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Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, 
there is no effective therapeutic approach for treating SARS-CoV-2 infections. MicroRNAs (miRNAs) have been recognized 
to target the viral genome directly or indirectly, thereby inhibiting viral replication. Several studies have demonstrated that 
host miRNAs target different sites in SARS-CoV-2 RNA and constrain the production of essential viral proteins. Furthermore, 
miRNAs have lower toxicity, are more immunogenic, and are more diverse than protein-based and even plasmid-DNA-based 
therapeutic agents. In this review, we emphasize the role of miRNAs in viral infection and their potential use as therapeutic 
agents against COVID-19 disease. The potential of novel miRNA delivery strategies, especially EDV™ nanocells, for target-
ing lung tissue for treatment of SARS-CoV-2 infection is also discussed.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a new member of the family Coronaviridae that 
mainly targets the respiratory system in humans, resulting 
in coronavirus disease 2019 (COVID-19). This virus was 
first discovered in late 2019 in Wuhan, the capital of Chi-
na’s Hubei Province, and it subsequently caused a pandemic 
[179] that infected more than 50.5 million people worldwide 
and killed more than 1.2 million by November 2020 [114]. A 

person infected with SARS-CoV-2 may be asymptomatic or 
have flu-like symptoms such as fever, dry cough, difficult or 
labored breathing, contusions, and lymphocytopenia [169]. 
Conventional vaccine development typically takes more 
than 15 years, commencing with a long discovery phase 
in which vaccine materials are constructed and preclinical 
investigations are performed. The development of vaccines 
for COVID-19 is following a faster timeline. Thanks to the 
information obtained from research on vaccines against Mid-
dle East respiratory syndrome-related coronavirus (MERS-
CoV) and severe acute respiratory syndrome coronavirus 
(SARS-CoV), the initial discovery stage was largely omit-
ted. Available data were accepted, and phase I/II clinical 
trials were launched. With numerous clinical trials running 
in parallel, stage III clinical trials were started following 
the interim analysis of phase I/II findings. Based on World 
Health Organization (WHO) reports, as of January 15, 2021, 
64 vaccine candidates were under clinical assessment, and 
173 candidate vaccines are in preclinical stages. The vaccine 
platforms can be separated into ‘conventional methods (inac-
tivated or live-virus vaccines), recombinant protein vaccines, 
vectored vaccines, and nucleic acid-based vaccines (RNA 
and DNA vaccines).

Nevertheless, these vaccines will need to be replaced in 
the future by novel vaccines that provide the same protective 
effect with more tolerable reactogenicity [33, 66]. Further-
more, the emergence of mutated strains of SARS-CoV-2 in 
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South Africa, the United Kingdom, and other countries is 
of concern because some of these mutations lie in the viral 
receptor binding site for cell entry and enhance binding to 
angiotensin-converting enzyme 2 (ACE2). The continuous 
occurrence of mutations in the SARS-CoV-2 genome neces-
sitates constant surveillance of the impact of these variations 
on vaccine coverage and preparation for the probability that 
mutations in the SARS-CoV-2 genome might make it neces-
sary to change the vaccine strain.

In addition to the complexity of vaccine development, the 
trust and acceptance of the vaccines by the public is unclear 
and dynamic, making the achievement of herd immunity 
challenging. Other social problems with SARS-CoV-2 vac-
cination include the fact that minorities and lower-income 
and illiterate people are more susceptible than others to this 
infection [77]. These issues press researchers worldwide to 
develop novel, safe, and efficient preventive and therapeutic 
approaches.

Although vaccine development efforts are advancing 
well, secondary prevention and screening should be aimed 
at early disease detection and intervention before the onset 
of symptoms for those with subclinical or mild disease. It 
is notable that almost 80% of COVID-19 cases have mild 
signs [64]. Secondary prevention may therefore be particu-
larly critical for containing COVID-19, since asymptomatic 
individuals may still be able to transmit the virus. Asympto-
matic spread is a challenge for contact tracing and recogniz-
ing transmission chains. With COVID-19, the benefits of 
early detection testing seem to outweigh the consequences 
of potential false negatives; further follow-up testing and 
monitoring can be conducted if the suspicion index is high 
and other criteria are met [59]. For efficient secondary pre-
vention, rapid establishment of isolation and quarantine 
facilities, treatment facilities, and decentralized diagnostic 
testing at the local level are essential.

MicroRNAs (miRNAs) are short (about 20–23 nucleo-
tides) single-stranded non-coding RNAs (ncRNA) that 
play a significant role in the posttranscriptional regulation 
of gene expression [4, 100]. In 1933, Lee et al. discovered 
an miRNA (lin-4) in the nematode Caenorhabditis elegans 
[72]. Since then, a huge variety of miRNAs with different 
functions have been found [101]. miRBase (http://​www.​
mirba​se.​org/) is a website for all known miRNA sequences, 
annotation, nomenclature, and target anticipation data. In 
2018, this site contained 38,589 entries, representing hair-
pin precursor miRNAs that express 48,885 mature miRNAs 
in 271 species [10, 43]. miRNAs play major regulatory 
roles in cell processes, such as proliferation, differentiation, 
growth, neoplastic transformation, and tissue regeneration 
[38, 133]. They also have a significant function in cell-cell 
communication and represent promising biomarkers and 
therapeutic tools for most diseases [104]. In addition, miR-
NAs exhibit fewer toxic effects and lower immunogenicity 

than protein-based drugs and even plasmid-DNA-based 
gene therapy. Current therapeutic applications of miRNAs 
involve two approaches: (1) inhibition of oncogenic miRNAs 
through the use of miRNA antagonists, such as antimiRs 
or antagomiRs, and (2) introduction of tumor suppressor 
miRNAs either via synthetic miRNA mimics or by stable 
and vector-based transfection of genes coding for miRNAs. 
miRNA antagonists are ss-RNA molecules of 21–23 nt that 
function via complementary base pairing with miRNAs [7, 
22, 68]. AntimiRs containing  cholesterol, conjugated via 
a 2′-O-methyl (2′-OMe) linkage, known as antigomiRs, 
are fully complementary to the mature miRNA sequence and 
contain various phosphorothioate moieties to enhance  sta-
bility. Inhibition of miRNA by antimiRs requires optimiza-
tion of the oligonucleotides for improved binding affinity, 
increased nuclease resistance, and more-efficient in vivo 
delivery. This optimization can be achieved by applying var-
ious chemical modifications, including unconjugated phos-
phorothioate antisense molecules with several further high-
affinity 2′ sugar modifications such as 2′ O-methoxyethyl 
(2′ MOE) or a locked nucleic acid (LNA), which increase 
binding affinity [37].

The use of miRNA adds an extra level of complexity in 
comparison to using anti-miRs. This therapeutic strategy can 
potentially have side effects when new miRNAs are intro-
duced into a cell. However, in vivo studies of toxic effects 
caused by miRNA mimics are still lacking [65]. Recent stud-
ies have demonstrated that miRNAs can target the genomes 
of RNA viruses to control the production of viral proteins 
and viral replication and modify viral pathogenesis. Further-
more, infection with an RNA virus can itself affect upregula-
tion or downregulation of host cell miRNAs, causing down-
stream modifications of the transcriptome of the infected cell 
that promote the infection. However, up- or downregulation 
of miRNAs can inhibit viral replication [149], and it is there-
fore likely that human miRNAs may target important sites 
in the SARS-CoV-2 genome and inhibit virus replication. 
This comprehensive review emphasizes the role of miRNAs 
in viral infection and their potential therapeutic application 
in COVID-19. We also discuss a potential novel delivery 
strategy (EDV™ nanocells) for miRNAs to target specific 
tissues such as the lung.

miRNA biogenesis and function

Since miRNAs are not translated into proteins or oligo-
peptides, they are referred to as “noncoding RNAs” [102]. 
miRNA genes are transcribed by RNA polymerase II 
(Pol II) [9, 73, 106], and about 40% of miRNA genes are 
located within intron regions [13]. Transcription inside the 
nucleus generates pre-miRNAs and pro-miRNAs that form 
hairpin-like structures upon nuclear processing, resulting 
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in molecules of 70-100 nucleotides. This process is cata-
lyzed by a microprocessor complex (DGCR8 or Pasha, 
the catalytic RNAase III domain of Drosha). Pre-miRNA 
hairpins are exported from the nucleus to the cytosol by 
a RanGTP/exportin 5-dependent mechanism and cleaved 
by Dicer (RNase III) into a mature double-stranded ~22-
nt miRNA/miRNA duplex in the cytoplasm [9, 30]. The 
active or mature single-stranded miRNAs bind to the RNA-
induced silencing complex (RISC), which is composed of 
Argonaute-family proteins (Ago1 to Ago4 in humans) and 
TRBP [137]. The 5′ end of mature miRNAs possess seed 
sequences (about 8 nt) whose function is to recognize the 
mRNA [47]. A specific miRNA is capable of controlling 
hundreds of target genes. The repression mechanisms of 
miRNAs that target or regulate gene expression include (1) 
inhibition of elongation (mRNA target hybridization and 
degradation), (2) inhibition of translation (preventing the 
joining of 60S and 40S subunits), (3) premature termina-
tion of translation, and (4) co-translational protein degra-
dation [31, 123]. miRNA functions in association with the 
miRISC. The core constituents of miRISC that are required 
for miRNA-dependent repression are the GW182 and Ago 
proteins [122] (Fig. 1).

miRNAs are unique tools in the diagnosis and treat-
ment of malignancies, and this has generated great interest 
in other clinical applications [103, 112, 132]. miRNAs 
have crucial functions in various biological activities 

via post-transcriptional regulation [100, 128]. Altered 
expression of miRNAs is associated with human patholo-
gies such as developmental abnormalities, cancer [160], 
inflammatory diseases [141], muscular and cardiovascular 
diseases [24, 35, 57], and viral infections [128].

The role of miRNAs in viral infection

Viral infections are associated with altered levels of host 
miRNAs. The effects of host miRNAs on viral infection 
can be exerted directly and indirectly. The direct impact 
of miRNAs on virus regulation occurs by directly target-
ing different regions of the viral RNA. The indirect effect 
involves modulating a cellular transcript encoding a host 
factor needed for one or more phases in the viral life cycle. 
However, virus infections may suppress the generation of 
miRNAs in an antiviral response. Viruses use the cellular 
machinery to express viral miRNAs (v-miRNAs), which 
were first discovered in Epstein-Barr virus (EBV) [20]. 
These v-miRNAs not only target their transcripts to reg-
ulate virus replication but also decrease the expression 
of host genes, generate environments conducive to their 
latency and replication, and elude clearance by the host 
immune response. Furthermore, virus infection can cause 
up- or downregulation of host miRNAs, thus inhibiting the 
immune response or promoting viral replication.

Fig. 1   The miRNA biogenesis 
pathway in cells. The Drosha, 
DGCR8, Exportin-5, Ran, and 
Dicer proteins are key con-
stituents of miRNA biogenesis. 
Within the cytoplasm, the 
pre-miRNA loop is cleaved by 
a ternary complex formed by 
Dicer, producing small RNA 
duplexes (miRNA-miRNA*). 
The formation of immature 
RISC or pre-RISC occurs in a 
heat shock cognate 70 (Hsc-70)/ 
heat shock protein (Hsp90)-
mediated process. The RISC 
binds the target mRNA via 
complementary binding of 6 
to 8 base pairs of the miRNA, 
leading to gene silencing
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Viruses induce host miRNAs and control their 
alteration and functions

Host innate immune responses are the first line of protection 
against all pathogens. Natural killer cells, epithelial cells, 
monocytes, macrophages, dendritic cells, and granulocytes 
participate in the immune response [63, 71]. Cells of the 
innate immune system detect viral infection mostly via ger-
mline-encoded pattern recognition receptors (PRRs) present 
either on the cell surface or within distinct intracellular com-
partments. PRRs include Toll-like receptors (TLRs), nucleo-
tide-binding oligomerization domain-like receptors (NLRs), 
and retinoic acid-inducible gene-1-like receptors (RLRs). 
Especially in the RLR-mediated pathway, the mitochondrion 
accelerates the signalling event through mitochondrial anti-
viral-signalling protein (MAVS), a downstream adaptor of 
RLRs located at the mitochondrial outer membrane (MOM) 
[45, 75]. Investigation of the roles of miRNAs in mitochon-
drial-mediated innate immunity showed that miR-302b and 
miR-372 affect the mitochondrial-mediated antiviral innate 
immune response by controlling mitochondrial function and 
metabolic demand. In dsRNA virus infection, upregulation 
of these miRNAs ultimately terminates the production of 
type I IFN (IFNα/β) and proinflammatory cytokines. These 
miRNAs are also involved in dynamin-related protein 1 
(DRP1)-dependent mitochondrial fragmentation and dis-
rupt mitochondrial metabolism by attenuating solute car-
rier family 25 member 12 (SLC25A12), a member of the 
SLC25 family [163]. Thus, inhibiting miR-302b and miR-
372 activities might have an antiviral effect against RNA 
virus infection.

Recently, Mishra et al. reported that microRNA(miR)-
30e-5p (miR-30e) is induced by hepatitis B virus (HBV) 
infection and acts as a master regulator for innate immune 
responses. Mechanistically, miR-30e targets multiple nega-
tive regulators such as SOCS1, SOCS3, ATG5, ATG12, 
TRIM38, TANK, and BECN1 of innate immune signalling 
pathways and increases innate immune responses [99].

Zhao et al. investigated differentially expressed microR-
NAs and found that miR-136 was overexpressed fivefold and 
exhibited potent antiviral effects in vitro against H5N1 influ-
enza A virus, as well as vesicular stomatitis virus (VSV) in 
A549 human lung epithelial cells. Furthermore, 3′-untrans-
lated region (UTR) reporter analysis revealed an miR-136 
binding site in the 3′ UTR of IL-6. In addition, miR-136 
acts as an immune agonist of retinoic acid-inducible gene 
1 (RIG-I), thus triggering the accumulation of IL-6 and 
IFN-β in A549 cells. This work showed the dual function of 
miRNA-136 in regulating host antiviral innate immunity as 
well as suggesting a vital role for the miRNA-activated path-
way in viral infection via pattern recognition receptors [174].

Chen et al. reported that upregulation of miR-146a in 
VSV infection could prevent transcription or translation of 

the RIG-I-related antiviral response by affecting TRAF6 
(TNFR-associated factor 6) and IRAK1/2 (interleukin 1 
receptor-associated kinase 1/2) [52]. Furthermore, it was 
demonstrated that miR-233 directly targets FOXO3 to 
control expression of type I IFN. The production of class 
I IFN triggered by VSV infection is responsible for the 
upregulation of miR-223 [19].

Liu et al. showed that VSV infection decreases miR-
33/33* expression through the macrophage type I IFN 
receptor (IFNAR). They reported that the upregulation 
of miR-33/33* impaired the RIG-I pathway, increasing 
the viral load and lethality while attenuating type I IFN 
expression [79]. In addition, miR-33/33* significantly 
inhibited the mitochondrial MAVS by affecting adeno-
sine monophosphate-activated protein kinase (AMPK), 
impeding the mitophagy-mediated elimination of dam-
aged mitochondria, which is required for effective MAVS 
activation [79].

The IFN immune response induces an antiviral state in 
cells. However, it also leads to overexpression of some miR-
NAs that downregulate the nuclear factor kappa B (NF-κB) 
and IRF pathways [44]. For example, the expression of miR-
221 was shown to be significantly increased in neural pre-
cursor cells (NPCs) infected with human cytomegalovirus 
(HCMV). miR-221 directly targeted the 3’-UTR of suppres-
sor of cytokine signalling 1 (SOCS1) and inhibited its gene 
expression. The upregulation of miR-221 reduced the viral 
load by enhancing type I IFN production and induction of 
interferon-stimulated genes (ISGs). However, restoration of 
SOCS1 abrogated the antiviral activities of miR-221. Addi-
tionally, miR-221 controlled the phosphorylation and crea-
tion of NF-κB by inhibiting SOCS1 [162].

Feline herpesvirus 1 (FHV-1) infection leads to overex-
pression of miR-26a through a cyclic guanosine monophos-
phate–adenosine monophosphate synthase (cGAS)-related 
pathway. miR-26a enhances the phosphorylation of the 
STAT1 and induces the activation of the type I IFN pathway 
by targeting the host SOCS5 directly, thereby suppressing 
viral replication [170].

Most viruses encode their own non-coding RNAs (ncR-
NAs). Like their host counterparts, viral ncRNAs associate 
with proteins that are crucial for their function, stability, 
or both. Various biological functions, including the regu-
lation of viral replication, viral persistence, host immune 
evasion, and cellular transformation, have been attributed to 
viral ncRNAs [150]. Herpesvirus saimiri (HVS) encodes a 
short uracil (U)-rich ncRNA, HSUR 1, which has a sequence 
complementarity to miR-27. Binding to HSUR 1 induces 
cleavage of miR-27, and this downregulation triggers T cells 
during HVS infection [1, 14, 48].

HCMV generates an ncRNA called miRNA decay ele-
ment (miRDE) that can bind and degrade miR-27 family 
members. This proviral function causes upregulation of the 
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synthesis of viral DNA and virus production during lytic 
infection [97].

Small ncRNAs (sncRNA) generated by the H5N1 sub-
type of highly pathogenic avian influenza virus (HPAI) play 
essential roles in organ infection, especially in the brain and 
lungs. This virus replicates more in the lung and thus causes 
more damage in lung tissue than in brain tissue [178]. In 
an RNA sequencing study, changes in the global expres-
sion of the four main sncRNA groups (miRNAs, snoRNAs, 
snRNAs, and piRNAs) were compared between the brain 
and lung of a duck during a 120-h time course of infec-
tion with this HPAI strain. Major organ-specific changes 
were detected in the populations of miRNA, snoRNA, and 
piRNA even before infection, and there was considerable 
reprogramming of all sncRNA groups during infection, but 
less so in the brain. Pathway prediction analysis of miRNA 
targets showed enrichment of infection-, inflammation-, and 
apoptosis-associated pathways in the lung and enrichment of 
metabolism-related pathways (including tryptophan metabo-
lism) in the brain [127].

Host cell miRNAs regulate virus replication

The expression levels of host miRNAs change in response 
viral infection. These up/downregulated miRNAs target the 
viral genome directly or indirectly to control viral replication 
and promote or inhibit the innate immune system and cell 
apoptosis in viral infection [176].

Recent studies have shown that host miRNAs can bind to 
many RNA viruses, thereby directly controlling their patho-
genesis. (+)-strand RNA viral genome replication simulates 
cellular mRNAs, allowing direct binding of the miRNA to 
the viral RNA, and this mode of regulation might be similar 
to that of host mRNAs. The effect of these miRNAs is to 
inhibit the translation of the viral genome and consequently 
prevent viral replication [148]. For example, type I IFN-
inducible miR-128 directly targets two sites in the transpor-
tin TNPO3 mRNA, considerably downregulating TNPO3 
mRNA and protein expression levels. TNPO3 is a nuclear 
importer that is important for HIV-1 replication, and down-
regulation of this protein prevents viral replication [11]. Oth-
ers have shown that miR-128 can inhibit HIV replication 
by directly targeting the 3′-UTR of the viral genome [110]. 
Some miRNAs, such as miR-323, hsa-miR-324-5p, miR-
491, miR-3145, miR-654, and miR-485, inhibit influenza 
virus infection by directly targeting the main component of 
the viral polymerase complex, polymerase basic protein 1 
(PB1) [58, 62, 69, 140]. A recent study showed that miR-
188-3p could inhibit the replication of influenza A viruses 
(H1N1, H5N6, and H7N9) in A549 cells by directly target-
ing PB2 expression [27]. Overexpression of miR-296-5p was 
observed in enterovirus 71 (EV71)-infected human rhabdo-
myosarcoma (RD) and SK-N-Sh cells. miR-296-5p directly 

affects two capsid protein coding regions (VP1 and VP3) in 
the viral genome in response to viral infection. Furthermore, 
miR-23b can prevent EV71 translation and replication by 
targeting the VP1 region [51, 177]. Elsewhere, it was shown 
that miR-548g-3p binds directly to the stem loop A promoter 
element of the dengue virus (DENV) 5′-UTR, preventing the 
recruitment of the viral RNA-dependent RNA polymerase 
(NS5) to the viral genome and thus suppressing viral repli-
cation [155].

Some host miRNAs enhance RNA virus replication by 
targeting the viral genome directly. For example, miR-122 
directly targets two different conserved sequences at the 
extreme 5′ end of the viral RNA, improving the stability of 
miR-122 and promoting the replication of hepatitis C virus 
(HCV) [96]. Another study demonstrated that miR-124-3p 
positively regulates Sindbis virus (SINV) by enhancing viral 
structural protein translation and virus production. Con-
sequently, inhibition of this miR-124-3p can reduce viral 
reproduction. Furthermore, inhibition of miR-124 expres-
sion has also been shown to reduce chikungunya virus 
(CHIKV) replication in human cells [84].

Host miRNAs act as antiviral factors by targeting host 
mRNAs that express pro-viral proteins. In DENV-2 infec-
tion, miR-223 downregulates the microtubule destabilizing 
protein stathmin 1 (STMN1) in human EAhy926 cells, thus 
preventing viral replication [159]. miR-27b-3p in DF-1 cells 
increases the expression of chicken IFN-β, IRF3, and NF-κB 
by directly binding to SOCS3/6, preventing IBDV replica-
tion in host cells. Suppression of endogenous miR-27b-3p 
through its inhibitors suppresses IFN-β, IRF3, and NF-κB, 
leading to increased expression of SOCS3/6 and increased 
replication of IBDV [34].

ACE2, a negative regulator of angiotensin II in the 
renin-angiotensin system, has been reported to have a criti-
cal function in acute lung injury (ALI) caused by influenza 
virus infection. It has been shown that avian influenza virus 
subtype H5N1 induces the overexpression of miR-200c-3p. 
Further investigation also showed that miR-200c-3p targets 
the 3′-UTR of ACE2. The suppression of miR-200c-3p leads 
to ameliorated ALI induced by H5N1 viral infection in vivo 
[82].

Li et al. speculated that viral RNAs act as a sponge to 
sequester endogenous miRNAs within infected cells, thereby 
cross-regulating the stability and translational effectiveness 
of host mRNAs with shared miRNA response elements [74]. 
Host mRNAs and viral RNAs that are involved in crosstalk 
and reciprocal interactions are referred to as “competitive 
viral and host RNAs” (cvhRNAs). Exogenous viral RNAs 
harbour the same miRNA-binding sites as cellular RNAs 
and compete with host RNAs for the same miRNA pools in 
infected cells. The crosstalk mechanisms of cvhRNAs rely 
on an ability to sequester or degrade the common miRNAs 
by binding to viral RNAs as well as regulating the extent 
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of desuppression of host mRNAs through downregulation 
of miRNAs. However, several recent studies have provided 
convincing evidence that host mRNAs and viral RNAs with 
common miRNA binding sequences mutually affect each 
other’s levels and activities by directly competing with the 
targeting miRNAs. Therefore, the relative abundance of viral 
vs. host RNAs, levels of common miRNAs, and the num-
ber of miRNA response elements might all affect cvhRNA 
interactions, based on a mathematical mass-action model 
for competitive endogenous RNA (ceRNA) networks. cvhR-
NAs play a role in infection with several viruses, including 
HBV, HCV, herpesvirus saimiri, murine cytomegalovirus, 
and HCMV [74, 138]. For example, pestiviruses hijack miR-
17 and let-7 family members to enhance their replication. 
Both miRNAs directly target the 3′-UTR of the viral genome 
to stabilize bovine viral diarrhea virus (BVDV) RNA and 
increase its translation [129]. It has also been reported that 
miR-10a* (miR-10a-3p) interacts directly with the 3D-cod-
ing sequence (nt 6818–6941) of coxsackievirus B3 (CVB3), 
thereby increasing viral replication. Further in vivo stud-
ies are necessary to explain the function of miR-10a-3p 
in CVB3 infection, in which a posttranscriptional control 
mechanism appears to be involved [147]. The role of miR-
122 in HCV infection is better understood [138]. miR-122 
directly targets two locations in the 5′-UTR of HCV RNA, 
with this binding causing a slight increase in viral protein 

translation while protecting the genome from XRN1medi-
ated degradation [50, 131]. miR-122 also competes with 
cellular poly(rC)-binding protein 2 (PCBP2) for binding to 
HCV genomic RNA and increases the efficiency of replica-
tion and packaging [94] (Table 1).

Exosomal miRNAs in infections with RNA viruses

Most miRNAs are intracellular; however, some are secreted 
from cells. In 2008, the first extracellular miRNA was 
described in maternal plasma, and circulating miRNAs were 
also reported in blood serum. Such miRNAs are detected in 
body fluids such as blood, urine, semen, cerebrospinal fluid 
(CSF), saliva, pleural effusions, and milk. Various possibili-
ties for secretion of circulating miRNA have been suggested, 
involving apoptotic bodies, exosomes, microvesicles, protein 
complexes, and high-density lipoproteins [56, 168].

Exosomes are endocytic-membrane-derived vesicles 
(30–120 nm) that carry various biomolecules, such as pro-
teins, lipids, mRNAs, and miRNAs, and they have vital 
functions in cell-to-cell signalling. They act as interme-
diaries in cell-to-cell communication to deliver miRNAs 
between cells. Exosomes are discharged into the extracel-
lular space via fusion of multivesicular bodies with the cell 
membrane. The secreted exosomes supply their load to the 
recipient cells by integrating into the cell membrane [78, 

Table 1   Effects of miRNA on virus replication

Virus miRNAs miRNA function Effect on Reference

HIV-1 miR-128 Directly binding to L1-RNA and suppressing the 
expression of all TNPO1, 2, 3 proteins

Inhibition [11]

HIV miR-29a Direct effect on virus mRNA Inhibition [110]
Influenza virus miR-323, hsa-miR-324-5p, miR-

491, miR-3145, miR-654, and 
miR-485

Direct targeting of PB1 RNA Inhibition [58, 62, 69, 140]

Influenza virus miR-188-3p Direct targeting of the PB2 gene Inhibition [27]
EV71 MiR-296-5p Direct effect on capsid protein VP1 and VP3 coding 

regions
Inhibition [51, 177]

DENV miR-548g-3p Binding directly to the stem loop A (SLA) promoter 
element within the DENV 5′-UTR and repressing 
viral replication

Inhibition [155]

HCV miR-122 Directly targeting two conserved regions in the 5′-UTR 
of the RNA

Enhancement [96]

SINV miR-124-3p Directly targeting viral RNA Enhancement [84]
DENV-2 miR-223 Downregulating STMN1 proteins Inhibition [159]
IBDV miR-27b-3p Increasing the expression of chicken IFN-β, IRF3, and 

NF-κB, by binding SOCS3/6
Inhibition [34]

WNVKUN miR-532-5p Downregulating SESTD1 and TAB3 mRNAs Inhibition [138]
H5N1 miR-200c-3p Upregulation of miRNA directly decreases ACE2 

protein expression
Enhancement [82]

BVDV miR-17 and let-7 family Directly targeting the 3′-UTR​ Enhancement [129]
CVB3 miR-10a* (miR-10a-3p) Directly targeting viral genome Enhancement [147]
HCV miR-122 Competing with PCBP2 and targeting the HCV genome Enhancement [94]
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130]. Since exosomes can carry viral miRNAs in addition 
to cellular miRNAs, they can be utilized to diagnose and 
treat viral infections [109] (Fig. 2). For example, in influenza 
virus infections, an elevated level of miR-483-3p has been 
found in exosomes of bronchoalveolar lavage fluid. miR-
483-3p acts as a modulator of the RIG-I signalling pathway 
by directly targeting RNF5 and CD81. It was therefore con-
cluded that this exosomal miRNA might mediate antiviral 
and inflammatory responses in influenza virus infections 
[91].

Decreased expression of platelet-derived growth factor 
B (PDGF-B with a concomitant increase in miR-29b pro-
duction was demonstrated in the basal ganglia region of the 
brains of morphine-dependent simian immunodeficiency 
virus (SIV)-infected macaques. In vitro results were verified 
in astrocytes treated with HIV Tat and morphine, resulting in 
an enhanced discharge of miR-29b in exosomes. Subsequent 
treatment of neuronal SH-SY5Y cells with exosomes from 
treated astrocytes led to reduced levels of PDGF-B, with a 
concomitant reduction in neuronal viability. It was discov-
ered that PDGF-B is a target for miR-29b, as demonstrated 
by the fact that targeting miR-29 to the 3′-UTR of PDGF-
B mRNA led to its translational suppression in SH-SY5Y 
cells [53].

Exosomal miR-155 has been shown to effectively inhibit 
enterovirus A71 infection by targeting phosphatidylinosi-
tol clathrin assembly protein (PICALM) in host cells [158]. 
Furthermore, exosomes released from EV71‐infected oral 
epithelial cells selectively packaged large amounts of 
miR‐30a, which was transferred to macrophages, targeting 
MyD88 and thereby reducing the expression of type I IFN 

in recipient cells and enhancing the replication of EV71 
[153]. In CVB3 infection, miR-30a and miR-181a were also 
detected in serum exosomes [39].

Coronaviruses: SARS‑CoV‑2

Coronaviruses (CoVs) are enveloped, positive-sense, sin-
gle-stranded RNA (+ssRNA) viruses that cause diverse 
illnesses in humans, animals, and birds [95, 105]. The fam-
ily Coronaviridae is subdivided into four genera, Alpha-, 
Beta-, Gamma-, and Deltacoronavirus, and members of 
the genera Alphacoronavirus and Betacoronavirus are 
known to infect humans [3, 17, 46]. Middle East respira-
tory syndrome coronavirus (MERS-CoV), severe acute 
respiratory syndrome coronavirus (SARS-CoV), and 
SARS-CoV-2 are the main CoVs causing severe lower 
respiratory tract infection with significant mortality. Four 
other CoVs cause human diseases, namely, human coro-
navirus (HCoV)-OC43, HCoV-NL63, HCoV-HKU1, and 
HCoV-229E, which mostly cause mild, self-limiting upper 
respiratory tract infections such as the common cold [16, 
55, 164]. Around the end of 2002, SARS-CoV appeared 
in southeast China and Hong Kong, causing more than 
8000 confirmed cases worldwide, with about 800 fatalities. 
MERS-CoV, initially recognized in June 2012 in Saudi 
Arabia, has caused over 1,791 confirmed cases of infection 
in 27 countries, with a fatality rate of approximately 35% 
[166]. SARS-CoV-2 emerged in Wuhan, China, in Decem-
ber 2019 and resulted in the ICU admission of 26–33% 
of infected individuals, with a mortality rate of 4–15% 

Fig. 2   Exosomal miRNA biogenesis in viral infection. Specific viral proteins can alter miRNAs in exosomes. In addition, some miRNAs can 
affect host responses to the virus and either stimulate or suppress infection
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[165]. The disease has spread worldwide, with more than 
135 million confirmed cases and 2.9 million deaths across 
216 countries, far more than caused by MERS-CoV and 
SARS-CoV-1 [114].

The genome size of CoVs ranges between 27 and 32 kb, 
making them the largest recognized RNA viruses [139]. All 
CoVs are similar in genome organization and expression. 
The structural proteins, including the nucleocapsid (N), 
membrane (M), envelope (E), and spike (S) proteins are 
encoded by ORFs located in the 3′ end. They are preceded 
by 16 nonstructural proteins (nsp1-16), which are encoded 
by open reading frame (ORF) 1a/b at the 5′ end [144]. The 
viral genome is used directly as an mRNA for translation of 
polyprotein 1a/1ab (pp1a/pp1ab) to generate the replication 
transcription complex (RTC) in double-membrane vesicles 
(DMVs). A nested set of subgenomic RNAs (sgRNAs) is 
synthesized by the RTC in a discontinuous manner. These 
negative‐strand sgRNAs, which have common 5′ leader and 
3′‐terminal sequences, are used as templates for generating 
subgenomic mRNAs [23].

SARS-CoV-2 is genetically very similar to the bat CoV-
RaTG13 (96.3%) [134, 172]. The SARS-CoV-2 genome 
contains 10 ORFs. The first ORF (ORF1a/b) codes for non-
structural proteins 1–16. The remaining ORFs encode the 
structural proteins S, M, E, and N as well as accessory pro-
teins [157] (Fig. 3). The viral surface (S) protein mediates 
entry of the virus into the host cell. To accomplish this, the 
S protein first binds to its receptor, ACE2, via its receptor-
binding domain (RBD) and is proteolytically activated by 
host proteases. The S protein is normally cleaved in the host 
cell into S1 and S2 subunits, which remain noncovalently 
connected and embedded in the viral envelope [7]. The 
S1 subunit engages the cellular receptors, mediating viral 
attachment to the host cell surface, whereas the S2 subunit 
induces membrane fusion, a process that involves a rear-
rangement of characteristic elements called heptad repeats 
(HRs) in S2 to generate a stable 6-helix bundle fusion core 
[161] (Fig. 3).

SARS-CoV-2 is internalized into the host cell via one 
of two distinct pathways: (1) the cell surface pathway, fol-
lowing activation by a serine protease such as TMPRSS2, 
or (2) the endocytic pathway within endosomal–lysosomal 
compartments, which involves processing by lysosomal 
cathepsins. The participation of each pathway in a certain 
cell type depends mainly on the expression of proteases, 
especially TMPRSS2. When TMPRSS2 is expressed, the 
initial entry pathway is chosen, while in the absence of this 
protease, the virus depends on the late pathway involving 
endocytosis and activation by cathepsin L. Subsequently, the 
virus most likely enters the cell in one of two ways: by direct 
fusion with the cytoplasmic membrane or by fusion with the 
endosomal membrane after receptor-mediated endocytosis 
and acidification of the endosome.

After internalization of the virus, the viral RNA is 
uncoated in the cytosol. ORF1a and ORF1ab are translated 
to generate pp1a and pp1ab, which are cleaved by the pro-
teases encoded by ORF1a to produce the RNA replicase-
transcriptase complex. This complex localizes to modified 
intracellular membranes derived from the rough endoplas-
mic reticulum (ER) in the perinuclear region, where it pro-
duces (–) RNAs. Full-length (–) RNA copies of the genome 
are generated and used as templates for synthesis of full-
length (+) RNA genomes during replication. A subset of 
7–9 subgenomic RNAs, including those encoding all of the 
structural proteins, is generated via discontinuous transcrip-
tion. In this process, a nested set of subgenomic (–) RNAs 
is produced that vary in length at the 3′ end and contain the 
5′ leader sequence, which is required for translation. These 
subgenomic (–) RNAs are then transcribed into subgenomic 
(+) mRNAs. Although the various subgenomic mRNAs 
might contain multiple ORFs, only the 5´-most ORF of 
each mRNA is translated to generate the structural proteins, 
which are assembled into the nucleocapsid and viral enve-
lope at the ER–Golgi intermediate compartment, followed 
by the release of the nascent virion from the infected cells 
[28].

Role of miRNAs in CoV infection

Coronavirus replication can also be influenced by miRNAs. 
For example, porcine hemagglutinating encephalomyeli-
tis virus (PHEV), a member of the genus Betacoronavirus 
that causes nervous system disorders in its host, has been 
reported to constitutively upregulate the expression of 
miR-10a-5p in host cells. Treatment with an miR-10a-5p 
mimic leads to enrichment of miR-10a-5p and a substantial 
decrease in PHEV replication, suggesting extensive negative 
control of RNA virus infection by miR-10a-5p [54]. It was 
also found that miR-21a-5p was significantly upregulated in 
the brains of mice, leading to negative regulation of Caskin1 
(CASK-interactive protein1) through direct binding to the 
3′-UTR of this gene. Since this miRNA promotes viral rep-
lication, the use of miR-21a-5p inhibitors could repress viral 
replication [86]. In addition, upregulation of miR-142a-3p 
in PHEV infection had a positive effect on viral prolifera-
tion by directly targeting the 3′-UTR of Rab3a-mRNA and 
suppressing its expression [40].

HCoV-OC43 is a member of the genus Betacoronavirus 
that causes viral infectious disease in the upper respiratory 
tract (common cold). It has been reported that the nucle-
ocapsid protein of OC43 triggers potentiation of NF-κB 
activation. During infection, nucleocapsid proteins induce 
upregulation of miR-9, which inhibits the NF-κB pathway 
via binding to the 3-UTR of NFKB1 mRNA (nuclear factor 
kappa B subunit 1), decreasing its expression [70].
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Transmissible gastroenteritis coronavirus (TGEV) is a 
member of the genus Alphacoronavirus that infects pigs 
and causes endoplasmic reticulum (ER) stress and induces 
production of IFN-I. Inositol-requiring enzyme 1α (IRE1α), 
an ER transmembrane sensor, increases virus prolifera-
tion through downregulation of miR-30a-5p. This miRNA 
commonly enhances the antiviral function of IFN-I by 
binding directly to JAK-signal transducer and activator of 

transcription (STAT), the inhibitor of SOCS1 and SOCS3. 
The viral infection reduces the abundance of miR-30a-5p 
and increases SOCS1 and SOCS3 expression [88].

Furthermore, circular RNA (circRNA)-EZH2 inhibits 
TGEV infection in the IPEC-J2 cell line by increasing 
NF-κB expression via binding to miR-22. miR-22 binds 
directly to HK2 and IL-6 during TGEV infection. Inhi-
bition of HK2 increases TGEV-induced mitochondrial 

Fig. 3   A The structural features 
of SARS-CoV-2 and its main 
structural proteins. B Genetic 
structure of the SARS-CoV-2 S 
gene. SP, signal peptide; NTD, 
N-terminal domain; RBD, 
receptor-binding domain; SD1 
and SD2, subdomains 1 and 2; 
S1/S2, S1/S2 protease cleavage 
site; S2′, S2′ protease cleavage 
site; FP, fusion peptide; HR1, 
heptad repeat 1; CH, central 
helix; CD, connector domain; 
HR2, heptad repeat 2; TM, 
transmembrane domain; CP, 
cytoplasmic tail
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permeability transition pore (mPTP) opening whilst 
leaving the NF-κB pathway unaffected. Inhibiting IL-6 
also increases TGEV-induced mPTP opening and sup-
presses the NF-κB pathway. Likewise, suppressing NF-κB 
enhances TGEV-induced mPTP opening [175].

In avian infectious bronchitis virus (IBV) infection, 
upregulated expression of miR-146a-5p promotes the 
primary step of viral replication. Ectopic expression 
of miR-200 caused the downregulation of IRAK2 and 
tumour necrosis factor receptor superfamily member 18 
(TNFRSF18) by targeting the 3’-UTRs of these genes [81].

In an in silico study using an miRNA database, it was 
demonstrated that miRNAs, including hsa-miR-628-5p, 
-7974, -208a-3p, -510-3p, -3934-5p,-6804-3p, -18a-3p, 
-548ax, -4474 5p, -6865-5p, and 342-3p, may have an 
inhibitory effect on MERS-CoV replication [49]. In SARS-
CoV-1 infection, bronchoalveolar stem cells (BASCs; 
CD34+ Sca-1+ CD45- PE-CAM2-) are the most important 
cell types in the bronchoalveolar duct junction (BADJ) 
that support viral replication. The encoded miR-17*, 
miR-574-5p, and miR-214 are increased in this stem cell 
line when SARS infection occurs. These miRNAs inhibit 
viral replication by binding to the mRNA encoding the S 
protein. In addition, the N and S coding regions targeted 
by the miRNAs co-opt downregulated miR-223 and miR-
98, respectively, within BASCs to regulate the different 
phases of BASC differentiation, activation of inflamma-
tory chemokines, and downregulation of ACE2, promoting 

effective viral transmission and replication within BASCs 
and continuous decay of lung tissue [92] (Table 2).

miRNAs inhibit SARS‑CoV‑2 infection by direct 
binding to the viral genome

To obtain deep insight into miRNAs expressed by SARS-
CoV and SARS-CoV-2, a series of in silico tools were 
applied to predict miRNAs generated by these viruses. The 
miRNAFold algorithm was first applied to predict loops in 
viral genomes, since hairpin loops generate the precursors 
of small RNAs. The algorithm predicted about 573 and 
575 hairpin loops in the SARS-CoV forward and reverse 
genome, respectively, and 574 and 550 hairpin loops in the 
SARS-CoV-2 forward and reverse genome sequence, respec-
tively. Since not all hairpin structures lead to functional miR-
NAs, the miRBoost algorithm was applied to identify hair-
pin loops that are more likely to yield functional miRNAs. 
Remarkably, it was found that, out of 65 potential miRNA 
sequences in the SARS-CoV-2 forward genome sequence 
that were identified by miRBoost, 56 were recognized by 
mirBase as matching human-specific miRNAs. Likewise, 
out of 64 miRNAs predicted in the SARS-CoV-2 reverse 
genome sequence, 39 matched human-specific miRNAs.

Furthermore, the algorithm identified 66 and 33 predicted 
miRNAs out of a repertoire of 89 and 79 in the forward 
and reverse SARS-CoV genome sequence, respectively, that 
matched human-specific miRNAs. Next, all of the available 
SARS-CoV and SARS-CoV-2 genome sequences were 

Table 2   Functions of miRNA in coronavirus infection

PHEV, porcine hemagglutinating encephalomyelitis virus; HCoV-OC43, human coronavirus OC43; JHMV, the JHM strain of mouse hepatitis 
virus; TGEV, transmissible gastroenteritis coronavirus; IBV, avian coronavirus; SARS, severe acute respiratory syndrome

Coronavirus miRNA Up/downregulation Effect Function Reference

PHEV miR-10a-5p Upregulation Antiviral miR-10a-5p causes suppression of viral replication by inhibiting 
SDC1.

[54]

PHEV miR-21a-5p Upregulation Proviral miR-21a-5p negatively regulates Caskin1 expression by binding 
the 3’-UTR of Caskin1 and promotes viral replication.

[86]

PHEV miR-142a-3p Upregulation Proviral miR-21a-5p promotes viral infection by directly targeting the 
3′-UTR of Rab3a.

[40]

HCoV-OC43 miR-9 Upregulation Antiviral miR-9-5p overexpression suppresses the NF-κB signalling path-
way via binding to the 3’-UTR of NFKB1 RNA and downregu-
lation of mRNA.

[70]

JHMV MiR-155 Upregulation Antiviral miR-155 promotes immune responses and cytokine secretion as 
well as a decreased cytolytic activity following JHMV infection.

[32, 76]

TGEV miR-30a-5p Downregulation Antiviral miR-30a-5p increases the IFN-I antiviral function by directly 
binding the inhibitor JAK- TAT, the inhibitor of SOCS1, and 
SOCS3.

[88]

IBV miR-146a-5p Upregulation Proviral miR-146a-5p, by targeting the 3’-UTRs of IRAK2 and 
TNFRSF18, promotes viral replication.

[81]

SARS miR-17*, miR-
574-5p, and 
miR-214

Upregulation Antiviral miR-17*, miR-574-5p, and miR-214, by binding to S-protein-
encoding mRNA, suppresses viral replication.

[92]
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compared to identify any virus-encoded miRNAs common 
to all of the sequences. Contrary to expectation, however, no 
virus-encoded miRNAs were detected that were common to 
all reverse and forward genome sequences of SARS-CoV-2 
and SARS-CoV isolates. Utilizing this strategy, about 263-
196 host miRNAs were recognized that could bind to any 
forward or reverse sequence of SARS-CoV-2 RNA. It was 
found that, compared to SARS-CoV, SARS-CoV-2 genomes 
possessed binding sites for a larger number of host miR-
NAs, which might be related to the lower pathogenicity of 
SARS-CoV-2 in healthy people. Correspondingly, although 
the genomes of SARS-CoV and SARS-CoV-2 differed in 
the number of miRNA targets, there was a strong resem-
blance among the virus-encoded noncoding RNAs in both 
genomes, suggesting a likely overlap between the pathogen-
esis of SARS-CoV and SARS-CoV-2 and the plausibility of 
developing novel therapeutic strategies that might effectively 
control both viral infections [116].

Other studies using in silico analysis methods showed that 
all SARS-CoV-2 genes (S, M, N, ORF1ab, ORF3a, ORF8, 
ORF7a, and ORF10) except E and ORF6, are targeted by 
several human miRNAs. For example, hsa-miR-203b-3p, 
which has already been shown to suppress influenza A 
virus replication [171], was predicted to target ORF1ab and 
ORF3a. Although hsa-miR-148a-3p targets ORF8 to prevent 
interspecies transmission and replication, it was also found 
to target the S, E, M, and ORF1a genes in SARS-CoV [93]. 
hsa-let-7c-5p is predicted to target ORF1ab in SARS-CoV-2, 
while it has been found to be involved in suppression of 
H1N1 influenza A virus by targeting its M1 gene [89].

The protein encoded by ORF6 of SARS-CoV 1 represses 
the type I IFN pathway by inhibiting nuclear transport of 
STAT1 in the presence of INF-β. Thus, hsa-miR-190a-5p 
might target the ORF6 gene to the overwhelm the immune 
system escape during SARS-CoV-2 infection [29]. As a 
result, using a mimic of this miRNA as an inhibitor might 
also affect COVID-19 (Fig. 4). Some human miRNAs target-
ing the SARS-CoV-2 genome can also be effective in other 
CoVs, such as MERS-CoV, SARS-CoV, and human corona-
virus NL63 (HCoV-NL63). For example, miR-4259 is pre-
dicted to recognize MERS-CoV and SARS-CoV-2, binding 
to the N coding region in the SARS-CoV-2 genome. Other 
miRNAs such as miR-1181, miR-1307-3p, miR-146b-3p, 
and miR-1229-5p are predicted to recognize both SARS-
CoV-2 and SARS-CoV, and hsa-miR-1229-5p is predicted 
to recognize both SARS-CoV-2 and HCoV-NL63, targeting 
the ORF3a gene region in the SARS-CoV-2 viral genome 
[29, 83]. The differences in miRNA targets between SARS-
CoV-2 and other human CoVs suggests a possible role in 
their distinct clinical features [83].

Indirect effects of miRNAs on SARS‑CoV‑2 infection

SARS-CoV-2 infection causes variations in the expression 
levels of host miRNAs. For example, in lung epithelial cells 
infected with SARS-CoV-2, the expression levels of hsa-
let-7a-3p, hsa-miR-135b-5p, hsa-miR-16-2-3p, and hsa-
miR-1275 decrease, while those of hsa-miR-155-3p and hsa-
miR-139-5p increase. As a result, decreasing the expression 
level of host miRNAs is likely to increase the susceptibility 

Fig. 4   Homo sapiens miRNAs (hsa-miR-) have been identified to bind to sites in SARS-CoV-2 RNA encoding structural proteins and non-struc-
ture proteins. Reproduced with permission [29]
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of the respiratory epithelium to infection. On the other hand, 
enhancing the expression levels of host miRNAs may pro-
vide protection against viral infection and replication [26].

Viral infections lead to a high abundance of viral RNA, 
and the increased number of potential miRNA binding sites 
could represent a very effective defense by decreasing the 
levels of cellular miRNA throughout the initial phases of 
infection. Furthermore, pathogenic human CoVs could 
inhibit host-specific miRNAs and repress the immune reac-
tion or suppress induction of unfolded protein response 
(UPR)-dependent apoptosis. SARS-CoV-2 genomic RNA 
can decrease the effective host miRNA level by function-
ing as an miRNA sponge, thereby accelerating viral rep-
lication and inhibiting immune responses. For example, a 
SARS-CoV-2-mediated decrease in host miR-495-5p and 
miR-34a-3p rates could enhance X-box binding protein 
transcription factor and binding immunoglobulin protein 
expression, respectively, by enhancing the endoplasmic 
reticulum folding capacity and increasing survival. SARS-
CoV-2 can also affect the mTOR and autophagy pathways 
by regulating miR-376b-3p. Some of these miRNAs, such 
as miR-376a-3p, miR-99b-5p, miR-10a-5p, miR-99b-5p, 
miR-548av-5p, and miR-376a-3p, have also been suggested 
to regulate immune responses [8].

Viruses have strategies to increase their replication, 
such as hijacking host RNA helicases. RIG-I/Ddx58 recep-
tors possess a helicase domain, which interacts with viral 
nsp13 and commences the viral life cycle. The expression 
of Ddx58 is increases immensely in SARS-CoV-2-infected 
cells, which might also be one of the possible causes of the 
enhancement of viral replication. Also, Ddx58 is involved 
in processes of miRNA biogenesis and mRNA splicing; 
therefore, its overexpression would trigger reprogramming 
of miRNA splicing events leading to negative regulation 
of miRNAs, such as miR-124-3p, which has a predicted 
recognition site in the 3′-UTR of Ddx58. Hence, upregu-
lation of miR-124-3p would trigger Ddx58 degradation, 
thereby leading to reduced viral replication. RIG-I/Ddx58 
also upregulates Stat1 (TF), which, upon phosphorylation, 
associates with IFN regulatory factor 9 and Stat2 to produce 
heterotrimers and commence the transcription of ISGs to 
exert antiviral effects. Furthermore, the virus might acti-
vate cytosolic translocation of Drosha to neutralize ISG-
mediated antiviral effects, which could reprogram splicing 
events to yield other lncRNAs and circRNAs that could act 
as a sponge for miR-124-3p and hamper its ability to degrade 
Ddx58 [6].

Lu et al. showed that miR-200c suppresses ACE2 expres-
sion in both human and rat cardiomyocytes, and therefore, 
miRNAs can be exploited for prevention of cardiovascular 
problems in SARS-CoV-2 infection [85].

ACE2 levels on cell membranes are controlled by 
ADAM17, which increases the shedding of the protein. 

Notch signalling negatively regulates ADAM17 and posi-
tively regulates furin through the transcription of miRNA-
145. Thus, inhibition of γ-secretase, which suppresses Notch 
activation, might be a promising strategy for inhibiting 
SARS-CoV-2 entry into the cells by decreasing furin expres-
sion and enhancing ADAM17-meidiated shedding. In addi-
tion, miRNA-145, which negatively regulates ADAM17, 
targets Jagged1/Notch1 signalling in vascular smooth muscle 
cells. Therefore, the use of an antagomir of miR-145 might 
be an alternative approach for upregulation of ADAM17 
[121].

The kidney manifestations of SARS-CoV-2 infection 
include acute kidney injury, collapsing glomerulonephritis, 
podocyte apoptosis, interstitial nephritis, and progressive 
chronic kidney disease. Batle et al. revealed that acute kid-
ney injury is one of the crucial manifestations of SARS-
CoV-2 infection. Proinflammatory mediators play a vital 
role in these manifestations. ACE2, a crucial proinflamma-
tory mediator in acute kidney injury or glomerular disorders 
related to COVID-19, is upregulated by miRNA expression. 
Certain miRNAs, in particular those associated with ACE2 
expression, are involved in the augmented levels of proin-
flammatory circulatory mediators. Numerous miRNAs are 
implicated in ACE2 expression, with most of them being 
affected in other organs, while miR-125b and miR-18 are 
mainly expressed in the kidney. At present, only antimir-18 
has solid data showing it to be a silencer of ACE2 expres-
sion. miRNA-based therapy, particularly with antimiR-18 
and antimir-125b, is a novel potential ACE2-targeting thera-
peutic choice for nephropathy related to COVID-19. Addi-
tional studies of the effects of antimiR-18 and antimiR-125b 
are still needed [156].

miR-5197-3p has been shown to interact efficiently with 
the genomic RNA (gRNA) of MERS-CoV, SARS-CoV, 
and SARS-CoV-2. A recent study has shown that critical 
miRNAs, including miR-5197-3p, miR-4778-3p, and miR-
6864-5p, interact with complete complementary miRNA 
(cc-miR) and have therapeutic potential owing to their bind-
ing affinity for the gRNA of SARS-CoV-2. A complemen-
tary miRNA based on the complete miR-5197-3p sequence 
might have considerable therapeutic value due to its affinity 
for the gRNA of SARS-CoV-2 and lack of undesired effects 
on human genes [5] (Table 3).

Strategies for designing miRNA mimics 
and antagonists

The miRNA mimic technology (miR-Mimic) is a pioneering 
approach for gene silencing. The nonnatural double-stranded 
RNA generated in this approach is designed to possess a 5′ 
end bearing a motif partially complementary to a selected 
sequence in the 3′-UTR that is unique to the target gene. 
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Once present in the cell, this piece of RNA, which simulates 
an endogenous miRNA, can bind specifically to its target 
gene and cause posttranscriptional suppression of the gene. 
The primary stage of producing an miRNA mimic is to rec-
ognize a stretch of sequence in the 3′-UTR that is unique 
to the gene of interest (target mRNA), similar to designing 
an siRNA [107]. However, unlike the full complementarity 
between an siRNA and its target in any area of the gene, 
an miRNA mimic base-pairs only partially with the target 
sequence in the 3′-UTR. The size of the sequence should be 
long enough for the miRNA to function, which is at least 8 
nt, and ideally > 14 nt [154].

miRNA mimics are unstable and have less durability in 
cells. In a recent study, Nogimori et al. found that miRNA 
mimics are quickly destroyed via a mechanism differ-
ent from Tudor-staphylococcal/micrococcal-like nuclease 
(TSN)-mediated miRNA decay, which destroys endogenous 

miRNAs. Instead, the newly recognized 2′-5′-oligoadenylate 
synthetase (OAS)/RNase L was identified as the main ele-
ment responsible for the degradation of miRNA mimics in 
human cells. The authors propose that the OAS1 identi-
fies the miRNA mimic and generates 2′-5′-oligoadenylates 
(2–5A), causing the triggering of latent endoribonuclease 
RNase L to destroy the miRNA mimic. A small-molecule 
suppressor that inhibits RNase L can block degradation of 
miRNA mimics [111].

In another study, to suppress oncogenic KRAS in pan-
creatic ductal adenocarcinoma (PDAC) cells, Ferino et al. 
developed ss-miR-216b mimics with unlocked nucleic acid 
(UNA) modifications to increase their nuclease resistance. 
Variants of ss-miR-216b mimics were prepared with and 
without a 5ʹ phosphate group. The main characteristic of 
UNA is the lack of a C2ʹ-C3ʹ bond in the ribose moiety, an 
alteration that increases the flexibility of the RNA strand. 

Table 3   Indirect effects of miRNAs on SARS-CoV-2 infection

miRNA Effects on SARS-CoV-2 infection Effect on level Reference

hsa-let-7a-3p, hsa-miR-135b-5p, hsa-miR-16-2-3p They elevate the susceptibility of the lung epithelium to 
infection.

Decrease [26]

hsa-miR-155-3p and hsa-miR-139-5p They may provide cellular protection against viral infec-
tion and replication.

Increase [26]

miR-34a-3p and miR-495-5p They enhance X-box binding protein transcription factor 
and binding immunoglobulin protein expression by 
increasing the endoplasmic reticulum folding capacity 
and cell survival, respectively.

Decrease [8]

miR-376a-3p, miR-99b-5p, miR-10a-5p, miR-376a-3p, 
miR-548av-5p, and miR-99b-5p

They regulate immune reactions. – [8]

miR-124-3p Upregulation of miR-124-3p causes the degradation of 
Ddx58, thereby leading to a decrease in viral replica-
tion.

Increase [6]

miR-6741-3p miR-6741-3p plays a role in the control of APOL1. Increase [125, 152]
miR-101, miR-100, miR-99a/b, miR-7, miR-107, let-7, 

and miR-199,
They target the mTOR mRNA and lead to inhibition of 

viral replication.
– [119]

miR-7, miR-107, miR-429, miR-200, miR-15/16, miR-
223, miR-143/145, and miR-17

They target RPS6KB1 mRNA and lead to inhibition of 
viral replication.

- [119]

miR-98-5p It targets and inhibits IL-6 gene expression, in turn, 
influencing several proinflammatory cytokines, includ-
ing TNF-α, IL-1β, and IL-10.

Increase [118]

miR-3934-3p miR-3934-3p leads to reduced TGFB1 and SMAD3 gene 
expression. The TGF-β/Smad pathway is important for 
lung fibrosis in SARS-CoV-dependent patients.

Increase [5]

miR-200c miR-200c suppresses ACE2 expression in both rat and 
human cardiomyocytes in SARS-CoV-2 infection.

Increase [85]

miRNA-145 miRNA-145 downregulates ADAM17, which is a target 
of Jagged1/Notch1 signaling in vascular smooth 
muscle cells.

Increase [121]

miR-5197-3p This miRNA interacts efficiently with the gRNA of 
SARS-CoV, MERS-CoV, and COVID-19. It was 
proposed that the production of miR-5197-3p-based 
cc-miRNA might play an important therapeutic role, 
due to its structural affinity for gRNA of SARS-CoV-2, 
with no side effects on human genes.

Increase [5]
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A single UNA modification in the center of an RNA/RNA 
duplex can reduce the melting temperature (Tm) by 5–10 °C; 
however, when the UNA modification is located close to the 
duplex terminal, it leads to a relatively low drop to a Tm of 
1–3 °C [42].

Anti-miRNA oligonucleotides (antagomirs, also known 
as anti-miRs) are synthetically designed molecules that 
are applied to neutralize miRNAs. They can be applied as 
further control and for treating certain cellular disorders 
via hybridization to miRNA and a steric blocking mecha-
nism. Understanding the miRNA sequences involved in 
various disorders, especially viral infections, can allow us 
to apply anti-miRs to interrupt pathways that cause the up/
downregulation of cell proteins that generate signs of dis-
eases. During anti-miRs design, essential modifications to 
optimize binding affinity, improving nuclease resistance, 
and in vivo delivery must be considered.

Most studies on anti-miR design strategies have focused 
on chemically modifying the sugar or phosphodiester 
backbone of the oligonucleotide to enhance the thermody-
namic stability and nuclease resistance of the miRNA/anti-
miR duplex. For instance, phosphorothioate (PS) bonds 
and 2′-O-methyl alterations of anti-miRs have been dem-
onstrated to increase nuclease resistance. Locked nucleic 
acid (LNA) alterations, which pre-organize the sugar in a 
3′-endo pucker, allow miRNAs to be targeted with higher 
affinity.

As the active fragment of a miRNA in a cell is dependent 
on an Ago protein, structures of Ago proteins connected 
to RNA provide a potential starting point for further anti-
miR optimization. Numerous crucial aspects of miRNA 
recognition within hAgo2 have been identified, includ-
ing targeting the 5′ end of the miRNA strand in the mid-
dle (MID) domain and 3′ end in the PAZ (Piwi/Argonaute/
Zwille) domain, which allows cradling of the miRNA-target 
duplex. One attractive structural aspect of human Ago2 is 
a small solvated pocket within the L2 and MID domains of 
hAgo2, which allows specific binding to adenosine in the 
target strand at nucleotide position 1 (t1A). As miRNAs con-
nect anti-miRs by target strand recognition, the t1 nucleotide 
position matches the 3′ end of a typical anti-miR.

Pham et  al. developed a unique anti-miR produc-
tion method based on the structure of hAgo2 with bound 
miRNA-target RNA duplex to enhance the potency of 
anti-miRs. They carried out copper-catalyzed alkyne/azide 
cycloaddition reactions to produce t1-triazole-altered anti-
miRs and tested their activity in cell-based anti-miR assays. 
Numerous triazole-altered anti-miRs were found to be more 
potent than anti-miRs bearing adenosine at the t1 location. 
This ester modification was found to enhance the potency 
of two different anti-miR sequences. Furthermore, triazole-
altered anti-miRs displayed improved 3′-exonuclease resist-
ance [117].

A major obstacle to the use of anti-miRNAs in vivo is the 
need to deliver them to the location where the target gene 
is located. In order to make them more resistant to degra-
dation and to facilitate their entry into cells, miRNAs are 
encapsulated into various delivery systems or conjugated to 
artificial carriers.

LNA, an altered antisense oligonucleotide that can bind 
the miRNA seed region, has been suggested as a promising 
type of anti-miR. LNA seed family inhibitors can inhibit 
entire miRNA families as well as individual specific miR-
NAs [2].

2′-O-methyl (2′-OMe)-4′-thioRNA is a hybrid type of 
chemically modified oligonucleotide that shows significant 
binding affinity to complementary RNAs and strong resist-
ance to destruction by nucleases. Takahashi et al. assessed 
2′-OMe-4′-thioribonucleosides for chemical modification of 
anti-miRs. Optimization of the modification pattern using 
various chemically altered anti-miRs that were complemen-
tary to a mature miR-21 showed that a uniformly 2′-OMe-4′-
thioribonucleoside–modified antimiR was the most potent. 
Further research revealed that phosphorothioate modifica-
tion contributed to long-lasting miR-122 inhibition through 
the 2′-OMe-4′-thioribonucleoside–modified anti-miR. Also, 
anti-miRs that were systemically administered to mice using 
a liposomal delivery system, YSK05-MEND, were delivered 
to the liver, and effective suppression of miR-122 function 
was achieved at a lower dose in vivo [145].

The 2′-O-Me modification, as well as the 2′-O-methoxy-
ethyl (2′-MOE) and 2′-fluoro (2′-F) modifications, affect the 
2′ position of the sugar moiety, whereas LNA is a class of 
bicyclic RNA analogues in which the furanose ring in the 
sugar-phosphate backbone is chemically locked in an RNA-
simulating N-type (C3′-endo) conformation through the for-
mation of a 2′-O,4′-C methylene bridge. These alterations 
provide resistance against nucleases and improve the target-
ing of anti-miR oligonucleotides to their cognate miRNAs. 
LNA in particular has the strongest effect on binding to the 
complementary RNA, with an increase in the duplex melt-
ing temperature (Tm) of 2–8 °C per LNA monomer when 
compared to unmodified duplexes. Another key feature of 
the LNA is that the monomers can twist the sugar confor-
mation of flanking DNA nucleotides from an S-type (C2′-
endo) toward an N-type sugar pucker in LNA-altered DNA 
oligonucleotides [143].

miRNA delivery approaches for efficient 
treatment of SARS‑CoV‑2 infection

miRNAs play a significant role in the development and prog-
nosis of various diseases and are potential candidates for 
improving novel therapeutic approaches. Instability, high 
probability of destruction by nucleases, and immunotoxicity 
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have led to special attention being paid to safe and effective 
miRNA delivery strategies [22, 108, 115, 173].

Two important delivery strategies, local and systemic, 
have been considered for miRNA delivery, though the lack 
of proper release mechanisms is a roadblock to their utility. 
Effective gene silencing has been achieved through local 
administration of miRNAs, which results in higher bioavail-
ability. Local delivery of miRNAs also results in lower cyto-
toxicity than systemic delivery. Systemic miRNA delivery 
activates the innate immune response, causing unexpected 
effects and adverse reactions. Following systemic injection, 
a steep drop occurs in the concentration of miRNA antago-
nists or mimics in the lung tissue [22, 108, 115, 173]. Valu-
able efforts have been made towards modifying the delivery 
of miRNA-based therapies to overcome the obstacles of in 
vivo delivery systems.

Several viral vectors, including retroviruses, lentiviruses, 
and adenoviruses, have been used for gene transfer into 
many different cell types both in vitro and in vivo. Despite 
promising results in various pre-clinical and clinical stud-
ies, their strong immunogenicity and the risk of insertional 
mutagenesis are major obstacles to the clinical translation 
of viral vectors [22, 108, 115, 173]. Recently, various non-
viral delivery systems, including polymeric nanoparticles, 
lipid nanocapsules, inorganic nanoparticles, etc., have been 
designed and investigated to deliver different therapeutic 
molecules, especially miRNAs [15, 41, 146].

LNPs have been recognized as a highly promising plat-
form for producing vaccines [36]. Since mRNA is highly 
unstable and can induce an innate immune response upon 
injection, it has not been traditionally used as a therapeu-
tic agent. Furthermore, mRNA requires a carrier system to 
pass the plasma membranes of target cells. Thus, LNP-based 
delivery systems have been designed to encapsulate mRNAs 
coding for MAbs.

This RNA-therapy platform stabilizes the mRNA and can 
be administered repeatedly, resulting in sustained production 
of antibodies while escaping the effect of the innate immu-
nity against exogenous RNA. Moreover, LNPs improve 
mucosal and cellular absorption and increase biocompat-
ibility. Positively charged LNPs cause electrostatic absorp-
tion to the negatively charged mucosal membranes, reducing 
their clearance via the mucosal cilia [124].

Nanotechnology-based strategies offer feasible solutions 
to the delivery challenge by trafficking the vaccine to appro-
priate cellular populations and subcellular sites. While syn-
thetic nanodelivery systems such as polymeric nanoparticles 
and cationic liposomes have been utilized to deliver DNA 
vaccines through plasma membranes, targeted formulations 
could further improve the plasmid nuclear translocation 
of DNA. Nanotechnology platforms such as dendrimers, 
liposomes, polysaccharide particles, and cationic nanoemul-
sions have been used to enhance the stability and transfer 

of mRNA-based vaccines [136]. For example, Pfizer and 
Moderna used LNPs for the delivery of mRNA, which may 
enable cytoplasmic delivery via fusogenic mechanisms [120, 
126]. An mRNA-based technology platform, RNActive®, 
has been used to develop a SARS-CoV-2 vaccine containing 
sequence-optimized mRNA coding for a stabilized form of 
the S protein loaded in LNPs. No vaccine-related serious 
side effects were observed [67].

A self-amplifying RNA (saRNA) expressing the SARS-
CoV-2 spike protein loaded within an LNP as a vaccine 
showed high and dose-dependent SARS-CoV-2 specific 
antibody titers in mouse sera, as well as robust neutralization 
of both a wild-type virus and a pseudovirus. saRNA LNP 
immunization induced a Th1-biased response in mice. A 
strong cellular response, as characterized by IFN-γ produc-
tion, was observed upon re-stimulation with SARS-CoV-2 
peptides. This potent LNP-encapsulated saRNA vaccine can 
be injected using a normal needle and syringe and does not 
require electroporation equipment, perhaps allowing more 
extensive vaccination against COVID-19 [98].

Cationic lipids might be fabricated from commercially 
available products, such as Lipofectamine®, because of 
their hydrophilic head and a hydrophobic tail. Numerous 
investigations have demonstrated the applicability of cati-
onic liposomes as a delivery system for delivering miRNA 
in vivo. Presently, many types of cationic lipids are avail-
able for nucleic acid medicine delivery. Nevertheless, the 
key downside of using cationic lipids is low delivery effi-
ciency. More recently, novel lipids have been produced to 
solve this problem, and novel tools have been established for 
creating lipid nanocomplexes. Polyethylene glycol (PEG), a 
frequently applied functional group, was grafted to cationic 
lipids to inhibit phagocytosis of the reticuloendothelial sys-
tem when administrated systemically [36].

Liposomes have been commonly applied as cell transfec-
tion reagents and vaccine adjuvants [167]. The interest in 
liposomal vaccine delivery systems has markedly increased. 
The effectiveness of this method has been shown, and sub-
sequent human experiments are underway [21] (Fig. 5). Ju 
et al. have demonstrated the use of carbon dots to deliver 
LNA-based inhibitors for specific inhibition of viral miR-
NAs, which prevented the reproduction of Kaposi’s sar-
coma-associated herpesvirus (KSHV)-related primary effu-
sion lymphoma (PEL) cells. KSHV has essential functions 
in controlling the proliferation and survival of virus-induced 
cancer cells. Particularly, an amalgamation of Cdots-LNAs 
to knock down the levels of miR-K12-1, miR-K12-4, and 
miR-K12-11 of KSHV induces apoptosis and suppresses the 
increase in PEL cells [60]. Karlsen and Brinchmann used a 
liposome delivery system for transfection of human articu-
lar chondrocytes (hAC) and mesenchymal stem cells with 
amiR-145, which caused off-target immunological effects 
mediated by RIG-I. An immune response was also observed 
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Fig. 5   Different delivery systems for mRNA. LNPs are generated via 
the self-assembly of an ionizable cationic lipid. Different nanoparti-
cles of these cationic lipids (such as 1,2- dioleoyloxy-3-trimethyl-
ammoniumpropane [DOTAP] or dioleoyl phosphatidylethanolamine 
[DOPE]) are formulated with subtle modifications (such as cationic 
lipids + cholesterol nanoparticle, cationic lipids + cholesterol + 
PEG-LNP), where cholesterol and PEG-lipid are added to enhance 

stability. Other nanodelivery systems include protamine (cationic 
peptide) nanoliposomes (sized about 100 nm), PEG-lipid function-
alized dendrimer nanoparticles (about 200 nm in size), positively 
charged oil-in-water (O/W) cationic nanoemulsion (about 120 nm in 
size), polyethyleneimine nanoparticles (about 100−300 nm in size), 
and cationic polymer (chitosan) nanoparticles (about 300−600 nm in 
size) [18]



2665MicroRNAs as a therapeutic strategy for SARS-CoV-2 infection

1 3

with blunt-ended and 2-nucleotide 3′ overhang versions of 
synthetic miR-145 lacking a 5′ppp cap. Importantly, expo-
sure to liposomes alone caused overexpression of immune 
genes such as RIG-I [61].

Ohno et al. developed a bionanocapsule delivery sys-
tem for the exogenous release of miR-93 in HBV-infected 
hepatocytes. This nanosystem comprising HBV envelope L 
proteins restored MICA (MHC class I polypeptide-related 
sequence A) protein expression levels in the cell culture 
supernatant. The findings of that study suggested that the 
rescued suppression of soluble MICA protein levels by 
miRNA93 targeted to HBV-infected hepatocytes applying 
bionanocapsules may be beneficial for inhibiting HBV-
induced HCC by altering the expression of deregulated 
miRNA93 [113].

Various viral and nonviral vaccine platforms have been 
used to develop efficient SARS-CoV-2 vaccines. The China-
based CanSinoBIO’s Convidicea (Ad5-nCoV) vaccine is a 
genetically engineered vaccine candidate with a replication-
defective adenovirus type 5 as a vector for expression of the 
SARS-CoV-2 S protein [135]. INO-4800, a DNA plasmid 
encoding S protein, was delivered in the host intradermally 
or intramuscularly by an electropermeabilization method, 
which uses an electric field for enhancing the permeability 
of cell membranes [12]. The LV-SMENP-DC vaccine was 
made by modifying DCs with lentiviral vectors expressing 
SARS-CoV-2 minigene SMENP and immune-modulatory 
genes to activate cytotoxic T cells [87, 142].

Exploiting genetically engineered viral vectors for 
miRNA delivery can increase the risk of integrating viral 
DNA into the host DNA. Liposomes may be toxic and pro-
duce side effects in normal organs and tissues. Furthermore, 

liposomes may have low resistance to immune responses 
[25]. Van Zandwijk et al. developed a nanoparticle-based 
delivery method as an alternative to liposomes utilizing 
EnGeneIC Delivery Vehicle (EDV) packaging. After loading 
with miR-16-5p mimics, EDVs were coated with bispecific 
antibodies [80, 151]. Upon targeting receptors present on 
the membranes of non-small-cell lung carcinoma (NSCLC) 
cells, EDV undergoes a process of endocytosis. This deliv-
ery system has shown effective delivery of the miRNAs 
to induce adaptive immune responses [90] and might be 
highly effective for delivering therapeutic miRNAs against 
SARS-CoV-2 infection. In this approach, a bacterially 
derived EDV™ nanocell platform and specific antibodies 
can be used for targeted therapy of lung cells infected with 
SARS-CoV-2. To accomplish this, an anti-ACE2 antibody 
is incorporated into the EDV™ nanocells containing SARS-
CoV-2 RNA-targeting miRNAs. An empty EDV™ nanocell 
with a diameter of 400 nm can load about 1 million differ-
ent SARS-CoV-2 RNA-targeting miRNAs. Using an anti-
ACE2 antibody, EDV might bind to the ACE2 receptors 
present on the membranes of infected cells and undergo a 
process of endocytosis, resulting in miRNAs targeting viral 
RNA and inhibition of SARS-CoV-2 infection (Fig. 6). Fol-
lowing promising data from in vitro studies on appropriate 
cell line models of COVID-19, such as Vero E6 cells, the 
efficiency of miRNAs loaded into anti-ACE2-antibody-con-
jugated EDV™ nanocells can be evaluated for inhibition 
of SARS-CoV-2 infection in infected human ACE2 trans-
genic mice and rhesus macaques. Human ACE2 transgenic 
mice showed weight loss, virus replication in the lungs, and 
interstitial pneumonia after SARS-CoV-2 infection [8], and 
infected macaques had high viral loads in the upper and 

Fig. 6   3D illustration of EnGeneIC’s bacterially derived EDV™ nanocell platform for possibly inhibiting SARS-CoV-2 infection
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lower respiratory tract, pathologic evidence of viral pneu-
monia, and humoral and cellular immune responses. Rhesus 
macaques were used to evaluate the therapeutic efficacy of 
remdesivir, DNA vaccine candidates expressing the S pro-
tein, and adenovirus-vectored vaccines [20, 153, 160, 170].

Conclusion

Scientists are developing efficient treatment and preventive 
strategies for COVID-19 infection. Using the knowledge that 
has been gained about SARS-CoV-2, including the struc-
ture of the viral genome, characteristics of the structural 

and non-structure proteins, its target cells, its mechanism 
of replication in host cells, and the identity of its recep-
tor, different strategies can be tailored for the treatment of 
COVID-19. Exploiting therapeutic molecules such as miR-
NAs with high therapeutic efficiency and high diversity 
might be one effective solution. miRNAs have been shown 
to have different functions in different coronaviruses, such 
as activating the immune system and directly binding to 
CoV RNA to inhibit CoV replication. CoV infections also 
lead to up- and downregulation of host cell miRNAs. It was 
revealed that miR-6729-5p targets the S and N genes, as 
well as miR-2052; miR-3127-5p targets the ORF1A and S 
genes in SARS-CoV-2 RNA. However, some miRNAs target 
only one site in the viral RNA. For example, miR-447b only 

Fig. 7   The function of miRNAs in SARS-CoV-2 infection. miRNAs directly target viral RNAs at several sites and inhibit viral replication. Also, 
indirect effects include modulation of the expression of host factors that are essential for one or more phases of the viral life cycle
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targets the S protein gene and miR-325, and miR-34a-5p 
only targets the M protein gene.

Some host cell miRNAs involved in SARS-CoV-2 infec-
tion have a similar role in MERS, SARS, and HCoV-NL63 
infection, indicating the high potential of using only one 
miRNA to treat different viral infections. In addition, 
miR-200c-3, by binding to the 3′-UTR of ACE2, causes 
a decrease in ACE2 levels, resulting in increased ALI or 
ARDS in H5N1 infection and SARS. Thus, using such 
miRNA mimics as an inhibitor might be efficient in treat-
ing SARS-CoV-2 infections (Fig.  7). Poor intracellular 
delivery and disruptive naked miRNAs aggregation within 
endosomes lead to inefficient gene silencing. These short-
comings diminish the clinical efficacy of miRNA delivery. 
Thus, efficient delivery strategies such as EDV™ nano-
cells might provide a safe and targeted delivery system for 
miRNA mimics and inhibitors to target infected tissues such 
as the lung and inhibit SARS-CoV-2 replication. Neverthe-
less, it should be noted that the application of miRNAs for 
targeted therapies is still in its early phases, and only a small 
number of miRNAs have been employed in clinical trials.
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