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Abstract
A brain–computer interface (BCI) can connect humans and machines directly and has achieved successful applications in

the past few decades. Many new BCI paradigms and algorithms have been developed in recent years. Therefore, it is

necessary to review new progress in BCIs. This paper summarizes progress for EEG-based BCIs from the perspective of

encoding paradigms and decoding algorithms, which are two key elements of BCI systems. Encoding paradigms are

grouped by their underlying neural meachanisms, namely sensory- and motor-related, vision-related, cognition-related and

hybrid paradigms. Decoding algorithms are reviewed in four categories, namely decomposition algorithms, Riemannian

geometry, deep learning and transfer learning. This review will provide a comprehensive overview of both modern primary

paradigms and algorithms, making it helpful for those who are developing BCI systems.
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Introduction

A brain–computer interface is a new method for the human

or animal brain to interact with the external world without

normal neural pathways (Wolpaw and Wolpaw 2012).

BCIs are capable of translating measured brain signals to

controlling commands for operating computerized devices,

such as prosthetic arms. A typical BCI system requires

neural signal acquisition, paradigm design, decoding

algorithms and feedback. Neural signal acquisition tech-

nologies are basic tools to measure brain activities. Para-

digms are the designed mental tasks for modulating neural

signals. Decoding algorithms are responsible for translating

the measured neural signals to commands and the feedback

to the user.

One of the neural signal acquisition technologies for

BCIs is electroencephalography (EEG), discovered by

Berger (1929). Comparing to other neuroimaging methods,

EEG is the most widely used biosensing technology in BCI

studies due to its non-invasive, high temporal resolution

and low-cost characteristics. EEG-based BCI systems have

shown promise in many applications, such as post-stroke

rehabilitation (Silvoni et al. 2011), disease detection

(Nakanishi et al. 2017b), emotion recognition (Zheng et al.

2014), quadcopter control (LaFleur et al. 2013) and video

games (Kerous et al. 2018).

Paradigm design is crucial to determine the basic type of

an EEG-based BCI. Brain activities usually occur concur-

rently therefore it is difficult to decompose a specific type

of activity directly. In order to elicit the desired brain

activities, a well-designed paradigm is used during the

signal-acquisition phases. That is, the paradigm itself acts

as an encoder that modulates the brain to generate the

target brain activities. Many BCI paradigms have emerged

over the past few decades. Some are designed to elicit

motor-related and sensory-related brain activities, e.g. the

motor imagery paradigm. Some entrain the visual cortex,

e.g. the steady-state visually evoked potential paradigm,

and others are related to cognitive brain activities, e.g. the

P300 paradigm.

& Dong Ming

richardming@tju.edu.cn

1 Academy of Medical Engineering and Translational

Medicine, Tianjin University, Tianjin, China

2 Department of Biomedical Engineering, College of Precision

Instruments and Optoelectronics Engineering, Tianjin

University, Tianjin, China

3 Swartz Center for Computational Neuroscience, University of

California, San Diego, USA

123

Cognitive Neurodynamics (2021) 15:569–584
https://doi.org/10.1007/s11571-021-09676-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2717-2809
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-021-09676-z&amp;domain=pdf
https://doi.org/10.1007/s11571-021-09676-z


On the other hand, decoding algorithms aim to decode

the target brain activity from measured signals. Decoding

algorithms for BCIs are similar to machine learning algo-

rithms, but there are also differences between them.

Although the paradigm has already encoded the target

activity from mixed brain activities, the signal-to-noise

ratio (SNR) of measured EEG signals is still too low to

decode with simple machine learning methods. Besides,

paradigms usually invoke different EEG signal patterns,

requiring to design dedicated decoding algorithms for dif-

ferent paradigms. Many efficient decomposition algorithms

have been developed to extract features, e.g. common

spatial patterns for motor imagery. Recently, Riemannian

geometry and deep learning methods are increasingly

explored by researchers in the BCI community. Transfer

learning algorithms have also been introduced to alleviate

the inter-subject variability problem in BCIs.

This review summarizes recent progress for EEG-based

BCIs from the perspective of encoding paradigms and

decoding algorithms. This paper is organized as follows.

‘‘Encoding paradigms’’ provides a summary of primary

encoding paradigms for BCIs and some important para-

digms are shown in Table 1. ‘‘Decoding algorithms’’

describes current BCI decoding algorithms and some

recent algorithms are compared in Table 2. ‘‘Conclusion’’

concludes the paper.

Encoding paradigms

Sensory- and motor-related paradigms

Sensory- and motor-related paradigms can modulate neural

signals originated in the primary somatosensory cortex and

primary motor cortex, respectively. Steady-state

somatosensory evoked potential (SSSEP) is a sensory-re-

lated paradigm. Motor imagery (MI) and movement-related

cortical potential (MRCP) are two popular paradigms

focusing on motor-related functions.

MI is a paradigm that a subject imagines performing a

movement without executing the actual movement or

tensing the muscles (Mulder 2007). The MI paradigm can

change the sensorimotor rhythms (SMRs) in the primary

sensorimotor area (Pfurtscheller and Neuper 1997). Event-

related desynchronization (ERD) and event-related syn-

chronization (ERS) are the most common phenomena in

SMRs for the MI-based BCIs. The former decreases power

in certain frequency bands, usually the alpha (8–13 Hz)

and beta (14–26 Hz) bands. In contrast, the latter increases

power in certain frequency bands, like the gamma

([30 Hz) band. ERD and ERS are considered to be related

to the decrease and increase in synchronization of the

corresponding neuronal populations, respectively

(Pfurtscheller and Da Silva 1999). The MI-based BCI

outputs commands by detecting distinguishable ERD/ERS

from the EEG signals.

The early MI paradigms focused on imagining move-

ments with different limbs, which were expanded from

2-class MI tasks (left and right hands) (Ramoser et al.

2000; Pfurtscheller et al. 1997) to 4-class MI tasks (left

hand, right hand, tongue, and feet) (Obermaier et al. 2001;

Morash et al. 2008). Instead of imagining simple limb

movements, Yi et al. designed compound limb and

sequential limb MI tasks (Yi et al. 2013, 2016). Ofner et al.

proposed a paradigm which requires subjects to imagine 6

MI tasks of the same limb, namely elbow flexion/exten-

sion, forearm supination/pronation and hand open/close,

although the classification accuracy of MI tasks was

slightly above the random level (Ofner et al. 2017). This

paradigm has been further studied recently with improved

classification methods. Lee et al. asked subjects to imagine

elbow extension, hand grasping and wrist twisting actions

(Lee et al. 2020). Chu et al. adopted the same Ofner’s

paradigm (Chu et al. 2020). Both of them achieved a better

classification accuracy that can be applied in practical

applications (84% and 80.5%, respectively). Modern MI

paradigms concentrate on imagining more precise move-

ments. Edelman et al. designed a MI paradigm for the

complex tasks of a single limb, namely 4 hand gestures of

the right hand (Edelman et al. 2014, 2015a, b). Wang et al.

proposed a MI paradigm that requires imagining different

force loads of the right-hand clench (Wang et al. 2017).

Another motor-related paradigm is called movement-

related cortical potential (MRCP) that occurs in the plan-

ning and execution of movements with a slow decrease in

the EEG amplitude lasting at least 500 ms (Shibasaki and

Hallett 2006). MRCP comprises three components called

readiness potential, motor potential, and movement-moni-

toring potential, which are considered to reflect movement

preparation, execution and performance, respectively

(Shibasaki et al. 1980; Hallett 1994; Toro et al. 1994).

MRCP can be extracted from low-frequency (\2 Hz)

EEG signals, which contains kinematic information about

imagined continuous movement (Waldert et al. 2008;

Bradberry et al. 2009). For example, Gu et al. (2009)

explored the possibility of simultaneously identifying

imagined wrist movements and speeds by MRCP, showing

that the rebound rate of MRCPs may indicate the speed of

movements. Bradberry et al. (2010) instructed subjects to

execute center-out reaching tasks, proving that it can

decode 3D hand velocity from EEG signals. They further

designed a paradigm requiring subjects to imagine moving

right arm/finger to track a computer-controlled 2D cursor

(Bradberry et al. 2011). Kim et al. (2014) decoded the 3D

trajectory of imagined right arm movements and discussed

eye-movement contamination problem in MRCP
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Table 1 Summary of primary encoding paradigms for BCIs

Paradigm References Contribution

MI Ramoser et al. (2000) Left hand and right hand movement imagery

Obermaier et al. (2001) Left hand, right hand, feet and tongue movement imagery

Yi et al. (2013) Compound limb motor imagery (both hands, left hand combined with right foot and

right hand combined with left foot)

Lee et al. (2020) Elbow extension, hand grasping and wrist twisting imaginations of the same arm

Ofner et al. (2017), Chu et al. (2020) 6 motor imaginations of the same limb (elbow flexion/extension, forearm supination/

pronation, hand open/close)

Edelman et al. (2015b) 4 motor imaginations of the right hand (flexion, extension, supination and pronation)

Wang et al. (2017) 3 force load imaginations of the right hand clenching

MRCP Gu et al. (2009) The rebound rate of MRCPs may indicate the speed of movements

Bradberry et al. (2010, 2011) The possibility to decode 3D hand velocity from EEG signals

Kim et al. (2014) Non-linear methods are robust to eye-movement contamination

Schwarz et al. (2017) A paradigm to decode 3 reach-and-grasp actions from EEG signals

Wang et al. (2020) The possibility of decoding movement intention before actual movements

SSSEP Muller-Putz et al. (2006) Vibratory stimulations are performed on index fingers

Breitwieser et al. (2012) Vibrations for five fingers of the right hand

Su et al. (2020) 3 stimulation intensities on index fingers

SSVEP Jia et al. (2010) Joint frequency and phase modulation scheme

Min et al. (2016) A paradimg with grid-shaped line array

Nakanishi et al. (2017a) A paradigm of 40 SSVEP stimuli

Tang et al. (2019, 2020b) A multi-focal SSVEPs (mfSSVEPs) paradigm

miniature

aVEPs

Xu et al. (2018) A BCI speller with miniature asymmetric visual evoked potentials (miniature

aVEPs)

SSaVEP Yue et al. (2020) A Steady-State asymmetrically Visual Evoked Potential (SSaVEP) paradigm

P300 Farwell and Donchin (1988) A row column (RC) paradigm

Guan et al. (2004), Guger et al. (2009) A single character (SC) paradigm

Fazel-Rezai and Abhari (2009) A region-based (RB) paradigm

Townsend et al. (2010) A checkerboard paradigm

RSVP Acqualagna et al. (2010), Acqualagna and

Blankertz (2013)

A rapid serial visual presentation (RSVP) paradigm presenting all characters

sequentially

Lin et al. (2018) Triple-character presentation in RSVP

ErrPs Ferrez and Millán (2008) The study detects ErrPs in a simulated human-robot task

Chavarriaga and Millán (2010) An automatic cursor’s movement system with ErrPs detection

Salazar-Gomez et al. (2017) A robotic control system with ErrPs detection

CVSA Tonin et al. (2013) A paradigm of keeping covert attention on 2 different orientations

Gaume et al. (2019) The relation of the visual sustained attention level with the task difficulty

Ahmadi et al. (2020) A paradigm of detecting CVSA on two orientations with changing luminance

Hybrid Allison et al. (2010) A paradigm that executes MI and SSVEP simultaneously

Pfurtscheller et al. (2010b) A paradigm that switches MI and SSVEP tasks sequentially

Long et al. (2012) A paradigm that control a wheelchair with P300 and MI

Yao et al. (2013), Yi et al. (2017) A paradigm that combines SSSEP and MI

Mousavi et al. (2020) An online paradigm executing MI tasks with detection of ErrPs

Panicker et al. (2011) An asynchronous P300-speller in which SSVEP was used to recognize subjects’

control states

Yin et al. (2013a) A 32-character speller with a flickering stimulus presented in the P300 paradigm

Xu et al. (2020c) A large-size P300 and SSVEP-B speller with over 100 commands
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paradigms. Schwarz et al. (2017) proposed a paradigm to

discriminate three reach-and-grasp actions from EEG sig-

nals, achieving more natural control of BCI systems.

Recently, Wang et al. (2020) investigated the possibility of

decoding movement intention before actual movements,

showing promising results for developing a new MRCP-

based paradigm.

Instead of motor-related functions, the steady-state

somatosensory evoked potential is a paradigm focusing on

sensor-related functions. Muller-Putz et al. (2006)

designed an SSSEP-based BCI paradigm that vibratory

stimulations are performed on index fingers. Subjects are

instructed to focus their attention to the target finger and

count appearing twitches, causing greater spectral ampli-

tude in the target frequency (Giabbiconi et al. 2007).

Breitwieser et al. (2012) further applied SSSEP to five

fingers of the right hand and proved that it can classify

different fingers with SSSEP. Su et al. (2020) explored the

relation between stimulation intensities and SSSEP. Their

results revealed that SSSEP amplitude is positively corre-

lated with the intensity of stimulation and could be used as

an index to evaluate the tactile acuity.

Vision-related paradigms

Vision-related paradigms are important in EEG-based

BCIs. These paradigms can modulate neural signals gen-

erated from the primary visual cortex. Steady-state visually

evoked potential (SSVEP) is such a vision-related

paradigm.

The steady-state visually evoked potential is a type of

visual evoked potentials (VEPs) found by Regan (1966).

SSVEP can be considered as an exogenous event-related

potential (ERP) that depends on physical features of sen-

sory stimulus. In SSVEP, a sinusoidally flickering visual

stimulus elicits a stable VEP of small amplitude with the

corresponding flickering frequency (Vialatte et al. 2010).

The early SSVEP-BCIs were developed based on light-

emitting diode (LED) sources (McMillan et al. 1995;

Middendorf et al. 2000; Gao et al. 2003). Cheng et al.

(2002) implemented SSVEP on a cathode ray tube (CRT)

monitor with 13 flickering virtual buttons. Wu et al. (2008)

compared SSVEP evoked by LED, CRT and liquid crystal

display (LCD), suggesting choosing LED for a highly

complicated BCI. But nowadays, most SSVEP experiments

are implemented on LCD monitors, due to its high refresh

rate, simplicity for designing complex stimulation patterns

and reliability to reproduce stable stimulus (Cecotti et al.

2010). In terms of paradigm design, Jia et al. (2010) pro-

posed a joint frequency and phase modulation scheme to

increase the number of available stimuli. Nakanishi et al.

(2014) implemented a 32-target SSVEP paradigm based on

this coding strategy, which was further used to implement a

40-target SSVEP paradigm (Nakanishi et al. 2017a).

Instead of using a rectangle stimulus array, Min et al.

(2016) designed an SSVEP paradigm with a grid-shaped

line array. Instead of gazing at a single flickering stimulus

at a time, Tang et al. (2019) designed the multi-focal

SSVEPs (mfSSVEPs) paradigm that requires the subject to

receive multiple flickers with different frequencies simul-

taneously. They further designed an mfSSVEPs paradigm

containing 32 targets, each comprised 5 flickers flashing at

different frequencies (Tang et al. 2020b).

Traditional SSVEP paradigms prefer large-size stimuli

in the fovea vision, which can easily cause visual fatigue.

Xu et al. (2018) recently designed a new BCI speller based

on miniature asymmetric VEPs (miniature aVEPs). The

visual stimuli in the miniature aVEP BCI are placed out-

side the fovea vision on the lateral side, which only

occupies 0:5� of visual angle and induce miniature poten-

tials about 0:5lV in amplitude, showing a promising way

to achieve a more comfortable and natural BCI system.

They further proposed a Steady-State asymmetrically

Visual Evoked Potential (SSaVEP) paradigm with 4 high-

frequency stimuli placed outside the fovea vision, achiev-

ing an average information transfer rate about 87.2 bits/

min for 10 encoded commands (Yue et al. 2020).

Cognition-related paradigms

Comparing to vision-related paradigms, many cognition-

related paradigms have been developed for the past few

decades. Here we mainly introduce the P300 paradigm, the

error-related potentials (ErrPs) paradigm and covert visu-

ospatial attention (CVSA) paradigm.

P300 is a kind of event-related potentials (ERPs) first

reported in 1967 (Sutton et al. 1967) and introduced into

the BCI community by Farwell and Donchin (1988). P300

is considered as an endogenous ERP that is related to

cognition processes without relying on physical features of

sensory stimulus. The P300 component can be induced in

an oddball paradigm containing two types of stimuli,

namely target and non-target stimulis, where the target

stimulus appears less frequently than the non-target one.

Subjects are required to pay attention to the target stimulus

and the infrequent target stimulus elicits a larger positive

peak, named the P300 peak, about 300 ms after stimulus

onset, compared to the frequent non-target stimulus (Fazel-

Rezai et al. 2012). The generation of P300 is independent

of sensory pathways regardless of visual and auditory

stimuli, although visual stimuli are more commonly used

for P300-based BCIs.

The vision-based P300 paradigm is usually used for BCI

speller systems. The first P300 speller is a 6 � 6 matrix of

characters and each row and column are flashed in a ran-

dom order, which is called the row column (RC) paradigm
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(Farwell and Donchin 1988). The subject is supposed to

pay attention to the target character and the flashes of row

and column containing that character can elicit the P300

component whereas the others cannot, which makes it

possible to detect the target character based on the indexes

of row and column. Guan et al. proposed a single character

(SC) paradigm which randomly flashes one character at a

time (Guan et al. 2004). The SC paradigm is slower than

the RC paradigm but results in larger P300 amplitudes

(Guger et al. 2009). In order to overcome double target

item flash and distraction problems in the RC paradigm

(Fazel-Rezai et al. 2012), Townsend et al. (2010) designed

a checkerboard paradigm that separates adjacent items into

two groups. Fazel-Rezai and Abhari (2009) introduced a

hierarchy design into the P300 paradigm and proposed a

region-based (RB) paradigm using two levels to recognize

the target character. Acqualagna et al. developed a rapid

serial visual presentation (RSVP) paradigm presenting all

characters sequentially at a single central location inde-

pendent of gaze shifts, which can also elicit the P300

component (Acqualagna et al. 2010; Acqualagna and

Blankertz 2013). Lin et al. (2018) further extended the

single-character presentation to triple-character presenta-

tion in RSVP.

Recently, Xu et al. (2020d) designed an innovative time

estimation paradigm, in which participants predicted the

visual stimulus occurs at 400 ms or 600 ms after the cue

onset. They found both the time-domain and frequency-

domain features were related to time estimation (Meng

et al. 2020). Specifically, in the time domain, there were

positive P300-like deflections after the predicted moment.

The observation is consistent with an explanation that the

positive deflections constitute a P300 response to the pro-

cessing of non-occurrence information, and is similar to the

omitted stimulus paradigm that grew out of (Sutton et al.

1967), which reported that the non-occurrence of an

auditory stimulus would produce a P300. In this study, the

energy features in high-frequency were found to be related

to time estimation process, which may provide new neural

evidence supporting the hypothesis that the P300 is a

multifaceted electroencephalographic response with char-

acteristic features in the frequency domain as well as in the

time domain (Farwell and Smith 2001; Farwell 2012). The

results reported by Xu et al. (2020d) and Meng et al.

(2020) not only demonstrated the cognitive EEG feature

elicited by time estimation is possible to work as a novel

signal for active BCIs, but also may have discovered a new

pattern that could potentially enhance the performance of

P300-based BCIs by introducing detection and analysis of

frequency-domain features.

The error-related potentials are a series of ERP com-

ponents evoked after subjects realize they committed errors

or receive feedback to errors, e.g. error-related negativity

(ERN) (Falkenstein et al. 1991, 2000), feedback-related

negativity (FRN) (Frank et al. 2005; Cohen et al. 2007).

ERN was found in choice-reaction tasks, which is a neg-

ative potential peaking at 50–100 ms after an erroneous

response (Falkenstein 1990; Falkenstein et al. 1991;

Gehring et al. 1993). ERN can also be evoked when a

subject observes another person making an error (van Schie

et al. 2004). FRN occurs at 200–300 ms after receiving

feedback during a learning task (Holroyd and Coles 2002).

It has been found that ErrPs are quite complex and their

latencies differ depending on the tasks (Iturrate et al.

2013). ErrP-based BCIs usually utilize all ErrPs instead of

analyzing a certain type of them (Chavarriaga et al. 2014).

Ferrez et al. confirmed that ErrPs exist after feedback of

incorrect responses in a human-robot interaction experi-

ment and succeeded to detect ErrPs in a single trial (Ferrez

and Millán 2005, 2008). Chavarriaga and Millán (2010)

further incorporated ErrPs in an automatic cursor’s move-

ment system to correct erroneous movements by detecting

ErrPs. Salazar-Gomez et al. (2017) built a closed-loop

robotic control system with ErrPs detection to correct

mistakes.

Covert visuospatial attention (CVSA), which refers to

the process of focusing attention on different regions of the

visual field without overt eye movements (Posner 1980),

has also been applied in BCI applications. On the one hand,

CVSA can be used to improve the performance of other

paradigms. It has shown that CVSA can enhance N2 and

P3 components in P300-based BCI spellers (Treder and

Blankertz 2010). Zhang et al. (2010) designed a SSVEP-

based BCI system, in which subjects were instructed to

focus attention on two kinds of flashing dots without overt

eye movements, showing that the amplitude at the corre-

sponding frequency can also be enhanced by paying

attention to one of the two stimuli. Xu et al. (2016)

designed a fast CVSA detection paradigm with the N2pc

and SSVEP features, achieving an average accuracy of

72.9% by using a data length of 400 ms. Wai et al. (2020)

further studied the differences in SSVEP with CVSA and

concluded that reliable SSVEP responses can be obtained

with covert attention regardless of visual angles and stim-

ulus spatial resolution. On the other hand, Tonin et al.

(2013) proposed a BCI based on pure CVSA, requiring

subjects to keep covert attention on two different orienta-

tions and demonstrating the feasibility of designing BCIs

based on CVSA. Gaume et al. (2019) measured continuous

vsiual sustained attention in a motor control task, proving

that it is possible to estimate task difficulty with the level of

attention. Recently, Ahmadi et al. (2020) proposed a covert

attention paradigm based on changes in lumination to two

colors on two orientations, achieving 91.87% classification

accuracy in two-class scenario.
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Hybrid paradigms

Hybrid paradigms combine two or more different physio-

logic signals with at least one EEG channel (Pfurtscheller

et al. 2010a; Banville and Falk 2016). Hybrid paradigms

aim at improving the performance of the system by uti-

lizing multiple subsystems. A hybrid paradigm could be a

combination of BCI paradigms or a BCI paradigm based on

EEG and other physiological signals, such as EMG. Below

is a review of BCIs that combine multiple paradigms.

Hybrid BCIs usually combine paradigms designed for

eliciting different brain functions. Allison et al. (2010)

designed a hybrid paradigm combining MI and SSVEP,

which requires subjects gazing at SSVEP stimuli and

imagining movements simultaneously. Instead of a simul-

taneous hybrid paradigm, Pfurtscheller et al. proposed an

MI-SSVEP hybrid paradigm with switching between

paradigms sequentially (Pfurtscheller et al. 2010b). Long

et al. combined MI and P300 to control a 2D cursor (Li

et al. 2010; Long et al. 2011) and a wheelchair (Long et al.

2012) by asking subjects to imagine movements or pay

attention to the flickering stimulus. There are also hybrid

paradigms combining MI and SSSEP. Yao et al. asked

subjects to imagine left/right hand movements or pay

attention to vibrations on the wrists sequentially. They

found that it could improve the left and right classification

performance by mixing both paradigms (Yao et al. 2013).

Yi et al. (2017) performed MI with electrical stimulation

on both wrists simultaneously, improving the performance

significantly. Recently, Mousavi et al. (2020) proposed a

hybrid paradigm combining MI and ErrPs, showing sig-

nificantly improved performance in online BCI systems.

There are also hybrid paradigms combining paradigms

for the same brain function. Panicker et al. (2011) com-

bined P300 and SSVEP to develop an asynchronous P300-

speller in which SSVEP was used to recognize subjects’

control states. Xu et al. (2013a) incorporated the SSVEP

blocking (SSVEP-B) features into the P300, which signif-

icantly enhances the performance of the speller. However,

in these studies, users can only focus on one paradigm at a

time. Li et al. (2013) proposed a hybrid paradigm by

switching part of the stimulus to P300 paradigm transiently

in the SSVEP paradigm. Yin et al. (2013a) proposed a

32-character speller with a flickering stimulus presented in

the P300 paradigm and further designed two hybrid modes

of the stimulus configuration (Yin et al. 2013b). Xu et al.

(2013b) designed a new hybrid paradigm evoking SSVEP-

B and P300 concurrently and further implemented a large-

size high-speed speller with over 100 commands (Xu et al.

2020c).

Decoding algorithms

Decomposition algorithms

Decomposition algorithms are a group of algorithms that

use matrix factorization or extract spatial filters to increase

the separability of different classes for BCIs. Most

decomposition algorithms are designed for feature extrac-

tion, which is usually connected to a classifier such as

support vector machine (SVM). Decomposition algorithms

have been well-developed and still widely used in the BCI

community. Most decomposition algorithms can be trans-

formed into optimization problems with constraints and

finally solved with generalized eigenvalue decomposition

(GED). The form of cost function varies depending on the

attributes of encoding paradigms, e.g., whether the encoded

information is mainly in the time or time-frequency domain

of the EEG signals.

Independent Component Analysis (ICA) is a class of

algorithms for blind source separation algorithms that have

been widely used to analyze EEG signals (Makeig et al.

1996). ICA can decompose scalp recordings, mixtures of

source activities, into the independent components, making

it suitable for removing artifact signals, e.g. eye blinks

(Jung et al. 2000; Winkler et al. 2014; Frølich et al. 2015;

Radüntz et al. 2017). Recently, Chang et al. evaluated the

efficacy of combining artifact subspace reconstruction

(ASR) and ICA for removing artifactual signals both for

offline and online EEG applications (Chang et al. 2019).

Common spatial patterns (CSP) (Ramoser et al. 2000) is

the well-known feature extraction method for MI, aiming at

maximizing the variances of two distributions of EEG

signals, e.g. left and right MI. More details about CSP and

its relation to GED can be found in Parra et al. (2005) and

Haufe et al. (2014). One of two drawbacks of CSP is that

its performance is depending on the selection of frequency

band while the optimal frequency band of each subject is

not consistent. The other is that CSP is not able to deal with

the multi-class scenario. To address the first problem, Ang

et al. (2008) proposed a filter bank CSP (FBCSP) that

applies CSP to multiple frequency bands and selects fea-

tures based on the mutual information criterion. For a

multi-class scenario, Grosse-Wentrup and Buss (2008)

proposed a multi-class CSP framework with information

theoretic feature extraction and explored its relation to

ICA. Chin et al. (2009) extended the FBCSP to the multi-

class scenario by decomposing the multi-class problem into

several binary-class problems. The new trend of CSP-based

methods is to optimize spectral, temporal and spatial fea-

tures simultaneously via adding more constraints to the

cost function. Higshi et al. proposed discriminative filter

bank CSP (DFBCSP) with optimizing filter coefficients and
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spatial weights, showing that DFBCSP can extract the

bands related to MI (Higashi and Tanaka 2012). Meng

et al. (2014) further optimized filter coefficients and spatial

filters under the framework of mutual information. Zhang

et al. (2018d) proposed temporally constrained sparse

group spatial pattern (TSGSP) for simultaneously opti-

mizing filter bands and time window. Gurve et al. (2020)

proposed Non-Negative Matrix Factorization (NMF) to

select subject-specific channels, giving better performance

and less number of channels for lower limb MI tasks.

Recently, Jin et al. (2020) introduced Dempster-Shafer

theory into CSP methods, showing a way to fuse multiple

methods by considering the distribution of features.

For SSVEP-based BCIs, Lin et al. (2006) introduced

canonical correlation analysis (CCA) to classify SSVEPs.

Chen et al. further extended CCA to filter bank CCA

(FBCCA), achieving a high-speed BCI speller (Chen et al.

2015a, b). Nakanishi et al. (2017a) proposed task-related

component analysis (TRCA) and ensemble TRCA

(eTRCA) for SSVEP by maximizing the reproducibility of

brain activities across trials. eTRCA further improves the

performance of the SSVEP-based spellers comparing to

FBCCA. Zhang et al. proposed correlated component

analysis (CORCA) by extracting maximally correlated

components from different subjects, achieving similar

results comparing to eTRCA (Zhang et al. 2018b, c). Jiang

et al. (2018) incorporated a dynamic stopping strategy into

SSVEP-based BCIs with variable stimulation time of each

trial instead of fixed time. Tang et al. (2020a) further

designed an modified TRCA (mTRCA) algorithm with the

dynamic stopping strategy for a practical online spelling

system. For limited calibration data, Wong et al. extended

eTRCA to multi-stimulus eTRCA (ms-eTRCA) with a new

learning scheme (Wong et al. 2020a) and proposed a uni-

fied framework to explain most spatial filtering algorithms

for SSVEP-based BCIs (Wong et al. 2020b).

For P300-based BCIs, Serby et al. (2005) used ICA to

separate the P300 source(s) from the background noise.

Krusienski et al. (2008) proposed stepwise linear discrim-

inant analysis (SWLDA) to construct a classifier, exploring

the effects of spatial information on classification. Rivet

et al. (2009) designed an unsupervised algorithm named

xDAWN to enhance the SNR of evoked potentials.

Recently, Xiao et al. (2019) designed a discriminative

canonical pattern matching (DCPM) algorithm by com-

bining spatial pattern extraction and pattern matching

together, which outperformed other methods significantly

in 5 public datasets.

Riemannian geometry

Manifold algorithms, especially Riemannian geometry

algorithms, have aroused great interest in the BCI

community in the last ten years. The Riemannian geometry

applies operations on the space of symmetric positive-

definite (SPD) matrices and provides a unified framework

to deal with different BCI paradigms by considering each

trial as a point in the SPD space (see Congedo et al. (2017)

for details).

Barachant et al. concluded basic Riemannian operations,

e.g. the Riemannian distance, and proposed the minimum

distance to mean (MDM) and MDM with geodesic filtering

(FgMDM) algorithms to classify MI tasks (Barachant et al.

2010b). MDM is similar to the nearest neighbor algorithm

which uses the Euclidean distance instead of the Rieman-

nian distance. FgMDM projects covariances into the tan-

gent space, applies linear discriminant analysis (LDA) to

tangent vectors and then projects them back into the SPD

space with selected components. They also investigated the

relation between CSP and Riemannian geometry and pro-

posed a method to select CSP components instead of using

a heuristic selection method (Barachant et al. 2010a). Due

to the scalability of the Riemannian framework, it can be

easily expanded to the multi-class scenario and combined

with kernel-based machine learning methods (Barachant

et al. 2011, 2013). For decoding 6 MI tasks from the same

upper limb, Chu et al. (2020) extracted tangent space fea-

tures followed by partial least squares regression to select

more robust features. Considering the complexity of opti-

mizing high dimensional covariance-based cost function,

Xu et al. (2020a) studied spatial filters in the tangent space

and proposed a dimension reduction method which could

achieve the similar performance with reduced computa-

tional time cost compared to traditional ones.

Riemannian geometry can also be used to time-series

signals evoked by paradigms like SSVEP and P300. Bar-

achant and Congedo (2014) used MDM for P300 by

building embedded covariance matrices. Kalunga et al.

(2016) applied Riemannian geometry to the SSVEP para-

digm and proposed an online implementation method.

Deep learning

Recently, deep learning has been successfully applied in

many fields, such as computer vision and nature language

processing. Deep learning has also been introduced into the

BCI community for its better feature representation ability.

CNN architectures are very popular in the BCI com-

munity. Schirrmeister et al. (2017) designed Shal-

lowConvNet and DeepConvNet which imitate temporal

and spatial filters in FBCSP, achieving at least as good

performance as FBCSP. Vernon et al. further proposed

EEGNet that replaces vanilla convolution with depth-wise

separable convolution (Lawhern et al. 2018) and validated

its performance for SSVEP (Waytowich et al. 2018). Liu

et al. (2018) showed that a CNN model with batch
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normalization could also be used for identifying P300

signals. Dai et al. (2020) proposed a hybrid-scale CNN

architecture using different convolution scales in the tem-

poral convolution layer. Some researchers have also

explored RNN or CNN-RNN architectures for BCIs.

Maddula et al. (2017) used RNN for classifying P300

signals. Zhang et al. (2018a) further designed a cascade

convolutional RNN architecture for the MI paradigm.

Wang et al. (2018) built a network based on LSTM with

inputs of time-frequency features. Attia et al. (2018) used

CNN-LSTM architecture to classify SSVEP stimuli.

Recently, instead of end-to-end network designs, Ravi

et al. (2020) proposed a CNN network with complex

spectrum features as inputs and compared its performance

with FBCCA and TRCA, showing an improved perfor-

mance in both user-dependent and use-independent train-

ing scenarios. Ma et al. (2020) preprocessed raw EEG data

with optimal band selection and PSD feature extraction,

improving classification accuracy with reduced number of

parameters. Xing et al. (2020) designed a CNN-based

comparing network inspired by the standard CCA to learn

the relationship between EEG data and templates. Their

results suggest that combining the comparing network and

TRCA can further improve the performance of SSVEP-

based BCIs.

Some other researches focus on data augmentation for

BCIs. Abdelfattah et al. (2018) designed a recurrent gen-

erative adversarial network (RGAN) to augment move-

ment-related data. Lee et al. further designed C-LSTM

model for augmenting MI data (Freer and Yang 2020).

Transfer learning

Many machine-learning algorithms assume that the train-

ing and test data are drawn from the same feature space and

the same distribution. In BCI, although many algorithms

can achieve good performances on a single subject, the

practicability of BCIs is still limited to the high variability

of EEG signals from different subjects or sessions. These

problems are referred to as cross-subject and cross-session

variability problems. To alleviate the influence of these two

problems, a calibration stage is usually required to collect

enough training data at the beginning of each session,

which is inconvenient for both patients and healthy sub-

jects. Transfer learning aims to improve the learning pro-

cess of the predictive function in the target domain using

the knowledge in the source domain (Pan and Yang 2009),

which makes it suitable for solving cross-session and cross-

subject variability problems.

The early transfer-learning algorithms for BCIs focus on

the improvement of decomposition algorithms. Krauledat

et al. (2008) extracted stable prototype filters from differ-

ent sessions of the same subject to reduce calibration time

for a new session. Kang et al. (2009) proposed a composite

CSP with regularized covariance matrices for subject-to-

subject transfer. Lotte et al. further improved the regular-

ization strategy and proposed a unified regularization

framework for CSP (Lotte and Guan 2010a, b). Wang et al.

(2012) used ICA to transfer spatial filters from the resting

state to MI tasks. Another way to reduce variability is to

use stationary subspace analysis (SSA). Bunau et al. pro-

posed SSA to decompose a multivariate time series into its

stationary and nonstationary components, using only sta-

tionary components to classify tasks (Von Bünau et al.

2009). The SSA method finds a projection matrix that

projects the data onto a stationary subspace by optimizing a

cost function based on the estimation of matrix divergence,

namely Kullback–Leibler divergence (KL-divergence).

Horev et al. (2016) used the Riemannian distance to

measure the non-stationary characteristic. Kaltenstadler

et al. (2018) further improved this method by using

Wasserstein distance (WaSSA). Recently, Chiang et al.

(2020) proposed a transfer learning framework with least-

squares transformation (LST) for SSVEP BCIs, showing

promising results for cross-subject and cross-device

scenarios.

Riemannian geometry has promoted the development of

transfer-learning algorithms for BCIs. In 2011, Reuderink

et al. (2011) presented a second-order baselining procedure

to reduce variabilities in BCIs by using a pre-trial baseline

covariance matrix to whiten task covariance matrices. The

whitening idea has been further developed based on Rie-

mannian geometry. Instead of a pre-trial baseline covari-

ance matrix, Zanini et al. (2017) used the Riemannian

mean covariance matrix as the reference matrix and

transformed the center of all covariance matrices to the

identity matrix. This procedure was applied for each ses-

sion or subject, respectively. To reduce its computational

cost, He and Wu (2019) suggested using the Euclidean

mean covariance matrix instead of the Riemannian mean

covariance matrix. Li et al. (2020) validated the xDAWN

algorithm combined with Riemannian whitening for P300

datasets. Qi et al. (2018) proposed a speedy calibration

method with Riemannian geometry for P300 spellers by

selecting related samples from the database. Rodrigues

et al. (2018) proposed a Riemannian Procrustes Analysis

(RPA) with translation, scaling, and rotation transforma-

tions. To apply RPA for heterogeneous datasets, they fur-

ther proposed a method for merging datasets with different

numbers of electrodes by adding the white noise to the

empty channel (Rodrigues et al. 2020).

Deep learning can also be used for solving variability

problems in BCIs. Sakhavi and Guan (2017) transferred

pre-trained CNN to a new subject with fine-tuning and

knowledge distillation. ShallowConvNet and EEGNet also

showed the cross-subject generalization ability in single
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datasets without fine-tuning (Schirrmeister et al. 2017;

Lawhern et al. 2018). Xu et al. (2020b) further found that

deep learning models with Riemannian geometry could

significantly improve the generalization ability across BCI

datasets without any additional calibration data.

Researchers have also studied some transfer learning

algorithms from other fields. Waytowich et al. (2016)

proposed spectral transfer using information geometry

(STIG), which was validated in the RSVP paradigm. Yair

et al. considered the cross-subject problem for MI by using

parallel transport (PT) on the SPD manifold, giving an

extension of the Riemannian whitening method (Yair et al.

2019a; Maman et al. 2019). They further improved the

results by using optimal transport (OT) (Yair et al. 2019b).

Zhang and Wu (2020) proposed a manifold embedded

knowledge transfer (MEKT) method for BCIs by fusing the

transfer component analysis (TCA) (Pan et al. 2010) and

the joint distribution adaptation (JDA) (Long et al. 2013).

Conclusion

In this review, we have surveyed recent progress in BCIs

from the perspectives of encoding paradigms and decoding

algorithms. Encoding paradigms are divided into four

categories based on their related brain functions: sensory-

and motor-related paradigms, vision-related paradigms,

cognition-related paradigms and hybrid paradigms. MI and

other paradigms focusing on the somatosensory and motor

areas are important in the BCI field. Meanwhile, vision-

related paradigms develop rapidly and many new para-

digms have emerged in recent years. Cognition-related

paradigms could improve the robustness of BCI systems

with other paradigms. Hybrid paradigms have also shown

promising potential in developing efficient BCI systems.

Decoding algorithms are grouped into four families:

decomposition algorithms, Riemannian geometry, deep

learning and transfer learning. Decomposition algorithms

are quite effective in dealing with the limited number of

samples in supervised scenario. Riemannian geometry

provides a unified framework to process EEG signals from

different paradigms. Deep learning models have shown

advantages in large-size samples. Recently, transfer learn-

ing has attracted much attention from the BCI community

due to its ability to solve human variability problems in

BCIs. By combining these paradigms and algorithms, a

more robust and effective BCI system may be developed in

the future.
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