Table 2.
Model | (95% CI) | (95% CI) | (95% CI) | Maximum log likelihood | AIC | AICa |
---|---|---|---|---|---|---|
(M6) | 0.126 (0.073, 0.185) | 0.572 (0.265, 0.922) | 0.115 (-0.012, 0.243) | –243.881 | 493.761 | 0 |
(M5) | 0.032 (0.018, 0.047) | 0.521 (0.206, 0.870) | 0.141 (0.016, 0.265) | –244.149 | 494.298 | 0.537 |
(M2) | 0.031 (0.018, 0.045) | −b | 0.228 (0.115, 0.329) | –249.672 | 503.345 | 9.584 |
(M3) | 0.119 (0.065, 0.175) | – | 0.217 (0.102, 0.333) | –250.655 | 505.310 | 11.549 |
(M4) | – | 0.526 (0.219, 0.867) | 0.225 (0.109, 0.343) | –254.443 | 512.886 | 19.125 |
(M1) | – | – | 0.313 (0.207, 0.421) | –260.441 | 522.882 | 29.121 |
AIC is calculated by subtracting AIC of M6 from the AIC of the model.
The hyphens indicate the model does not use that parameter.