sampling. Biostatistics 2004; 5(2): 193–206. [PubMed: 15054025] 

15. Zeng D, Lin D, Avery C, North K, Bray M. Efficient semiparametric estimation of haplotype-
disease associations in case–cohort and nested case–control studies. Biostatistics 2006; 7(3): 486–
502. [PubMed: 16500923] 

16. Samuelsen SO. A psudolikelihood approach to analysis of nested case-control studies. Biometrika 
1997; 84(2): 379–394.

17. Lu W, Liu M. On estimation of linear transformation models with nested case–control sampling. 
Lifetime data analysis 2012; 18(1): 80–93. [PubMed: 21912975] 

Wang et al. Page 18

Stat Med. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Cai T, Zheng Y. Evaluating prognostic accuracy of biomarkers in nested case-control studies. 
Biostatistics 2011; 13(1): 89–100. [PubMed: 21856652] 

19. Cai T, Zheng Y. Nonparametric evaluation of biomarker accuracy under nested case-control 
studies. Journal of the American Statistical Association 2011; 106(494): 569–580. [PubMed: 
22844169] 

20. Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model. Journal of the 
American statistical Association 1989; 84(408): 1074–1078.

21. Cai T, Tian L, Uno H, Solomon SD, Wei L. Calibrating parametric subject-specific risk estimation. 
Biometrika 2010; 97(2): 389–404. [PubMed: 23049123] 

22. Davidson WS, Silva RGD, Chantepie S, Lagor WR, Chapman MJ, Kontush A. Proteomic analysis 
of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative 
function. Arteriosclerosis, thrombosis, and vascular biology 2009; 29(6): 870–876.

23. Andrikoula M, McDowell I. The contribution of ApoB and ApoA1 measurements to 
cardiovascular risk assessment. Diabetes, Obesity and Metabolism 2008; 10(4): 271–278.

24. Movva R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clinical 
Chemistry 2008; 54(5): 788–800. [PubMed: 18375481] 

25. Kohan AB. ApoC-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. 
Current opinion in endocrinology, diabetes, and obesity 2015; 22(2): 119.

26. Colditz GA, Philpott SE, Hankinson SE. The impact of the Nurses’ Health Study on population 
health: prevention, translation, and control. American journal of public health 2016; 106(9): 1540–
1545. [PubMed: 27459441] 

27. Kang S Fitting semiparametric accelerated failure time models for nested case–control data. 
Journal of Statistical Computation and Simulation 2017; 87(4): 652–663.

28. Andersen PK, Gill RD. Cox’s regression model for counting processes: a large sample study. The 
annals of statistics 1982: 1100–1120.

29. Du Y, Akritas M. Uniform strong representation of the conditional Kaplan-Meier process. 
Mathematical Methods of Statistics 2002; 11(2): 152–182.

Wang et al. Page 19

Stat Med. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

TABLE 1

The Bias, empirical standard error (SE) and relative efficiency (RE) of the TIPW estimator, the proposed 

AIPW estimator, the nonparametric method based estimator (NP) and the CLR based estimator (CLR). For the 

proposed AIPW estimator, we also calculated the average of the estimated standard error (ASE), empirical 

coverage probabilities (CP) of the 95% CIs (×100) for settings (1).

Independent censoring (I)

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.010 0.022 0.005 0.146 0.096 0.096 0.096 0.166 1.000 0.955 1.020 0.191 0.090 93.0

γ̄2 1.099 −0.005 0.014 −0.022 0.344 0.100 0.095 0.092 0.340 1.000 1.086 1.116 0.043 0.090 93.6

TPR 0.460 −0.011 −0.010 −0.025 0.050 0.044 0.046 1.000 1.296 0.942 0.044 94.2

PPV 0.543 −0.012 −0.005 0.002 0.035 0.032 0.034 1.000 1.285 1.132 0.032 94.4

NPV 0.932 −0.001 −0.002 −0.008 0.011 0.007 0.009 1.000 2.220 0.863 0.008 96.8

TPR 0.596 −0.010 −0.009 −0.027 0.051 0.041 0.044 1.000 1.492 1.010 0.042 94.8

PPV 0.435 −0.009 −0.003 0.005 0.030 0.027 0.030 1.000 1.325 1.056 0.026 94.0

NPV 0.945 −0.001 −0.001 −0.008 0.011 0.007 0.008 1.000 2.586 1.007 0.007 97.0

TPR 0.748 −0.006 −0.005 −0.022 0.046 0.035 0.038 1.000 1.747 1.163 0.036 96.2

PPV 0.326 −0.005 −0.000 0.009 0.024 0.021 0.023 1.000 1.429 0.972 0.021 95.2

NPV 0.961 −0.001 −0.001 −0.006 0.011 0.006 0.007 1.000 2.986 1.229 0.007 97.2

Dependent censoring (II)

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.018 0.044 0.007 0.086 0.116 0.111 0.115 0.169 1.000 0.952 1.027 0.382 0.106 91.9

γ̄2 1.099 −0.004 −0.014 −0.019 0.210 0.122 0.105 0.101 0.315 1.000 1.319 1.398 0.104 0.101 93.3

TPR 0.460 −0.010 −0.005 −0.025 0.052 0.046 0.050 1.000 1.303 0.891 0.047 96.0

PPV 0.543 −0.010 −0.002 0.005 0.039 0.033 0.037 1.000 1.483 1.150 0.033 94.8

NPV 0.932 −0.001 −0.002 −0.009 0.010 0.008 0.009 1.000 1.623 0.575 0.008 96.8

TPR 0.596 −0.008 −0.004 −0.026 0.048 0.042 0.044 1.000 1.308 0.886 0.044 94.6

PPV 0.435 −0.006 −0.000 0.008 0.032 0.026 0.029 1.000 1.533 1.137 0.027 95.0

NPV 0.945 −0.001 −0.001 −0.008 0.009 0.007 0.009 1.000 1.578 0.606 0.008 96.0

TPR 0.748 −0.008 −0.004 −0.025 0.042 0.037 0.040 1.000 1.310 0.833 0.038 95.0

PPV 0.326 −0.005 0.000 0.010 0.025 0.021 0.024 1.000 1.560 0.987 0.021 95.6

NPV 0.961 −0.001 −0.001 −0.007 0.008 0.007 0.008 1.000 1.580 0.602 0.007 96.6
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TABLE 2

The Bias, empirical standard error (SE) and relative efficiency (RE) of the TIPW estimator, the proposed 

AIPW estimator, the nonparametric method based estimator (NP) and the CLR based estimator (CLR). For the 

proposed AIPW estimator, we also calculated the average of the estimated standard error (ASE), empirical 

coverage probabilities (CP) of the 95% CIs (×100) for settings (2).

Independent censoring (I)

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.014 0.020 −0.009 0.139 0.110 0.105 0.118 0.171 1.000 1.078 0.880 0.254 0.096 91.9

γ̄2 1.099 −0.018 0.013 −0.097 0.343 0.109 0.097 0.145 0.339 1.000 1.263 0.399 0.052 0.096 94.0

TPR 0.460 −0.015 −0.006 −0.052 0.049 0.043 0.057 1.000 1.383 0.446 0.046 95.8

PPV 0.543 −0.003 −0.001 0.054 0.034 0.030 0.041 1.000 1.309 0.261 0.033 96.8

NPV 0.932 −0.004 −0.002 −0.036 0.011 0.008 0.017 1.000 2.124 0.085 0.009 97.2

TPR 0.596 −0.016 −0.006 −0.064 0.048 0.043 0.055 1.000 1.391 0.360 0.043 95.6

PPV 0.435 −0.001 0.000 0.057 0.029 0.025 0.040 1.000 1.302 0.176 0.027 96.6

NPV 0.945 −0.004 −0.002 −0.033 0.010 0.007 0.016 1.000 2.101 0.086 0.008 97.4

TPR 0.748 −0.013 −0.004 −0.072 0.045 0.039 0.051 1.000 1.480 0.287 0.039 94.6

PPV 0.326 0.002 0.002 0.056 0.025 0.021 0.035 1.000 1.444 0.142 0.022 95.6

NPV 0.961 −0.003 −0.001 −0.031 0.009 0.007 0.015 1.000 2.091 0.085 0.008 97.8

Dependent censoring (II)

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.024 0.044 −0.001 0.088 0.121 0.115 0.131 0.172 1.000 1.008 0.892 0.408 0.106 91.7

γ̄2 1.099 −0.009 −0.008 −0.098 0.230 0.130 0.110 0.133 0.331 1.000 1.389 0.622 0.104 0.102 93.6

TPR 0.460 −0.010 −0.002 −0.049 0.056 0.050 0.058 1.000 1.302 0.565 0.048 92.8

PPV 0.543 0.001 0.004 0.064 0.040 0.035 0.046 1.000 1.311 0.263 0.034 94.1

NPV 0.932 −0.004 −0.003 −0.038 0.011 0.008 0.017 1.000 2.181 0.085 0.009 95.6

TPR 0.596 −0.012 −0.003 −0.067 0.053 0.045 0.056 1.000 1.426 0.385 0.044 94.9

PPV 0.435 0.002 0.005 0.066 0.034 0.029 0.040 1.000 1.335 0.190 0.028 92.6

NPV 0.945 −0.004 −0.002 −0.036 0.011 0.007 0.016 1.000 2.360 0.080 0.008 97.9

TPR 0.748 −0.011 −0.000 −0.072 0.045 0.036 0.047 1.000 1.631 0.289 0.038 95.3

PPV 0.326 0.004 0.006 0.065 0.027 0.022 0.036 1.000 1.506 0.137 0.022 95.1

NPV 0.961 −0.003 −0.001 −0.033 0.010 0.006 0.014 1.000 2.594 0.079 0.007 97.7
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TABLE 3

The Bias, empirical standard error (SE) and relative efficiency (RE) of the TIPW estimator, the proposed 

AIPW estimator, the nonparametric method based estimator (NP) and the CLR based estimator (CLR). For the 

proposed AIPW estimator, we also calculated the average of the estimated standard error (ASE), empirical 

coverage probabilities (CP) of the 95% CIs (×100) for settings (3).

Independent censoring (I)

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.028 0.024 0.007 0.152 0.129 0.101 0.099 0.169 1.000 1.614 1.758 0.335 0.105 94.6

γ̄2 1.099 −0.086 −0.002 −0.063 0.335 0.128 0.094 0.092 0.345 1.000 2.716 1.908 0.103 0.103 95.6

TPR 0.460 −0.039 −0.009 −0.036 0.053 0.048 0.050 1.000 1.777 1.130 0.050 94.0

PPV 0.543 0.015 −0.002 0.020 0.040 0.033 0.036 1.000 1.671 1.056 0.037 96.6

NPV 0.932 −0.017 −0.003 −0.017 0.014 0.008 0.011 1.000 6.487 1.131 0.010 98.0

TPR 0.596 −0.043 −0.006 −0.038 0.058 0.048 0.051 1.000 2.266 1.293 0.048 92.8

PPV 0.435 0.020 0.001 0.025 0.036 0.027 0.032 1.000 2.251 1.040 0.031 96.6

NPV 0.945 −0.015 −0.001 −0.015 0.014 0.008 0.011 1.000 6.411 1.182 0.009 96.2

TPR 0.748 −0.045 −0.001 −0.035 0.057 0.040 0.045 1.000 3.244 1.621 0.042 94.6

PPV 0.326 0.022 0.003 0.027 0.033 0.021 0.025 1.000 3.568 1.099 0.025 96.8

NPV 0.961 −0.014 −0.001 −0.013 0.013 0.007 0.010 1.000 6.815 1.307 0.008 96.2

Dependent censoring (II)

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.019 0.032 0.003 0.074 0.138 0.115 0.116 0.159 1.000 1.372 1.443 0.629 0.109 92.1

γ̄2 1.099 −0.082 −0.016 −0.061 0.213 0.129 0.106 0.104 0.354 1.000 2.032 1.603 0.136 0.102 93.9

TPR 0.460 −0.032 −0.001 −0.034 0.063 0.052 0.054 1.000 1.816 1.206 0.050 91.9

PPV 0.543 0.022 0.006 0.027 0.045 0.034 0.040 1.000 2.154 1.116 0.036 94.1

NPV 0.932 −0.017 −0.003 −0.019 0.014 0.009 0.012 1.000 5.339 1.012 0.010 97.0

TPR 0.596 −0.036 0.001 −0.035 0.061 0.049 0.049 1.000 2.134 1.427 0.047 93.1

PPV 0.435 0.026 0.008 0.032 0.039 0.028 0.033 1.000 2.692 1.042 0.030 94.5

NPV 0.945 −0.015 −0.002 −0.016 0.013 0.009 0.011 1.000 5.235 1.097 0.009 96.3

TPR 0.748 −0.038 0.003 −0.035 0.053 0.042 0.043 1.000 2.340 1.379 0.040 94.3

PPV 0.326 0.026 0.008 0.033 0.034 0.021 0.027 1.000 3.593 1.009 0.024 96.1

NPV 0.961 −0.014 −0.001 −0.014 0.012 0.008 0.010 1.000 4.634 1.091 0.008 97.6
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TABLE 4

The Bias, empirical standard error (SE) and relative efficiency (RE) of the TIPW estimator, the proposed 

AIPW estimator, the nonparametric method based estimator (NP) and the CLR based estimator (CLR). For the 

proposed AIPW estimator, we also calculated the average of the estimated standard error (ASE), empirical 

coverage probabilities (CP) of the 95% CIs (×100).

Bias SE RE AIPW

true TIPW AIPW NP CLR TIPW AIPW NP CLR TIPW AIPW NP CLR ASE CP

γ̄1 0.693 0.022 0.053 0.006 0.022 0.122 0.103 0.106 0.108 1.000 1.152 1.372 1.275 0.105 93.5

γ̄2 1.099 −0.062 −0.008 −0.027 0.043 0.116 0.087 0.085 0.193 1.000 2.245 2.146 0.440 0.093 94.9

TPR 0.457 −0.044 −0.009 −0.036 0.047 0.038 0.043 1.000 2.623 1.305 0.038 91.5

PPV 0.163 0.004 −0.002 0.002 0.022 0.016 0.020 1.000 1.866 1.291 0.016 94.9

NPV 0.988 −0.003 −0.000 −0.002 0.002 0.001 0.002 1.000 8.090 1.539 0.001 95.9

TPR 0.601 −0.049 −0.008 −0.039 0.045 0.034 0.038 1.000 3.471 1.465 0.036 93.3

PPV 0.113 0.005 −0.000 0.004 0.014 0.010 0.012 1.000 2.334 1.446 0.010 95.9

NPV 0.991 −0.003 −0.001 −0.002 0.002 0.001 0.001 1.000 8.275 1.503 0.001 95.1

TPR 0.757 −0.047 −0.005 −0.035 0.037 0.028 0.031 1.000 4.325 1.631 0.031 96.1

PPV 0.075 0.005 −0.001 0.003 0.008 0.006 0.007 1.000 2.804 1.482 0.006 96.7

NPV 0.994 −0.003 −0.001 −0.002 0.001 0.001 0.001 1.000 8.069 1.548 0.001 93.3
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TABLE 5

Hazard ratio (HR) estimates for MI risk using sampling weights based on the original protocol (IPW), the 

proposed AIPW method and CLR method.

covariate IPW (95% CI) AIPW (95% CI) CLR (95% CI)

smoking (past) 0.804 (0.151, 1.457) 1.054 (0.815, 1.363) 0.723 (0.431, 1.214)

smoking <15 cig/d 0.890 (0.240, 1.541) 1.222 (0.854, 1.748) 1.067 (0.838, 1.359)

smoking >15 cig/d 1.160 (0.847, 1.473) 1.253 (1.083, 1.449) NA

age 1.014 (0.502, 1.526) 1.156 (0.852, 1.569) 0.379 (0.077, 1.863)

diabetes 1.573 (1.346, 1.800) 1.359 (1.121, 1.649) 1.335 (1.015, 1.757)

high cholesterol 1.380 (1.073, 1.686) 1.369 (1.073, 1.747) 1.349 (1.049, 1.736)

medication for HBP 1.307 (1.063, 1.550) 1.430 (1.193, 1.714) 1.301 (1.059, 1.599)

WPA1 0.600 (0.101, 1.098) 0.730 (0.500, 1.066) 0.688 (0.496, 0.953)

apoE 1.420 (1.107, 1.733) 1.427 (1.140, 1.786) 1.214 (0.950, 1.550)
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TABLE 6

Estimated accuracy measures for a MI risk model with clinical predictors and biomarkers WPA1 and apoE and 

the incremental values (incV) of WPA1 and apoE over a model with only clinical predictors.

measure FPR est (95% CI) incv (95% CI)

TPR 0.050 0.265 (0.146, 0.385) −0.022 (−0.106, 0.061)

PPV 0.050 0.021 (0.009, 0.033) −0.001 (−0.009, 0.007)

NPV 0.050 0.997 (0.996, 0.998) 0.000 (−0.000, 0.000)

TPR 0.100 0.360 (0.234, 0.487) 0.001 (−0.081, 0.083)

PPV 0.100 0.014 (0.008, 0.021) −0.001 (−0.005, 0.004)

NPV 0.100 0.997 (0.996, 0.998) 0.000 (−0.000, 0.000)

TPR 0.200 0.503 (0.378, 0.627) 0.025 (−0.065, 0.115)

PPV 0.200 0.010 (0.007, 0.014) 0.000 (−0.002, 0.003)

NPV 0.200 0.998 (0.997, 0.998) 0.000 (−0.000, 0.001)

AUC 0.688 (0.610, 0.765) −0.005 (−0.057, 0.047)
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