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Abstract 

Background:  The exploration of genomic alterations in Chinese colorectal liver metastasis (CRLM) is limited, and cor‑
responding genetic biomarkers for patient’s perioperative management are still lacking. This study aims to understand 
genome diversification and complexity that developed in CRLM.

Methods:  A custom-designed IDT capture panel including 620 genes was performed in the Chinese CRLM cohort, 
which included 396 tumor samples from metastatic liver lesions together with 133 available paired primary tumors.

Results:  In this Chinese CRLM cohort, the top-ranked recurrent mutated genes were TP53 (324/396, 82%), APC 
(302/396, 76%), KRAS (166/396, 42%), SMAD4 (54/396, 14%), FLG (52/396, 13%) and FBXW7 (43/396, 11%). A compari‑
son of CRLM samples derived from left- and right-sided primary lesions confirmed that the difference in survival for 
patients with different primary tumor sites could be driven by variations in the transforming growth factor β (TGF-β), 
phosphatidylinositol 3-kinase (PI3K) and RAS signaling pathways. Certain genes had a higher variant rate in samples 
with metachronous CRLM than in samples with simultaneous metastasis. Overall, the metastasis and primary tumor 
samples displayed highly consistent genomic alterations, but there were some differences between individually 
paired metastases and primary tumors, which were mainly caused by copy number variations.

Conclusion:  We provide a comprehensive depiction of the genomic alterations in Chinese patients with CRLM, pro‑
viding a fundamental basis for further personalized therapy applications.
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Background
Colorectal cancer (CRC) is one of the most common 
causes of cancer death worldwide [1], and distant metas-
tases are often observed at diagnosis (synchronous 
metastases), with the liver being the most frequently 

affected organ [2]. Even if liver metastasis is not detected 
initially, there is a considerable probability that it will 
develop later (metachronous metastases). Perioperative 
chemotherapy combined with hepatectomy is expected 
to be the best treatment to cure colorectal liver metasta-
sis (CRLM), but prognosis following resection of CRLM 
is still poor [3, 4]. There is an urgent need for prognostic 
and predictive biomarkers that can aid the selection of 
optimal neoadjuvant regimens and postoperative man-
agement strategies.

Many studies regarding the characterization of 
genomic alterations in metastatic colorectal cancer 
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(mCRC) have been conducted in past years to discover 
therapeutic biomarkers. Targeted sequencing of mCRC 
samples at Memorial Sloan Kettering (MSK) Cancer 
Center revealed that varied survival by tumor lateral-
ity can be predicted by certain genes [5]. A large-scale 
integrated omics study in a Chinese CRC cohort dem-
onstrated the ability of the phosphoproteome to distin-
guish metastasis and to predict drug response [6]. In 
research specifically focusing on CRLM, high similarities 
were observed between primary tumors and liver metas-
tases (LMs), whereas ubiquitous private mutations in 
LMs suggested individual tumor heterogeneity and spe-
cific genetic biomarkers that were capable of predicting 
potential therapeutics for treating LMs [7–9]. However, 
these studies either handled primary tumors, LMs and 
other metastases identically or were restricted to quite 
small numbers of samples. To comprehensively charac-
terize the genomic landscape of Chinese CRLM patients 
and explore potential prognostic biomarkers, we per-
formed targeted sequencing of LM lesions and available 
paired primary tumors in a large Chinese CRLM cohort.

Materials and methods
Patients and samples
A total of 529 specimens from 396 patients with CRLM 
were collected from the Hepato-Pancreato-Biliary Sur-
gery Department I, Peking University Cancer Hospi-
tal between January 2015 and October 2020, including 
396 tissue samples from metastatic liver lesions and 133 
paired primary tumor samples. Acquired samples were 
subjected to next-generation sequencing using a targeted 
panel assay as were blood samples obtained from all 
patients. Microsatellite instability was assessed for each 
patient. Information about the patient’s age, sex, primary 
tumor location and times to metastasis was collected by 
reviewing the medical records, and the data are summa-
rized in Table  1. Detailed clinical data is in Additional 
file  1: Table  S1. The study was reviewed and approved 
by the Ethics Committee of Peking University Cancer 
Hospital.

Targeted sequencing
DNA was extracted from formalin-fixed paraffin-
embedded (FFPE) tissues and white blood cells using a 
QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Ger-
many) and a Blood Genomic DNA Mini Kit (Cwbio-
tech, Beijing, China). A custom-designed IDT capture 
panel (Integrated DNA Technologies, Coralville, IA) 
was employed to capture the coding regions of 620 
genes (Additional file 2: Table S2). Captured DNA frag-
ments were then used for library preparation and quan-
tification guided by KAPA Hyper Prep protocols (Kapa 
Biosystems, Wilmington, MA), followed by purification 

with AMPure XP (Beckman Coulter, Brea, CA) and 
quantification using a Qubit™ dsDNA HS Assay Kit 
(Thermo Fisher, Waltham, MA). The final library was 
sequenced with the a NovoSeq 6000 platform (Illu-
mina, San Diego, CA) with a minimum depth of  ×  500.

Variant identification
The sequencing reads were aligned to a human refer-
ence genome (hg19) using Burrows-Wheeler Aligner 
(BWA) after trimming the adapters with Trimmomatic. 
Duplicated reads were flagged with Picard, and then 
reads were realigned using the Genome Analysis Tool 
Kit (GATK). Mutect2 and HaplotypeCaller were used 
to identify somatic mutations and germline mutations. 
FACTERA was used to identify genomic fusions and 
breakpoints. The filter condition is break support  ≥  
5. Mutations were annotated with ANNOVAR. Based 
on the mutation filtering scheme of MSK-IMPACT 
(https://​www.​acces​sdata.​fda.​gov/​cdrh_​docs/​revie​ws/​
DEN17​0058.​pdf ), hotspot mutations with allele depths 
above 8 and variant frequencies above 2% and non-hot-
spot mutations with allele depths above 10 and variant 
frequencies above 5% were retained as somatic muta-
tions. Annotation of pathogenic mutations in ClinVar 
or truncating mutations of genes related to hereditary 
colorectal cancer was employed to detect germline 
mutations. Copy number variations (CNVs) were iden-
tified using GATK, and genes with copy number ratios 
below 0.6 or above 2 were subjected to CNV filtering. 
Tumor mutational burden (TMB) was defined as the 
number of nonsynonymous somatic mutations per mil-
lion bases.

Table 1  Patient characteristics

Primary tumors (N  =  133) Liver 
metastases 
(N  =  396)

Age, median (range) 57 (32–78) 58 (13–80)

Sex

 Male 65.4% (87/133) 67.7% (268/396)

 Female 34.6% (46/133) 32.3% (128/396)

Primary site

 Right 21.8% (29/133) 17.7% (70/396)

 Left 78.2% (104/227) 82.3% (326/396)

Timing of metastasis

 Synchronous 82.0% (109/133) 72.2% (286/396)

 Metachronous 18.0% (24/133) 27.8% (110/396)

MSI status

 MSI-H 1.5% (2/133) 1.3% (5/396)

 MSS 98.5% (131/133) 98.7% (391/396)

https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170058.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170058.pdf
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Statistical analysis
Statistical analyses were performed with R v3.6.0. The 
prevalence of mutants was compared between differ-
ent groups using the chi-square test. Student’s t test 
was performed to compare TMB and the percentage of 
shared mutations between paired primary tumors and 
LMs.

Results
Mutation landscape of CRLM
In 396 metastatic liver samples, 7327 mutations in 620 
genes were identified, including 6038 single nucleotide 
variants and 1289 small insertions/deletions, 20 ger-
mline mutations and 15 fusions (Fig. 1A). The top-ranked 
recurrently mutated genes observed in this cohort 
were TP53 (324/396, 82%), APC (302/396, 76%), KRAS 

Fig. 1  The genomic landscape of Chinese CRLM. A Recurrent mutations and CNVs in 396 Chinese patients with CRLM. The number and prevalence 
of altered genes are indicated on the right side of the heatmap. B Mutation prevalence of genes in Chinese and MSK CRLM cohorts. C Mutation 
prevalence of genes in treatment-naïve Chinese and MSK CRLM cohorts
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(166/396, 42%), SMAD4 (54/396, 14%), FLG (52/396, 
13%) and FBXW7 (43/396, 11%). Germline mutations 
were detected in 20 samples (5.1%), and approximately 
one-third of the germline mutations (6/20) occurred in 
the MSH6 gene. Druggable gene fusions were found in 
2.8% of all samples (11/396), including 3 ROS1, 3 RET, 
2 ALK, 2 NTRK1 and 1 BRAF fusion. Somatic CNVs of 
620 genes were also assessed, and fifty-two genes were 
determined to harbor such genomic events (Fig. 1A). The 
recurrent CNVs involved prominent amplification of the 
FLT3, AURKA, MYC, BRCA2, AR and ERBB2 genes and 
dominant deletion of FGFR1, FGFR3 and PTEN, each of 
which affected between 2 and 6% of all samples.

Mutation data of 274 LM samples were obtained by 
taking a subset of the mCRC cohort from MSK Cancer 
Center, and the data were downloaded from cBioPortal 
(https://​www.​cbiop​ortal.​org/​study/​summa​ry?​id=​crc_​
msk_​2017). To investigate the divergence of genomic 
alterations between different CRLM populations, the 
mutation rates were compared between the Chinese 
and MSK cohorts by assessing the somatic mutations 
of 337 (Additional file 2: Table S2) genes shared by our 
panel and MSK-IMPACT. Alterations in PIK3CA and 
BRAF were significantly enriched in the MSK cohort, 
while the Chinese cohort had a higher prevalence 
of mutations in genes like FBXW7, FAT1, ARID1A, 
ARID1B and NCOR1 (Fig.  1B). Considering that the 
treatment conditions of the two cohorts were different, 
the frequencies of genic alterations were further com-
pared considering only treatment-naïve patients (40 in 
the Chinese cohort and 60 in the MSK cohort). Higher 
mutation rates in the Chinese CRLM were found in 

four genes, ARID1B, IRS2, AR and CREBBP (Fig.  1C), 
and only ARID1B was in the overlap with differentially 
mutated genes of all samples.

Genomic alterations by primary tumor site
Recent studies suggest that shorter survival of mCRC 
patients with metastatic tumors originating from right-
sided primary tumors is potentially caused by under-
lying features of somatic alterations [5]. We compared 
the frequencies of gene mutants in patients with differ-
ent primary tumor sites. In addition to the previously 
reported genes KRAS and PIK3CA, other genes (such as 
AMER1, PIK3R1, PRKDC, ERBB3, DIAPH1, BCLAF1, 
KDM5A and NOTCH1) were also preferentially altered 
in LMs from right-sided primary tumors, while enrich-
ment of alterations in TP53 and FBXW7 was observed 
in LMs originating from the left colon (Fig.  2A). Fur-
thermore, comparative analysis of 10 oncogenic path-
ways derived from TCGA PanCancer Atlas between 
right- and left-sided primary sites was also conducted. 
Two pathways were significantly enriched in right-
sided primary tumors, the transforming growth factor 
β (TGF-β) and phosphatidylinositol 3-kinase (PI3K) 
signaling pathways (Fig. 2B). Although the difference in 
mutation rates of RTK-RAS between the two primary 
site groups did not reach a significant level (82.9% vs. 
78.2%, p  =  0.48), RAS showed more mutations in the 
right-sided primary tumors, while the RTK pathway did 
not (Additional file 4: Figure S1), and these results are 
consistent with a previous study [5].

Fig. 2  Genomic alterations by primary tumor site. A Gene-level mutation prevalence in liver metastases originating from left- and right-sided 
primary tumors. B Pathway-level mutation prevalence in liver metastases originating from left- and right-sided primary tumors. Significant elements 
are labeled as red circles

https://www.cbioportal.org/study/summary?id=crc_msk_2017
https://www.cbioportal.org/study/summary?id=crc_msk_2017
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Genomic alterations according to time to metastasis
It has been reported that synchronous CRLM is cor-
related with poor survival, but the prognostic role of 
metastasis timing in CRLM remains controversial [10–
12]. To clarify this contentious issue from the perspective 
of genomic alterations, we examined whether there is a 
differential distribution of genomic alterations between 
patients with different times to metastasis. Our results 
showed that mutations in FBXW7, FLT3, XIRP2, TSC2, 
LATS1 and CREBBP were enriched in metachronous 
LMs, while only mutations in CDK12 were enriched in 
synchronous LMs (Fig.  3A). Beyond the associations at 
the gene level, comparative analysis at the pathway level 
revealed that the Notch and cell cycle pathways were 
also selectively altered in metachronous CRLM (Fig. 3B). 
Additionally, a higher TMB in metachronous LMs than 
in synchronous LMs was also observed (Additional file 5: 
Figure S2).

Mutations in primary tumors and liver metastases
The concordance of mutations before and after metas-
tasis was assessed in 133 patients with paired pri-
mary tumors and LMs (Additional file  3: Table  S3). 
Shared mutations accounted for 56.7% of all mutations 
(951/1,685), while 19.7% (330/1,685) were private in pri-
mary tumors and 23.6% (399/1,685) were identified only 
in LMs. The median percentage of shared mutations 
among all detected genes was 50.0%. This number rose to 
72.0% when focusing on the top 10 recurrently mutated 
genes (Fig.  4A). In particular, the proportions of shared 
mutations in three genes with the highest mutation rate 
all exceeded 80% (TP53: 83.5%, APC: 81.9%, and KRAS: 

93.0%). No significant difference in shared mutations was 
observed between left- and right-sided primary tumors 
or samples from patients with different times to metas-
tasis (Fig. 4B).

It is noteworthy that the occurrence of shared variants 
was much lower when only considering CNVs (Fig. 4C). 
The shared CNVs covered no more than 10% of all CNVs 
(13/148), and most of them were only in LMs (96/148, 
64.9%). Specifically, several genes with only private dele-
tions were observed in the metastases, including FGFR3, 
MAP2K4 and PTEN.

Discussion
With extensive research on the genomic characteristics 
of mCRC, the associations between mutations and the 
prognosis of patients have gradually been disclosed, and 
the correlations between primary tumors and LMs have 
been mined. However, in-depth investigation of genomic 
alterations of CRLM tumors from Chinese patients has 
not been performed. In this study, we collected a sizable 
number of eligible samples and identified comprehensive 
genomic alterations to explore the differences between 
patients with different characteristics.

The genomic landscape of Chinese patients with 
CRLM resembled that previously reported for mCRC 
[5, 6, 13], and TP53, APC and KRAS were the most 
frequently mutated genes [14, 15]. Alterations of 
another recurrently altered gene, FLG, were distrib-
uted throughout the entire gene, and most mutations 
were privately enriched in primary tumors or metas-
tases, indicating that they were passenger mutations 
that emerged with tumor progression. It has also been 

Fig. 3  Genomic alterations by the timing of metastasis. A Gene-level mutation prevalence in synchronous and metachronous liver metastases. B 
Pathway-level mutation prevalence in synchronous and metachronous liver metastases. Significant elements are labeled as red circles



Page 6 of 8Wang et al. J Transl Med          (2021) 19:313 

confirmed that such variants fail to serve as prognostic 
indicators for CRC [16]. Published studies have shown 
that highly frequent mutations in members of the ARID 
gene family are associated with microsatellite instabil-
ity [17]. Four out of five microsatellite instability-high 
patients had such mutations in our cohort. Compared 
to the MSK cohort, the Chinese cohort showed signifi-
cantly more mutations of the ARID gene family, regard-
less of whether all samples or only treatment-naïve 
patient samples were analyzed. Both genetic and envi-
ronmental factors can contribute to these disparities, 
and further validation may be warranted.

Recent studies have confirmed the prognostic role 
of primary tumor location in mCRC [18, 19] and its 
association with underlying genomic alterations [5]. 
In our cohort, the differential distribution of variants 
in the TGF-β, PI3K and RAS pathways based on pri-
mary tumor site was consistent with existing research. 
Apart from KRAS and PIK3CA, other genes preferen-
tially altered in the right-sided primary tumor sites, 
such as PRKDC, ERBB3, BCLAF1 and NOTCH1, have 
been reported to be correlated with poor prognosis or 
migration in CRC [20–26]. In our study, alterations in 
FBXW7 were enriched in LMs derived from left-sided 

Fig. 4  Concordances of genomic alterations between paired primary tumors and liver metastases (LMs). A Shared and private variants of 
recurrently mutated genes in 133 Chinese CRLM patients. The percentage of shared alterations for samples and genes is indicated on the top and 
right side of the heatmap. B Comparison of shared mutations between different primary tumor sites and the timing of metastasis. C Shared and 
private CNVs in Chinese CRLM patients
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CRCs. Since a previous study found that patients with 
mutations in FBXW7 may be less likely to respond to 
anti-EGFR therapy than those without mutations in 
FBXW7 [12], FBXW7 assessment may be useful to 
include in molecular testing of patients with left‐sided 
CRC who would receive targeted therapy.

Compared with left-sided primary tumors, right-sided 
primary tumors showed a higher proportion of synchro-
nous LMs in our cohort (30.4% vs. 15.7%). Synchronous 
lesions were once expected to predict worse survival 
than metachronous lesions in hepatic metastases of CRC, 
but recent studies have expressed controversial opin-
ions [27]. Interestingly, biomarkers that indicate a worse 
prognosis for mCRC, such as FLT3 amplification, altera-
tions of FBXW7 and high TMB [28, 29], were found to be 
enriched in metachronous lesions in our cohort. Conse-
quently, further confirmatory work is required to deter-
mine the prognostic value of the timing of metastasis.

Just over half of all genomic alterations were detected 
in both paired primary tumor and metastasis samples in 
our cohort. However, when only focusing on recurrent 
driver genes, this proportion increased to a level that 
was similar to that seen in several small CRLM cohorts 
(approximately 70%) [7, 8, 30, 31]. This change in pro-
portion may be because systemic spread of colorectal 
cancer may occur while the tumor is clinically undetect-
able [31]. A high percentage of private CNVs in LM was 
observed in our cohort, which might have been caused by 
the intratumoral evolution of metastatic clones because 
metastases were more genetically similar in terms of copy 
number-based phylogenies [32]. A high CNV burden 
combined with RAS/BRAFV600E/TP53 formed an efficient 
prognostic marker [33].

Although this work provides a comprehensive char-
acterization of genomic alterations of liver metastatic 
tumors in a large Chinese CRLM cohort, there are limi-
tations. This study was performed with samples from a 
single institution; therefore, the risk of selection bias can-
not be completely ruled out. Without available clinical 
follow-up information, the prognostic effect of differen-
tial alterations in subgroups cannot be validated and was 
only supported by recent literature.

Conclusions
In summary, we delineated a comprehensive genomic 
landscape of Chinese patients with colorectal liver 
metastases. Differences in alterations between patient 
subgroups were characterized, and heterogeneity of indi-
vidual primary tumor and liver metastasis samples was 
unveiled. These findings could provide a fundamental 
basis for further personalized therapy applications.
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