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Abstract

Convolutional neural networks (CNNs) have recently been popular for classification and 

segmentation through numerous network architectures offering a substantial performance 

improvement. Their value has been particularly appreciated in the domain of biomedical 

applications, where even a small improvement in the predicted segmented region (e.g., a 

malignancy) compared to the ground truth can potentially lead to better diagnosis or treatment 

planning. Here, we introduce a novel architecture, namely the Overall Convolutional Network (O-

Net), which takes advantage of different pooling levels and convolutional layers to extract more 

deeper local and containing global context. Our quantitative results on 2D images from two 

distinct datasets show that O-Net can achieve a higher dice coefficient when compared to either a 

U-Net or a Pyramid Scene Parsing Net. We also look into the stability of results for training and 

validation sets which can show the robustness of model compared with new datasets. In addition to 

comparison to the decoder, we use different encoders including simple, VGG Net, and ResNet. 

The ResNet encoder could help to improve the results in most of the cases.
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1 Introduction

Training a Convolutional neural networks (CNNs) usually needs thousands of images that 

can be beyond reach in biomedical applications [1,2]. A sliding-window pattern (patch 

processing) [3] can make a network to be quite slow, and it is prone to localization accuracy. 

Therefore, more advanced CNNs are developed to address these issues [4,5]. Two of the 

frequently used CNNs are U-Net [1] and Pyramid Scene Parsing (PSP) Net [6]. PSP Net 

uses parallel layers to pool information with different resolutions. This network combines 

local and global clues to make the final prediction more reliable. However, it can miss 

information by not extracting higher-order features using deeper layers. On the other hand, 
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U-Net is based on highly deep layers providing depth information from an image. It uses 

successive layers, where upsampling operators replace pooling operators. These successive 

layers can increase the resolution of the final outcome while high-resolution features from 

the contracting path are combined with the upsampled output to increase localization int the 

final output.

For general segmentation applications, the PASCAL VOC dataset has been considered as 

one of the best resources for segmentation [7], while the COCO dataset is presented to help 

instance segmentation [8]. COCO leads to many advanced general segmentation methods 

[9]. For biomedical images, considering different layers connections to have various 

segmentation patterns [5], adding residual layers to extract deeper information [10], 

applying different pooling values to maximize the global context [6], and patch searching in 

an image [11] are some of the proposed approaches to improve the performance for 

segmentation. Furthermore, a fully 3D segmentation algorithm has been proposed based on 

2D slices and U-Net [12] while V-net [13], which is based on 3D-variant of U-Net analyzed 

images based on 3D convolutional filters. A combination of DL method and distance 

regularized level set (DLRS) is proposed to segment lung in computed tomography (CT) 

images [14]. Breast [15,16] and brain [17,18] cancers have been subjects undergoing intense 

studies.

In this paper, we present a new CNN architecture for semantic segmentation; specifically 

designed for biomedical segmentation tasks. Our proposed architecture is built upon the 

advantages of PSP Net, which has been used frequently for various applications. We add 

more local context to enrich the information required for final segmentation by considering 

different encoders and improving the decoder side. The O-Net decoder uses different 

convolutional and pooling kernels to acquire deeper information from images. The novel 

contributions of the hereby proposed work are two-fold. First, our effective modification by 

enriching the local context improves PSP Net and U-Net performances for biomedical tasks. 

Accordingly, we evaluate the performance of our proposed method compared to two well-

established segmentation architectures. Each of these three networks are trained with simple 

encoder, VGG Net encoder [19], and ResNet encoder [20]. These encoders can add residual 

or more in-depth information from an image that can help segmentation. Therefore, a total of 

nine networks are compared here. Our method performs favorably against state-of-the-art 

methods. Second, we train the CNNs from scratch, do not use already trained model, and do 

not split train in “pre-train” and “fine-tune” stages. We also consider the complexity of task 

in our work to evaluate the performance of our method for different tasks. Finally, our code 

is publicly available through GitHub.

2 Proposed Methods

2.1 O-Net Architecture

A CNN for segmentation contains three major components: encoder, decoder sides, and 

decision making layers. The encoder layers extract features while the decoder layers try to 

map the extracted features to pixels level of an input image. The decision-making layers can 

combine different layers and apply the final decision for the segmentation task based on the 

extracted features. In addition, training parameters and data augmentation can significantly 
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affect the results. Therefore, in this section, we introduce our proposed network components 

following by the parameters being used in training. Finally, we briefly discuss the methods 

used for comparison and the experimental design.

2.2 Encoder Side

We consider three convolutional or encoder side, encoder, for each network (O-Net, U-Net, 

and PSP Net). Simple encoder, VGG Net encoder [19], and ResNet encoder [20]. The 

differences between these three encoders can be seen in Fig. 1. Each of these encoders 

generates five outputs, referred to as branches (B) as B1, B2, B3, B4, and B5, which is used 

at different levels of the decoder side.

For the simple encoder, the pooling layers size is (2, 2) while the convolutional layers have a 

kernel of (3, 3). The filter size for the convolutional layers starts from 64 and increases by a 

factor of 2 when going to the next layer (deeper to the left). Only, the fifth layer has the same 

number as the fourth layer (64 × 8 = 1024).

The VGG Net encoder employs the same pooling size of (2, 2) and the same kernel of (3, 3). 

The filter size has the exact same pattern as described for the simple encoder. Finally, the 

ResNet encoder has five branches with various kernels. ResNet consists of identity and 

convolutional blocks. The number of the convolutional block is one for all of the branches 

(after the first branch). However, second, third, fourth, and fifth branches have 2, 3, 4, and 2 

identity blocks. Figure 1 shows more details about two of these branches (the second branch 

has two identity blocks). More details can be found in the code.

2.3 Decoder Side

The de-convolutional or decoder side of O-Net takes advantage of different pooling layers 

being inspired by PSP Net. We use different pooling layers and combine the results with the 

original input to mix the local and global context. The original input for each layer helps to 

improve the localization of the outcome. This decoder module has been illustrated in Fig. 1.

The decoder module includes five divisions with four different pooling kernels (1, 2, 3, and 

6) and one layer which passes the input to improve the final localization. Each layer has one 

average pooling layer, one convolutional layer, one batch normalization layer, and one 

activation layer. The convolutional layer is designed by a kernel size of (1, 1) and 512 filters. 

These layers are followed by a resizing component to return all the images to the original 

input size.

2.4 Decision Making Layers

As explained in Sects.2.2 and 2.3, five branches from one of the three encoders are the input 

of the decoder module. The output of the decoder module is five branches. We combine 

these branches and apply a convolutional step (one convolutional layer, one batch 

normalization, and one activation layer), as shown in Fig. 1. The convolutional layer has a 

kernel size of (3, 3) with 512 filters.

We use a drop out layer to reduce the chance of overfitting. Finally, another convolutional 

layer following by the image resizing component is used to have the original image 
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resolution in output. Finally, an activation layer with the softmax function is used to 

differentiate the segmentation classes.

2.5 Methods for Comparison

We compare our method with U-Net [1] and PSP Net [6]. How these two networks and O-

Net are used in this study have been shown in Fig. 1. O-Net and U-Net use all five branches 

generated by the encoder side while the PSP Net uses the last branch (B5) from each of the 

encoders. Therefore, we have a total of nine CNNs (three networks and three encoders) for 

comparison.

We use Adam optimizer with a learning rate of 1e−4 for all nine CNNs.

3 Experimental Setup

3.1 Datasets

In this work, we use two datasets: breast and brain scans. The breast dataset is in gray-scale 

(one channel) while for the brain dataset we considered gray-scale (one channel) and color 

images (three channels) to make different complexity levels. All of the images are resized to 

256 × 256 pixels. Therefore, a total of three image sets are used in this study.

1. Gray-scale images for breast tissue segmentation: Segmentation of breast and 

calculating breast density percentage can is helpful for assessing breast cancer 

risk [21]. The breast dataset consists of 1,100 digital mammography images from 

1,100 patients. 550 images are screened from left and the other half from right 

breast at the Hospital of the University of Pennsylvania between 2010 and 2014. 

Women were imaged per U.S. Food and Drug Administration approved protocol 

consisting of full-field digital mammography in both mediolateral oblique views 

using Selenia Dimensions, Hologic Inc. The breast area is manually 

differentiated from the background and pectoralis muscle using ImageJ software 

[22]. The background segmentation can be considered as a simple task while the 

pectoralis muscle can be challenging. This dataset includes gray-scale 

normalized images with 8-bit from the digital mammography images. We use 

half of the images to train and the other half to test the model. This dataset has 

two classes as breast and a combination of background and pectoralis muscle.

2. Gray-scale images for brain tumor segmentation: The brain dataset we used in 

this study describes the BraTS [17], [18] component of the publicly available 

Medical Segmentation Decathlon dataset [23]. The training dataset, which has 

images and labels, consists of four channels: 1) Fluid-attenuated inversion 

recovery (FLAIR), 2) native T1 weighted, 3) T1 post-contrast, and 4) T2-

weighted MRI scans. The BraTS training set has 3D images from 484 patients 

with four classes of segmentation comprising 1) background, 2) edema, 3) non-

enhancing tumor, and 4) enhancing tumor. Since the brain scans were 3D, we 

decided to extract 2D slices from each patient and randomly select five of them 

that encompass at least two out of the four segmentation classes. Therefore, we 
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generate 1,200 images for training and 736 images for testing. In order to have a 

gray-scale, we considered the first channel (FLAIR).

3. Color Images for Brain Tumor Segmentation: We use the same BraTS dataset 

with the same number of images. However, we add two other channels (T1 and 

T1gd) to make color images.

3.2 Metric in Training and Measures for Comparisons

The segmentation performance is measured using two parameters: 1) dice similarity 

coefficient, and 2) dice weighted. We extend dice formula considering weights for each class 

based on the number of pixels for that class.

4 Results

This section presents comparisons between the nine CNNs using the three datasets 

mentioned in Sect.3.1. All networks are trained using the dice weighted which is formulated 

in Sect.3.2. We show training and testing sets results for all epochs for all training epochs, as 

illustrated in Fig. 2. The results for training and testing sets are compared using weighted 

dice and dice, respectively. The CNNs are trained till they show some signs of overfitting, 

e.g., Fig. 2 (b) depicts an increase while (d) reaches a plateau, or they reach a plateau for 

dice weighted, e.g., Fig. 2 (c) and (f). Therefore, using this strategy, we train the brain 

networks up to 200 epochs and the breast networks up to 50 epochs. The main reason for 

considering such a condition in training is that we can compare the top and bottom half of 

training epochs to visualize any possible patterns in the CNNs taring and testing phases.

It should be noted that we use the train and test sets (no validation set used for selecting an 

epoch). The reason is that we study the performance of networks during the whole training 

phases on our testing set without selecting one specific epoch. A stable network can be more 

reliable when an epoch is selected based on a measure on a validation set as the network 

shows fewer variations and is expected to perform the same on a test set. An unstable 

network can be highly dependent on the selected epoch and the dataset.

The comparisons are performed by combining the results for the CNNs based on two 

categories: 1) network-based comparison showing the results for all nine networks; 2) 

decoder-based and encoder-based comparisons illustrating the results for three decoders (O-

Net, PSP Net, and U-Net) and three encoders (simple, VGG Net, and ResNet); In addition, 

we separate the analysis for the first and second half of the training epochs. This can help us 

to study a network performance while there is so much information to learn (the first half of 

training phase, referred to as head) and while a network is almost close to the plateau of 

learning (the second half of training phase, referred to as tail). In other words, this type of 

comparison can show which network is more stable in the results. Therefore, the results can 

be studied as follow:

1. Networks-based Comparison: Table 1, which summarizes the testing set results 

in Fig. 2, illustrates the average and standard division of trained nine networks 

for the head and tail parts of training. O-Net achieved its best performance using 

VGG Net for the head and tail portion of the training. VGG Net shows about one 
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percent higher dice measure for four out of six conditions (conditions are made 

by three datasets and two training phases). The ResNet encoder is usually the 

second network.

2. Decoder-based and Encoder-based Comparisons: A comprehensive comparison 

for the effect of decoders is performed and reported in Table 2. The results 

indicate that O-Net decoder remains on top of all conditions. An almost five 

percentage difference between O-Net and U-Net for the tail of the breast dataset 

might suggest the advantages of our network. In addition, Table 2 illustrates the 

results for encoder side of CNNs. The results show an average of better 

performance for ResNet (about one percent) while the simple encoder showed 

better performance at the earlier stage.

5 Conclusions

In this work we introduced a new DL architecture for semantic segmentation, namely O-Net 

(Fig. 1). The presented CNN is compared with two popular architectures, U-Net and PSP 

Net. The comparisons are performed by changing the encoder and decoder possibilities. 

Figure 2 shows the results for such a comparison. In addition, we analyzed the nine CNNs 

more in detail for the early and late phases of training in Table 1 and Table 2.

We train and present the results for training set based on weighted dice while we report the 

testing results by dice, as the latter is the most common measure used for all segmentation 

tasks in the literature. However, it should be noted that the weighted dice had similar 

patterns with dice on the testing dataset. Figure 2 shows that the O-Net could achieve a 

higher weighted dice (less loss function) in the training set. This can be more obvious in Fig. 

2 (b) and (c).

On the other hand, for the testing set, we analyzed more in depth, shown in Fig. 2, Table 1, 

and Table 2. We have six conditions based on the training phases (head and tail) and datasets 

(three datasets). Table 1 and Table 2 are derived from Fig. 2; however, they suggest 

important notes as follow:

1. O-Net remains the best network in all six conditions, shown in Table 2.

2. ResNet shows to be the best encoder in overall, shown in Table 2, especially for 

the tail portion of training. A reason for such a pattern can be the fact that 

ResNet tends to go deeper, and it needs a larger number of epochs to converge. 

However, when it converges it is shown to be more accurate. However, O-Net 

shows a higher performance for the VGG Net encoder for four out of six 

conditions. Although the ResNet and VGG Net results are just about one percent 

different from each other, the reason for such a difference can be the rich feature 

being extracted in the decoder parts of O-Net.

3. In the earlier stages of the training, the head phase, we can see that the simple 

encoder performed slightly better. This can be because of the need for fewer 

iterations for learning some patterns from images when using the simple encoder 

compared with the other encoders.
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4. In the earlier stages of the training, the head phase, we can see that the O-Net 

achieve significantly higher average dice compared to U-Net and PSP Net for all 

three datasets. This pattern is more obvious in Fig. 2, panels (d) and (e). This 

suggests that O-Net can reach it’s best performance with fewer iteration.

5. We can conclude that O-Net with VGG Net encoder can be the best network 

amongst these nine CNNs. Notably, O-Net seems to be the most stable network 

on the testing set revealing its reliability. A robust and stable network results on 

validation set during the entire training phase can be really important because a 

new variations can cause the network performing worst than our expectations.

One of the limitations for O-Net is the required time for training that might be up to twice of 

U-Net. Also, saving the weights needs twice more space. In our future works, we intend to 

extend this work for 3D segmentation tasks as the current version of code is limited solely to 

2D. It will let us attend and compare our results with the available challenges, e.g., BraTS. 

In addition, we plan to evaluate the method for the general segmentation tasks and compare 

the results with the medical datasets. Last but not least, we can comprehensively investigate 

the stability of network during the training phase on larger datasets.

Note: Sample images showing segmented area using nine networks and the code can be 

found in supplementary materials (which will be added on GitHub).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
O-Net decoder and other CNNs architectures are shown in this figure. The O-Net decoder 

layers are illustrated in (a). The brown layer shows the resizing function to return the 

convoluted result to the original image size. It combines different pooling layers inspired by 

PSP Net. Detailed information on how the CNNs are connected using encoder and decoder 

is shown in (b). The top right side of panel (b) provide details about the decision making 

layer for O-Net.

Maghsoudi et al. Page 9

Mach Learn Med Imaging. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The results for training and testing. Plots in (a), (b), and (c) show the training results for all 

epochs (200 for BRATS related datasets and 50 for the breast dataset). Panels in (d), (e), and 

(f) are the testing results corresponding to the training epochs. Each color shows one of the 

nine CNNs. Red, brown, and purple show the results for O-Net with ResNet, simple, and 

VGG Net encoders, respectively. Dark green, bright green, and yellow show the results for 

PSP Net with ResNet, simple, and VGG Net encoders, respectively. Bright blue, cyan, and 

dark blue show the results for U-Net with ResNet, simple, and VGG Net encoders, 

respectively. The color brain dataset results are shown in (a) and (d). The gray-scale brain 

dataset results are shown in (b) and (e). Finally, the breast dataset results are illustrated in (c) 

and (f).
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Maghsoudi et al. Page 11

Table 1.

The dice results for all nine networks are summarized here. The name of networks shows encoder + decoder. 

The head and tail depict the results for the first and second half portions of training epochs. The best network 

is colored in blue for datasets (three datasets) and training phases (head and tail).

Networks
Head Tail

Brain Color Brain Gray Breast Brain Color Brain Gray Breast

ResNet + O-Net 54.611.3 48.910.5 91.45.0 61.70.9 58.51.7 96.01.4

Simple + O-Net 54.67.9 48.79.9 92.55.5 59.11.3 56.71.1 95.81.5

VGG Net + O-Net 55.59.8 49.69.6 91.44.7 60.60.9 58.91.1 96.30.8

ResNet + PSP Net 45.67.8 41.68.7 88.72.8 53.60.9 51.42.4 91.71.1

Simple + PSP Net 41.87.7 35.814.5 85.52.1 47.61.1 47.21.7 88.00.9

VGG Net + PSP Net 38.28.5 38.98.5 86.42.0 48.31.5 48.31.7 89.71.2

ResNet + U-Net 41.822.3 30.520.6 88.96.6 60.15.5 56.52.1 92.42.3

Simple + U-Net 50.614.6 48.98.1 88.52.1 58.71.5 56.91.6 91.01.5

VGG Net + U-Net 50.68.9 36.018.4 89.24.7 58.31.2 54.61.7 92.21.3
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Table 2.

A summary by grouping the testing set results based on the decoders and encoders. Amongst the encoders, the 

simple encoder achieved the best performance for the head phase while ResNet had a higher dice for the tail 

parts of training phase. The best encoder is colored in green for each dataset. O-Net remains the best encoder. 

The best decoder is colored in blue for each dataset.

Name
Head Tail

Brain Color Brain Gray Breast Brain Color Brain Gray Breast

Decoder

O-Net 54.99.7 49.010.0 91.85.0 60.41.5 58.11.7 96.11.3

PSP Net 41.98.5 38.711.2 86.92.7 49.83.0 49.02.6 89.81.9

U-Net 47.616.7 38.518.3 88.94.8 59.03.4 56.02.1 91.81.8

Encoder

ResNet 47.316.0 40.316.1 89.75.2 58.54.8 55.53.6 93.42.5

Simple 49.011.8 44.412.7 88.84.6 55.15.5 53.64.8 91.63.5

VGG Net 48.111.6 41.514.2 89.04.5 55.75.5 54.04.6 92.73.0
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