Table 2.
Best classification rates over all manifold learning methods and classifiers with the use of the Euclidean distance (see “Construction of FCN based on the Euclidean distance” section); parameters, PT, classifier, accuracy (Acc), sensitivity (Sens) and specificity (Spec) rates. Classifiers are noted as RSVM (Radial SVM), LSVM (Linear SVM), k-NN (k-NN Classifier) and ANN (Artificial Neural Networks)
Method | Parameters | PT | Classifier | Acc ± SD (%) | Sens (%) | Spec (%) |
---|---|---|---|---|---|---|
MDS | p = 3 | 0.54 | RSVM | 72.3 ± 1.7 | 52.8 | 83.4 |
0.36 | LSVM | 57.9 ± 2.5 | 26.6 | 79.6 | ||
0.26 | k-NN | 65.7 ± 2.2 | 59.6 | 66.1 | ||
0.44 | ANN | 64.9 ± 2.6 | 53.7 | 69.5 | ||
ISOMAP | p = 2, k = 5 | 0.68 | RSVM | 72.9 ± 2 | 55.8 | 81.9 |
0.42 | LSVM | 54.6 ± 0.1 | 0 | 95.9 | ||
0.68 | k-NN | 65 ± 2.3 | 47.7 | 74.7 | ||
0.66 | ANN | 68.2 ± 1.8 | 47.4 | 80.4 | ||
Diffusion maps | p = 5, = 110 | 0.66 | RSVM | 68.8 ± 2.2 | 57.7 | 73.1 |
0.52 | LSVM | 62.9 ± 1.9 | 56.7 | 63.5 | ||
0.26 | k-NN | 65.1 ± 2.5 | 63.3 | 61.7 | ||
0.5 | ANN | 63.9 ± 2.6 | 71.4 | 53.2 | ||
kPCA | p = 5, = 11.5 | 0.62 | RSVM | 67.1 ± 1.3 | 37.1 | 87.1 |
0.28 | LSVM | 62.1 ± 1.6 | 56.8 | 62.9 | ||
0.64 | k-NN | 62.7 ± 2.8 | 56.7 | 63.3 | ||
0.62 | ANN | 67.2 ± 1.6 | 62.1 | 66.8 | ||
LLE | p = 3, k = 3 | 0.48 | RSVM | 70.3 ± 2.6 | 67.9 | 67.3 |
0.26 | LSVM | 70.2 ± 1.4 | 68.9 | 66.4 | ||
0.28 | k-NN | 65.3 ± 2.7 | 59.4 | 65.4 | ||
0.26 | ANN | 70 ± 2 | 64.3 | 70 | ||
Euclidean matrix | – | 0.64 | RSVM | 71.6 ± 1.7 | 60.1 | 76.1 |
0.58 | LSVM | 59.2 ± 2.5 | 62.5 | 52.3 | ||
0.64 | k-NN | 72 ± 2.2 | 67.5 | 70.6 | ||
0.70 | ANN | 62.1 ± 2.6 | 60.4 | 59.1 |