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Abstract
Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual

screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis

(CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG

signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary

nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations,

which yields seven sub-bands. The l1 norm is computed for each sub-band. The extracted norm features are disseminated to

various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor

classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based

CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.
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Introduction

The brain controls the functions of the human body, and its

malfunctioning may impact normal behaviour and activi-

ties. Any mental disease or disorder can change the human

psychic abilities of thinking, decision making. The

schizophrenia(SZ) can be regarded as a psychological ail-

ment which adversely influences the thinking, feeling and

actions (Laursen et al. 2013). According to the WHO

report, SZ is a critical mental health illness, and approxi-

mately 2.1 crore people are affected (Laursen et al. 2013).

Yet, the exact cause and treatment are not available

(Laursen et al. 2013). It is treated generally in stages, early

or post-diagnosis can help to determine its intensity. The

detection and treatment of SZ are necessary, as it severely

affects the quality of living. If left untreated, it can become

a terrible disease, which may damage the human behaviour

in its subsequent phases. Early diagnosis of SZ, may help

in getting proper treatment and prevent from worsening the

condition.

Mostly, mental disorders are assessed using physiolog-

ical signals or questionnaire techniques (Acharya et al.

2015, 2018b). But nowadays, electroencephalogram (EEG)

signals are widely used to detect the brain related diseases

as they are easy to acquire using multi-channel sensor array

and also economical (Ibáñez-Molina et al. 2018; Li et al.

2008; Sharma et al. 2020). The classification accuracy of

SZ depends upon the tools used to examine these signals.

The imaging techniques, such as computed tomography

(CT) and magnetic resonance imaging (MRI), are costly

and take more time to record and process the images as

compared to EEG signals (Subudhi et al. 2018; Talo et al.

2019; Gudigar et al. 2019; Acharya et al. 2012). The
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electrical activity of the neurons contributes to the synaptic

release and the neuronal signalling. These electrical shifts

are sudden, of a millisecond or even micro-second order,

with small amplitude (order of microvolts). EEG signals

are acquired by placing electrodes at different positions of

the scalp according to 10–20 international standards. These

EEG signals can be used to analyze different diseases such

as Parkinson’s disease (Bhurane et al. 2019a), sleep dis-

order (Sharma et al. 2018b, d, 2019a, b; Dhok et al. 2020),

dementia, SZ, Alzheimer’s disease, and other mental dis-

orders (Yıldırım et al. 2018; Tripathy and Acharya 2018;

Acharya et al. 2018c; Sharma and Acharya 2018; Sharma

et al. 2018a, e). In this work, we have proposed a CAD

model for the detection of schizophrenia, as this process is

faster and more accurate than the other detection methods.

Automated SZ detection using EEG signals may increase

the speed, and accuracy of diagnosis. It may also reduce

possible human errors.

Recent studies provide insights into automated SZ

classification using EEG signals. Kim et al. (2015) ana-

lyzed EEG obtained from electrode cups positioned as per

10–20 international standards. They got five frequency

bands, and computed power of every band using fast

Fourier transform (FFT). The highest accuracy of 62.2%

using the delta band. However, Dvey-Aharon et al. (2015)

incorporated the Stockwell approach for EEG-image con-

version, and time-frequency transformation is performed

on the EEG signals. They have received the classification

accuracy between 91.5 and 93.9% for top five electrodes.

Johannesen et al. (2016) used a 64 electrode system to

obtain the EEG recordings. The response given by partic-

ipants is analyzed and segmented via four-stage processing.

Time-frequency data for each of five frequency bands are

computed. The spectral power for frontal, central and

occipital locations are statistically analyzed. They devel-

oped two models for classification. The first model is

developed to discriminate correct and incorrect trials and

achieved an accuracy of 87%. The second model is used to

further classify the correct trial data into normal vs SZ

condition and achieved an accuracy of 87% using support

vector machine (SVM). Santos-Mayo et al. (2016) used

brain vision equipment to record the EEG signals. After

EGG-LAB preprocessing, 16 features are obtained per

electrode per participant and classified using the multi-

layer perceptron (MLP) and SVM classifiers. They have

obtained 93.42% and 92.23% accuracy for J5 MLP (multi

layer perceptron) and J5 SVM classifiers (Devijver and

Kittler 1982). Ibáñez-Molina et al. (2018) have carried out

EEG-based SZ assessments. The resting EEG from par-

ticipants are used in this study and involved in a naming

activity. For data acquisition the Neuroscan SynAmps 32-

channel amplifier is used. EEG signals are collected and

segmented. The segments are analyzed by moving a

window over the entire EEG recording during the resting

stage. Subsequently, Lempel-Ziv complexity (LZC) is was

measured per window. The final LZC value is determined

after standardization by measuring the sum of all values

obtained from each window. At the task, a group of 80

EEG segments are analyzed and then summed for the final

multiscale LZC score. Patients who have been resting

provided higher complexity scores in right frontal zones.

Oh et al. (2019), suggested a deep learning-based system to

discriminate SZ using EEG signals, automatically. They

have proposed convolutional neural network (CNN) based

model with ten-fold cross-validation and blind-fold vali-

dation strategies. They reported accuracy of 81.26% for

blind-fold strategy and 98.07% for ten-fold cross-valida-

tion strategy. Recently, Siuly et al. (2020) have introduced

SZ detection using statistical features obtained from

intrinsic modes of EEG multi-channel signals. They suc-

ceed in attaining 93:2%. Vicnesh et al. (2019), developed a

CAD to classify normal and SZ classes using non-linear

features extracted from EEG segments. They have reported

an accuracy of 92.91% using an SVM classifier with 12

features. Our proposed CAD system is shown in Fig. 1.

The EEG recordings are segmented into epochs of 25 s.

Then they are subjected to an optimal root-mean-squared

frequency spread minimized (RMSFSM) orthogonal

wavelet filter bank (Sharma et al. 2018c, 2019c, e). The l1
norm features are computed for each of seven sub-bands,

which are obtained from the six-level wavelet decompo-

sition of EEG segments. Then the features are fed to sev-

eral classifiers, including ensemble subspace k-nearest

neighbor (KNN) classifier. The salient features of the

proposed study are as follows:

1. We have developed single-channel EEG based system

whereas most of the existing systems (Siuly et al.

2020; Oh et al. 2019; Vicnesh et al. 2019; Moulin

et al. 1997; Akar et al. 2012) are based on a multiple-

channel system. Hence, our system is simple,

portable and convenient to patients.

2. Simulation results reveal that the proposed model

obtains unity value of AUC, an F1 score of 0.99, and

accuracy of 99:21% using a single channel Cz-channel

alone. Hence, the system is accurate and less complex.

3. In this study, we have used only seven wavelet-based

discriminating features. Thus the cost of computation

of the proposed model is less.

4. In the proposed work, we have deployed a new class of

an optimal two-band orthogonal wavelet filter bank

called RMSFSM, wherein filters are optimally local-

ized in the frequency domain.

5. The proposed model performs well in terms of

classification performance.
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6. To ensure the model’s robustness and avoid possible

over-fitting, we have used ten-fold, leave-one-subject-

out cross-validations (LOSOCV), and hold out valida-

tion. All strategies gave a comparable performance.

Data-set

The EEG signals were obtained from 14 paranoid SZ

patients (7 females ? 7 males), with an average age of 28.3

± 4.1 and 27.9 ± 3.3 years, respectively. Data was

obtained from the institute of psychiatry and neurology in

Warsaw, Poland (Olejarczyk and Jernajczyk 2017). The

EEG signals were recorded with eyes-closed and in resting

state on a multi-channel(19-channels), at a sampling fre-

quency of 250 Hz. Electrodes used were T4, T6, Fp2, F8,

Fp1, F7, F4, Fz, T3, T5, O1, O2, C4, P4, P3, F3, C3, Cz

and Pz. The EEG signal from Cz-channel of a normal and

SZ patient is shown in Fig. 2 and 3, respectively. Table 1

provides the details of the data-set used for this work.

Figures 4 and 5 show the 19-channel EEG signals corre-

sponding to the normal and SZ classes, respectively.

Proposed method

In this paper, 15-min EEG signals are sampled at 250 Hz

and pre-processed using sixth-order Butterworth filter.

Then signals are segmented into 25 s non-overlapping

segments giving 516 normal and 626 SZ segments. The

details of data used is given in Table 1.

Optimal design of FBs

Though the Fourier transform (FT) is considered as a

promising tool for analyzing non-stationary and time-in-

variant events, it is not suitable for the analysis of phe-

nomena, which are time-varying and non-stationary

(Sharma et al. 2010, 2015, 2016). This shortcoming of FT

can be overcome by short time Fourier transform (STFT)

by analyzing the signal into small slices to gather the

information required (Sharma et al. 2017b; Bhati et al.

2016; Rajput et al. 2019). The main disadvantage for STFT

is that the signal width to be measured as a small portion is

unchanged and therefore, details must be collected in both

low and high-frequency sections. The most important tool

that provides the information about a signal in both time

and the frequency domains simultaneously is called the

wavelet (Rajendra et al. 2018; Sharma et al. 2017a, c). The

Fig. 1 Proposed process flow diagram. First, all EEG signals were

acquired from 19 electrodes viz. T4, T6, Fp2, F8, Fp1, F7, F4, Fz, T3,

T5, O1, O2, C4, P4, P3, F3, C3, Cz, and Pz are preprocessed by

passing through the Butterworth filter of order six. The digitized EEG

records of all 19 electrodes are then segmented into epochs of the

length 25 s. Then epochs corresponding to each of 19 channels are

applied to the designed optimal RMSFMS filter. Wavelet decompo-

sition yielded various subbands of the EEG epochs. Subsequently, the

l1 norm features of each subband is computed. These features are

applied to various machine learning classifiers for the classification of

epochs as normal or SZ
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Fig. 2 Sample EEG signal

obtained from Cz-channel of

normal subject. X axis

represents sample-index and Y

axis represents magnitude in

mV
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wavelet magnifies the signal into tiny windows so that the

required information can be obtained by scaling and

shifting process. A narrow window is utilized during high-

frequency analysis and the wider window is used to
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Fig. 3 Sample EEG signal

obtained from Cz-channel of SZ

patient. X axis represents

sample-index and Y axis

represents magnitude in mV

Table 1 Details of dataset used

in this study
Class No. of subjects Avg. age of M and F in years Total no. epochs

Normal 14(7M ? 7F) 26.8 ± 2.9, 28.7 ± 3.4 516

SZ 14(7M ? 7F) 27.9 ± 3.3, 28.3 ± 4.1 626

The EEG signals are recorded for 19 electrodes, namely T4, T6, Fp2, F8, Fp1, F7, F4, Fz, T3, T5, O1, O2,

C4, P4, P3, F3, C3, Cz, and Pz. The sampling frequency of EEG signals is chosen 250 Hz to digitize the

EEG recordings. The duration of each epoch is 25s; thus, each epoch contains 6250 samples

M Male, F female, SZ schizophrenia

Fig. 4 19-Channel EEG

segments of a normal subject.

Y-axis represents EEG

electrodes Fp2, F8, T4, T6, O2,

Fp1, F7, T3, T5, O1, F4, Fz, C4,

P4, P3, F3, C3, Cz, and Pz.

X-axis: no. of samples at

sampling frequency 256
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analyze the low-frequency components (Sharma et al.

2017d; Sharma and Pachori 2017). For signal analysis, two

orthogonal channel filter is used. The typical structure of

two-band OWFB is shown in Fig. 6. As the optimal cri-

teria, mean-squared-frequency-spread (MSFS) of the filters

is used as, for constructing finitely supported orthogonal

wavelet filter banks (OWFB) (Shah et al. 2019; Sharma

et al. 2018f; Sharma and Acharya 2019), in this work. The

optimal RMSFMS filters used in this work have minimum

frequency spread and the desired number of zero moments

(Tay et al. 2014; Sharma et al. 2019e), which are essential

for generating smooth wavelets. The RMSFMS FBs were

found to be performing well in applications of image

compression and signal de-noising (Sharma et al. 2017c).

Tay et al. (2014) noticed that RMSFMS filters exhibit

better performance than other orthogonal counterparts in

image processing applications. Sharma et al. (2017b, 2020)

showed that RMSFMS localized filter banks perform well

in the analysis of EEG and ECG signals. Thus, frequency

localization is an important attribute in selecting and

designing optimal filters and FBs. RMSFSM filter used in

this study possesses the following features. (1) Unlike the

traditional filter design techniques, one does not require to

mention cutoff frequencies corresponding to the stop

passbands. (2) The RMS bandwidth can be considered a

good measure of the filter’s frequency localization. The

Fig. 5 19-Channel EEG

segments of SZ patient. Y-axis:

EEG electrodes Fp2, F8, T4, T6,

O2, Fp1, F7, T3, T5, O1, F4, Fz,

C4, P4, P3, F3, C3, Cz, and Pz.

X-axis: no. of samples
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Fig. 6 Typical structure of two

band OWFB, A(z) and gAðzÞ are

analysis lowpass and highpass

filters, simialrly B(z) and gBðzÞ
represent synthesis lowpass and

highpass filters
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RMS BW takes care of the entire spectrum. (3) The

RMSFMS filters have significantly fewer ripples and sharp

roll-off (Sharma et al. 2019d).

Figure 6 shows a two-band filter bank, where low-pass

filter (LPF) A(z), high-pass filter (HPF) and gAðzÞ, and low-

pass filter B(z), high-pass filter gBðzÞ are used in analysis

and synthesis banks, respectively. The output of each filter

is down-sampled by a factor of 2 in the analysis bank

whereas in synthesis bank it is up-sampled by a factor of 2.

The time-reversed version of high and low pass filters in

the analysis bank gives the respective filters in synthesis

bank. High pass filters in OWFB are obtained by quadra-

ture conjugation of respective low pass filters (Vetterli

et al. 1992). As a result, by designing one filter, one can get

the other three filters. Generally, filters B(z), gAðzÞ and gBðzÞ
are designed with the help of A(z) filter of analysis bank.

The product filter FðzÞ ¼ AðzÞBðzÞ ¼ AðzÞAðz�1Þ must

satisfy the below condition to get OWFB (Vetterli et al.

1992; Daubechies 1992).

FðzÞ þ Fð�zÞ ¼ 2 (Half Band Condition) ð1Þ

Here, FðzÞ ¼ AðzÞBðzÞ is the product filter, and A(z) &

B(z) are the analysis and synthesis lowpass filters of the FB

shown in Fig. 6.

To design optimal filters A(z) and B(z) of the underlying

OWFB, we design half-band filter F(z) first with con-

straints of the non-negativity and regularity. The desired

LPFs A(z) and B(z) have been retrieved through the spectral

factorization of F(z) (Bhurane et al. 2019b). The unit

impulse response sequences of analysis LPF A(z) and the

synthesis LPF B(z) are denoted as a(n) and b(n),

0� n� L� 1. The optimization criterion for designing the

orthogonal FB is to minimize the MSFS of the LPFs. Since,

both A(z) and B(z) have same MSFS. Minimizing the

MSFS of A(z) also results in minimizing the MSFS of B(z).

The MSFS a2x of low pass filter A(z) is given by (Sharma

et al. 2018c)

a2x ¼ 1

2pE

Z p

�p
x2jAðejxÞj2dx ð2Þ

where, E is the squared L2 norm of the sequence a(n), and

AðejxÞ represents the discrete time Fourier transform of the

sequence a(n). The filter A(z) satisfies orthogonality and

regularity. The optimization problem, with degree of reg-

ularity of M, can be formulated as follows :

minimize
a½n�

a2x ¼ 1

2pE

Z p

�p
x2jAðejxÞj2dx ð3Þ

subjected to

Table 2 Filter coefficients of

optimal LPF used in this study
Index Coefficients

1 0.1115

2 0.4946

3 0.7511

4 0.3152

5 - 0.2262

6 - 0.1297

7 0.0975

8 0.0275

9 - 0.0315

10 0.00055

11 0.00477

12 - 0.0011
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Fig. 7 Magnitude response of

designed filter pair, where

y-axis represents magnitude and

x-axis represents normalized

frequency in rad/sample
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X

L

n¼0

aðnÞaðn� 2iÞ ¼ dðiÞ; i ¼ 0; 1; � � � L
2
� 1 ð4Þ

X

L

i¼0

ð�1ÞiilaðiÞ ¼ 0; l ¼ 0; 1; 2; � � �M � 1 ð5Þ

where L and M represnt the length and order of regularity

of the lowpass filter A(z).

The optimization problem has been solved using Mat-

lab-based convex optimization toolbox called CVX

(Sharma et al. 2014, 2019e). In this work, we used an

MSFS optimized filter of order 11 that has five zero

moments. The optimal LPF and HPF possess MSFS a2x=
0.8679. The filter coefficients corresponding to optimal

LPF are mentioned in Table 2. The optimally designed

filter is used in wavelet decomposition of EEG signal.

Figures 7 and 8 depict of the frequency responses of the

optimal filters.

Features used

The l1 norm feature of subbands has been computed in this

work. The l1 norm can be simply calculated as the sum of

the absolute values of samples of the subband sequence

x(n) given by (Wang et al. 2014):

l1ðxÞ ¼
X

n2Z
jxðnÞj ð6Þ

where n is the index of the sequence x(n) and Z denotes the

set of integers.

Classification

Different supervised machine learning classifiers have been

used in this proposed method to classify SZ and healthy

control classes. The classifiers used are ensemble subspace

k-nearest neighbors (KNN) (Sun et al. 2007; Xu et al.

2013), ensemble bagged tree (EBT) (Dietterich 2000),

ensemble boosted tree (Dietterich 2000), logistic regression

(Tomioka et al. 2007), and SVM (Virdi et al. 2016).

Training, testing and validation

In this work, the data set used is acquired from multiple

channels (19-channel). For each EEG epoch, seven l1 norm

features corresponding to the seven SBs, are computed.

Hence, the feature vector set contains seven norm features.

Firstly, we have tested each channel separately, i.e., we
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Fig. 8 Frequency response of

designed filter pair, where

y-axis represents magnitude in

dB and x-axis represents

normalized frequency in rad/

sample

Table 3 Summary statistical properties of seven features extracted

from the seven sub-bands yielded by RMSFMS filter bank using the

Cz EEG electrode

Sub-band Normal (mean± std) SZ (mean± std) t-value

3 3472.4 ± 920.20 17085 ± 18846 18.046

2 3261.7 ± 1215.4 8489.7 ± 8498.0 15.2048

4 7964.7 ± 2268.1 10923 ± 4435.2 14.538

7 6857.6 ± 1397.6 11170 ± 8424.0 12.60

6 9783.2 ± 3107.7 13063 ± 6681.6 10.93

1 10314 ± 2289.5 21693 ± 39193 7.248

5 16154 ± 8326.8 18094 ± 6411.4 4.337

For the statistical analysis student’s test is used with a significance

threshold of (0.0001). All features have p vales (p\0:0001). The first
columns present the rank of all seven features, second and third

columns give mean and std of the corresponding feature for normal

and SZ epochs, respectively, used in the study. the last columns

present the t value
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took all seven features 19 different single-channel EEG

signal for classification using ten fold cross-validation

(CV). In ten-fold cross-validation, the entire feature dataset

is divided into almost ten equal sub-samples. The nine sub-

samples are used for model training, and the remaining

portion is used for testing. The cycle is repeated ten times

so that the training and testing phases are applied to all ten-

folds (Fushiki 2011).

For the above-mentioned classification algorithms are

employed for all 19 channels, separately. The channel (Cz)

that gave the best performance, subsequently chosen for

further validation using leave-one-out cross-validation

(LOSOCV) and hold out validation. In LOSOCV, 27

subjects out of 28 were used to train the model, and the

remaining one used for testing the model. The process was

repeated for all 28 subjects. To ensure the robustness, we

also performed hold-out validation for the Cz channel that

gave the best performance using the ten-fold CV. In this

validation, the dataset is split up into the training and

testing subsets. In this method, 10%, 20%, 30%, 40% and

50% hold-out are used. In the 10% hold-out, 90% data of

the dataset was used as a training set, and the remaining

10% dataset is used as a testing subset. Similarly, in 20%,

30%, 40%, and 50% hold-out 20%, 30%, 40%, and 50%

data used as test data respectively, and remaining data used

to train the model.

Results

We designed the proposed CAD using

Intel(R) Xeon(R) CPU E3-1245 v5 @ 3.50 GHz with 16.0

GB RAM and 64-bit operating system, x64-based proces-

sor. The 9.4.0.813654 version of MATLAB R2018a is

used. The average feature extraction time for a feature has

been 3.173 s.

Features are ranked using student’s t-test, which is used

to evaluate the quantitative difference between the aver-

ages of two groups (De Winter 2013). The t-value is used

to measure the measurements of the variation compared to

the difference in the specimen data. The t-value indicates

whether the two classes are significantly different or not.

Higher the t-value higher will be the discriminating

potential or rank of the given feature. The p-value is the

median sense point within a mathematical hypothesis test

which reflects the likelihood of a given event happening. If

the p-value corresponding to the given feature found to be

lesser than the significance level (.0001) then the null

hypothesis can be rejected. Table 3 reflects ranks and

t-values corresponding to all features computed for the

classification. It is to be noted the values corresponding to

each features is less than the threshold value of .0001.

Hence, each feature is statistically significant and, there-

fore, all seven features are utilized for the classification.

Since, the number of feature is small there is no need of

using any feature reduction/selection techniques.

The average time taken for training and testing is 5.885 s

and 50.87 ms, respectively, with the average prediction

speed of 2636 obs/s. The classification accuracies for dif-

ferent classifiers using ten-fold CV are shown in Table 4

with the Cz channel. The highest classification perfor-

mance for the Cz channel using the ten-fold CV is shown in

Table 5. We found the average classification accuracy of

99.21% using the ES-KNN classifier with the ten-fold CV.

Figure 9 shows receivers operating characteristic (ROC)

corresponding to the Cz channel when the classification is

performed using all seven features and KNN with ten-fold

CV. The ROC presents a variation of the sensitivity with

respect to specificity. It is to be noted that our model has

attained the perfect unity value of area under the ROC

curve (AUC).

The best classification accuracies for remaining 18

channels have also been reflected in Table 6. In order to

ensure over-fitting to develop a robust model, we used

LOSOCV for the classification using Cz channel. The

results of classifications are shown in Table 7 for

LOSOCV. From the table, it clear that model achieved the

average accuracy of 97:2% and F1-score of 97:42% for

KNN with LOSOCV. The confusion matrix and classifi-

cation results for holdout validation with KNN classifierTable 4 Summary of best classification results obtained with ten-fold

cross validation using Cz channel EEG

CF CA (%) PPV (%) CS (%) CSF (%)

ES KNN 99.21 98.84 99.42 99.05

KNN 98.77 99.03 98.27 99.20

GSVM 98.42 98.64 97.88 98.87

Bagged trees 98.25 97.48 98.63 97.94

Boosted trees 98.07 98.44 97.32 98.71

The definitions of acronyms used in the table are CF: classifier; ES:

ensemble subspace; GSVM: SVM with Gaussian kernel; CA: clas-

sification accuracy; CS: classification sensitivity; CSF: classification

specificity; PPV: positive predictive value

Table 5 Results obtained for ten-fold CV using Cz channel

Dataset CA CS CSF F1 score j

Whole 99.21% 99.42% 99.05% 99.13% 0.9833

Balanced 98.64% 99.02% 99.02% 98.83% 0.9766

The whole dataset contains 516 and 626 epochs of normal and SZ

patients, whereas the balanced dataset contains 516 epochs of each

class normal and SZ in the first column. The last column represents

cohen’s kappa value j
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are shown in Tables 8 and 9, respectively. The best clas-

sification accuracy is 99.42% for 30% holdout validation.

It is to be noted that the number of Sz patients and

normal subjects is exactly the same (7 SZ and 7 normal).

Fig. 9 Left window: ROC for the whole database containing 516 Cz-

channel EEG epochs of normal and 626 Cz-channel EEG epochs of

schizophrenia patients using KNN classifier with ten fold CV

considering all seven features together, Right window: Magnified

version of the ROC shown in left window for the false positive rate

varying between 0 and 0.1

Table 6 Summary of best classification results obtained with ten-fold

cross-validation using each of 19 channels EEG

Channel CA (%) PPV (%) CS (%) CSF (%)

FP2 91.20 92.90 91.1 91.3

F8 92.2 91.2 91.4 92.8

T4 93.7 93.2 92.8 94.3

T6 95.0 95.5 93.5 96.2

O2 94.1 93.9 93.0 95.0

FP1 96.8 96.9 95.9 97.4

F7 97.6 97.6 97.1 98.0

T3 98.5 99.0 97.7 99.1

T5 98.6 99.2 97.7 99.3

O1 97.7 97.8 97.1 98.2

F4 98.4 98.4 98.0 98.7

C4 98.2 99.0 96.9 99.1

P4 98.7 99.6 97.53 99.6

F3 98.2 98.4 97.5 98.7

C3 96.9 98.6 94.7 98.8

P3 98.6 99.4 97.5 99.5

Fz 97.8 97.2 97.8 97.7

Pz 99.0 98.8 99.0 99.0

Cz 99.21 98.84 99.42 99.05

The first column represents the electrode used for the classification

task. The highest classification accuracy is attained by the Cz channel

(in the last row). The bold values represnts the highest values

Table 7 Classification performance for Cz channel using leave one

subject out cross vlaidation (LOSOCV)

Classifier CA CS CSF F1 score

KNN 97.20% 96.49% 98.06% 97.42%

Table 8 Confusion matrix obtained for holdout validation using Cz

channel

Holdout (%) TN FP FN TP

10 50 1 0 63

20 101 2 1 124

30 154 1 1 186

40 204 2 3 247

50 253 5 3 310

In holdout validation, the model is tested by varying the percentage of

holdout (testing data) as 10%, 20%, 30%, 40% and 50%, respectively,

and the percentage of training data was kept 90%,80%,70%, 60% and

50%, respectively
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Though the number of healthy controls and SZ patients are

the same, the database appears slightly unbalanced as the

number of normal and SZ EEG epochs are not the same.

The epochs corresponding to SZ and normal controls are

626 (54.8%) and 516 (45.2%). To take care of the data-

base’s slight skewness, we have created a balanced sub-

dataset taking 516 random epochs to form each class.

Table 5 shows that The classification accuracy of the bal-

anced subset has been found to be 98.64%. Also, the AUC

obtained with balanced data is 0.99 (Fig. 10), which is

close to the perfect value of 1. Thus, the classification

performance corresponding to both (whole and balanced)

datasets is almost the same for the Cz channel.

Discussion

The optimal filter bank was used for wavelet decomposi-

tion. In this study, we varied with the decomposition levels

between three to seven. After decomposition, features for

each wavelet SBs norm feature are computed. We found

that the features corresponding to level six were the most

dominating that gave the best classification performance.

We obtained the best average accuracy of 92:72%, 94:96%,

98:83%, 99:71%, and 97:23% for levels three, four, five,

six, and seven for the Cz channel, respectively, using KNN

with ten-fold CV. We can see that for the level-six, the

accuracy is the highest, followed by the level-five.

It is apparent from Table 3 that the mean value of l1 of

normal EEG signals is comparatively lower than that of the

SZ signals for all sub-bands. Also, the standard deviation

value of l1 norm of normal EEG signals is smaller than that

of SZ signals for all sub-bands except the fifth sub-band.

The amplitude of the SZ EEG signal is higher than the

normal EEG signal. Hence, l1 norm is high in all sub-bands

as compared to normal EEG signals. Table 3 provides the

details of the best l1 norm features based on their ranking.

These features are used for classification system training

Table 9 Results obtained for holdout validation using Cz channel

Holdout (%) CA (%) CS (%) CSF (%) F1 score (%)

10 99.12 100 98.44 99.01

20 98.68 99.02 98.41 98.54

30 99.42 99.35 99.47 99.35

40 98.90 98.55 99.20 98.79

50 98.60 98.83 98.41 98.44

In holdout validation, the model is tested by varying the percentage of

holdout (testing data) as 10%, 20%, 30%, 40% and 50%, respectively,

and the percentage of training data was kept 90%,80%,70%, 60% and

50%, respectively

Fig. 10 Left window: ROC for the balanced dataset containing 516

Cz-channel EEG epochs of each normal and schizophrenia patients

using KNN classifier with ten fold CV considering all seven features

together, Right window: Magnified version of the ROC shown in left

window for the false positive rate varying between 0 and 0.1
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and testing, which could categorize EEG signals into

healthy and SZ classes.

Table 10 provides the summary of automatic systems

developed to distinguish normal and SZ EEG signals. Our

proposed method reveals that the RMSFSM filter bank

based l1 norm features can efficiently classify SZ and

normal EEG signals. It is to be noted that in the table, the

first five studies have used different databases than used by

the last three studies, including the proposed one. Thus, it

is difficult to make a direct comparison of the performance

of all studies. Recently, Oh et al. (2019) have developed a

deep CNN based automated system to detect SZ using 19-

channel EEG signals and obtained classification lower

accuracy than our proposed model using the same database.

Table 10 Comparison of our results with the existing automated methods for SZ detection

S.

no.

study Features,

method

No. of

participants

Dataset Classification accuracy

%

Used electrodes

1. Kim et al.

(2015)

ROC, ANOVA,

QEEG

parametrs

Normal: 90

subjects

Abnornal: 90

patients

Department of Psychiatry,

Gongju National

Hospital, Korea

62.2 Fp1, Fp2, F7, F3, Fz, F4, F8,

T3, C3, Cz, C4, T4, T5, P3,

Pz, P4, T6, O1, O2

2. Dvey-

Aharon

et al.

(2015)

TFT, Feature-

Optimisation

Normal: 25

subjects

Abnornal: 25

patients

University of A Coruna,

Spain

Between 91.5–93.9 F2, Fc3, AFz, FCz, FC5

3. Johannesen

et al.

(2016)

SVM Normal: 12

subjects

Abnornal: 40

patients

VA Connecticut

Healthcare System

(VACHS), Yale

Model 1: 84 Model 2: 87 Fz, Cz, Oz

4. Santos-

Mayo

et al.

(2016)

MIFS or DISR

15Hz-J5-MLP

35Hz-J5-SVM

Normal: 31

subjects,

abnornal: 16

patients

Department of Electrical

Engineering, University

of Valladolid, Spain

15Hz-J5-MLP: 93.42

35Hz-J5-SVM: 92.23

C3, C4, Cz, F3, F4, F7, F8,

Fp1, Fp2, Fz, O1, O2, P3,

P4, Pz, T5, T6

5. Ibáñez-

Molina

et al.

(2018)

DISR, MIFS, J5 Normal: 17

subjects

Abnornal: 18

patients

Mental Health Day

Hospital of the St

Agustı́n Hospital in

Linares

NA 36 Ag/Ag electrodes

6. Oh et al.

(2019)

11-layered CNN

Model

Normal: 14

subjects

Abnornal: 14

patients

Institute of Psychiatry and

Neurology Warsaw,

Poland

Non subject specific

testing: 98.07 Subject-

specific testing: 81.26

Fp1, Fp2, F7, F3, Fz, F4, F8,

T3, C3, Cz, C4, T4, T5, P3,

Pz, P4, T6, O1, O2

7. Vicnesh

et al.

(2019)

SVM, KNN,

LD, PNN, DT

Normal: 14

subjects

Abnornal: 14

patients

Institute of Psychiatry and

Neurology Warsaw,

Poland

92.91 Fp1, Fp2, F7, F3, Fz, F4, F8,

T3, C3, Cz, C4, T4, T5, P3,

Pz, P4, T6, O1, O2

8. Present

work

l1 Norm, ES-

KNN

Normal: 14

subjects

Abnornal: 14

patients

Institute of Psychiatry and

Neurology Warsaw,

Poland

KNN with ten-fold CV:

99.21 KNN with

LOSOCV: 97.2

Cz

It is a gene-specific ratio between the mean difference in expression intensity between two groups.It is directly related to Fisher’s Linear

Discirminant Analysis. It can be defined as the trace of the product of the inter-class dispersion matrix and inverse of the within-class dispersion

matrix (Devijver and Kittler 1982); Model 1: correct vs incorrect; Model 2: healthy control vs SZ

ANOVA analysis of variance, QEEG quantitative electroencephalography, TFT time frequency transformation, MIFS mutual information feature

selection, DISR double input symmetrical relevance, PNN probabilistic neural networks, LZC lempelaeziv complexity; J5

Fig. 11 Design of the proposed cloud model
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Also, the computation time required to produce deep

learning models is more compared to machine learning

models. Moreover, we have achieved comparable classifi-

cation performance with ten-fold CV, LOSOCV, and hold

out validation used by us, and in each case average accu-

racy was more than 97%. Thus, our proposed model has

attained better classification performance than models of

Oh et al. 2019; Vicnesh et al. 2019 using the same data-

base. The proposed system used only single-channel EEG,

unlike (Kim et al. 2015; Johannesen et al. 2016; Santos-

Mayo et al. 2016; Ibáñez-Molina et al. 2018; Oh et al.

2019; Vicnesh et al. 2019) wherein multiple EEG channels

were used. Further, Vicnesh et al. (2019) used 12 features,

whereas we used only 7 features and obtained better per-

formance than Vicnesh et al. (2019). Hence, the compu-

tational cost of the proposed model is lesser than Vicnesh

et al. (2019). We have thus obtained better performance

than the state-of-art techniques, as reported in Table 10

with the same database.

Main advantages of our proposed method are:

1. Obtained high accuracies of 97.2% and 99.21% using

only one single EEG channel with LOSOCV and ten-

fold CV. Thus, the model is accurate, as well as robust.

2. Achieved high classification performance for hold

validation also.

3. Employed only l1 norm-based feature set, which

contains seven features extracted from seven wavelet

sub-bands.

4. Attained robust system as it is developed with ten-fold.

5. Developed, fast and accurate wavelet-based system.

6. It is obvious from Table 10 that the suggested model

succeeds in attaining the highest average classification

accuracy and F1 score using only one channel (Cz)

EEG. Hence, it reduces the computation time.

Main disadvantages of this method are:

1. Used a small dataset (28 subjects) to develop the

model.

2. Duration of EEG signal window is little large (25s).

In future, we can plan to implement deep learning tech-

niques to automatically detect the SZ class without

extracting the features (Oh et al. 2018a, b; Acharya et al.

2018a). Also, one can install the proposed CAD system in

the cloud to detect the unknown class immediately. Fig-

ure 11 illustrates the functioning of the proposed model.

Firstly, the EEG signals obtained from patients are stored

in the hospital server and sent to the cloud where the

proposed wavelet-based model has been installed. The

model will analyze the data and detect the SZ immediately.

Then the test result is sent from the cloud to the hospital.

Then the physician can verify the result manually by

comparing his finding with the CAD system.

Conclusion

We have proposed a novel methodology for accurate

schizophrenia detection using features extracted from sin-

gle-channel (Cz channel) EEG. In this model, optimized

root-mean-squared-bandwidth orthogonal wavelets filter

are employed for accurate detection of schizophrenia. The

seven wavelet-based l1 norm features are used for the

classification of the schizophrenia and healthy subjects. In

this work, the k-nearest neighbour classifier yielded the

highest average classification accuracy of 99.21% using

ten-fold cross-validation and 97.2% using leave-one-sub-

ject-out cross-validation. As we have used only single-

channel Cz EEG, unlike other techniques, the proposed

model is simple. We have got comparable classification

performance (average accuracy more than 97% ) when

used ten-fold and leave-one-subject-out cross-validations

as well as hold out validation. Hence, the suggested model

is robust. Further, we have used only 7 seven features for

the classification. The method is computationally lesser

expensive than the existing methods. Our model has per-

formed well in terms of all performance parameters,

namely (average classification accuracy, Cohen’s kappa

value, and F1-score), which justifies the accuracy and

robustness of the developed model. The proposed model

can be used in a cloud-based system for online monitoring

of schizophrenia. In the future, we intend to validate our

model with some other diverse and big databases. We

would also like to test our developed model to detect other

mental conditions like epilepsy, depression, autism, and

alcoholism.
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