Skip to main content
. 2020 Nov 3;15(4):585–608. doi: 10.1007/s11571-020-09645-y

Table 2.

Best classification rates over all manifold learning methods and classifiers with the use of the Euclidean distance L2 (see “Construction of FCN based on the Euclidean distance” section); parameters, PT, classifier, accuracy (Acc), sensitivity (Sens) and specificity (Spec) rates. Classifiers are noted as RSVM (Radial SVM), LSVM (Linear SVM), k-NN (k-NN Classifier) and ANN (Artificial Neural Networks)

Method Parameters PT Classifier Acc ± SD (%) Sens (%) Spec (%)
MDS p = 3 0.54 RSVM 72.3 ± 1.7 52.8 83.4
0.36 LSVM 57.9 ± 2.5 26.6 79.6
0.26 k-NN 65.7 ± 2.2 59.6 66.1
0.44 ANN 64.9 ± 2.6 53.7 69.5
ISOMAP p = 2, k = 5 0.68 RSVM 72.9 ± 2 55.8 81.9
0.42 LSVM 54.6 ± 0.1 0 95.9
0.68 k-NN 65 ± 2.3 47.7 74.7
0.66 ANN 68.2 ± 1.8 47.4 80.4
Diffusion maps p = 5, σ = 110 0.66 RSVM 68.8 ± 2.2 57.7 73.1
0.52 LSVM 62.9 ± 1.9 56.7 63.5
0.26 k-NN 65.1 ± 2.5 63.3 61.7
0.5 ANN 63.9 ± 2.6 71.4 53.2
kPCA p = 5, γ = 11.5 0.62 RSVM 67.1 ± 1.3 37.1 87.1
0.28 LSVM 62.1 ± 1.6 56.8 62.9
0.64 k-NN 62.7 ± 2.8 56.7 63.3
0.62 ANN 67.2 ± 1.6 62.1 66.8
LLE p = 3, k = 3 0.48 RSVM 70.3 ± 2.6 67.9 67.3
0.26 LSVM 70.2 ± 1.4 68.9 66.4
0.28 k-NN 65.3 ± 2.7 59.4 65.4
0.26 ANN 70 ± 2 64.3 70
Euclidean matrix 0.64 RSVM 71.6 ± 1.7 60.1 76.1
0.58 LSVM 59.2 ± 2.5 62.5 52.3
0.64 k-NN 72 ± 2.2 67.5 70.6
0.70 ANN 62.1 ± 2.6 60.4 59.1