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Abstract

Vinyl fluorides play an important role in drug development as bioisosteres for peptide bonds and 

are found in a range of bioactive molecules. The discovery of safe, general and practical 

procedures to prepare vinyl fluorides from readily available precursors remains a synthetic 

challenge. The metal-free hydrofluorination of alkynes constitutes an attractive though elusive 

strategy for their preparation. Here we introduce an inexpensive and easily-handled reagent that 

enabled the development of simple and scalable protocols for the regioselective hydrofluorination 

of alkynes to access both the E and Z isomers of vinyl fluorides. These conditions were suitable 

for a diverse collection of alkynes, including several highly-functionalized pharmaceutical 

derivatives. Computational and experimental mechanistic studies support C–F bond formation 

through vinyl cation intermediates, with the (E)- and (Z)-hydrofluorination products forming 

under kinetic and thermodynamic control, respectively.
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An inexpensive new reagent enables the development of metal-free protocols for stereodivergent 

hydrofluorination. Computations and mechanistic data support the intermediacy of vinyl cations, 

which are trapped to deliver (E)- and (Z)-vinyl fluorides under kinetic and thermodynamic control, 

respectively.
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Introduction

The incorporation of fluorine into organic compounds plays a significant role in the 

pharmaceutical and agrochemical sciences, due to the element’s distinctive capability for 

modulating the physical and chemical properties of a biologically active scaffold, including 

its solubility, metabolic stability, potency, and bioavailability.[1] Among organofluorine 

derivatives, vinyl fluorides constitute a privileged substructure and an important target of 

chemical synthesis. In particular, they can serve as metabolically and chemically stable 

bioisosteres of amides and enols by mimicking the charge distribution and dipole moments 

of these functional groups.[2] In other contexts, they can also function as irreversible enzyme 

inhibitors by acting as Michael acceptors (Scheme 1A).[2c]

Established synthetic methods to access vinyl fluorides primarily employ olefination or 

elimination reactions that require multistep transformations and the preparation or 

commercial availability of prefunctionalized fluorinated precursors.[3] Among methods that 

directly establish the carbon–fluorine bond, the Pd-catalyzed synthesis of vinyl fluorides 

from the corresponding triflates employs an alkali metal fluoride as a readily available 
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fluorine source.[4] In contrast, the metal-catalyzed and noncatalytic electrophilic fluorination 

of various vinylmetal species constitutes a flexible and versatile approach that has given rise 

to a multitude of synthetic protocols.[5] Finally, the dehydrative fluorination of ketones using 

difluorosulfur(IV) reagents is another approach that has appeared in the patent literature.[6]

As an alternative to the aforementioned approaches, the hydrofluorination of alkynes 

represents a particularly general and atom-economical synthesis of vinyl fluorides, 

especially considering the broad range of alkyne substrates that are easily accessed from 

inexpensive, commercially available building blocks. Several metal-catalyzed systems for 

the hydrofluorination of alkynes have been developed in recent years.[7–15] Following the 

initial disclosure of a Au-catalyzed process by Sadighi and co-workers,[7] a number of 

coinage metal complexes have been employed as catalysts for the hydrofluorination of 

alkynes using Lewis base adducts of hydrogen fluoride as the fluorinating reagents (Scheme 

1B).[7–13] In the Au-catalyzed systems, (Z)-vinyl fluorides are formed with high 

stereoselectivity, and for aryl alkyl alkynes, the major regioisomer formed is the one in 

which the fluorine is delivered to the carbon adjacent to the alkyl group (β to the aryl group, 

Scheme 1B, a). Since the initial report of Au-catalyzed alkyne hydrofluorination in 2007, the 

scope of this process has seen considerable expansion and now includes alkynes bearing 

electron-withdrawing groups or directing groups, as well as terminal alkynes. Nevertheless, 

the control of the regioselectivity and E/Z-selectivity remains an outstanding issue in a 

number of cases (Scheme 1B, a).[3b]

While the development of methods for the direct synthesis of vinyl fluorides via C–F bond 

formation has provided more opportunities to introduce the functional group and expanded 

the range of synthetically accessible vinyl fluorides, currently available methods suffer from 

one or more significant drawbacks, including the expense and poor atom economy of 

electrophilic fluorinating reagents ultimately derived from F2 gas,[3a] the corrosivity and 

toxicity hazards associated with HF-based reagents, and the challenges of accessing large 

quantities of well-engineered ligands and transition metal catalysts. These drawbacks limit 

the scalability and applicability of current protocols. Consequently, the development of 

operationally simple protocols and practical reagents for accessing vinyl fluorides with 

control of regio- and stereochemistry remains an ongoing challenge.

Considering their low cost, high fluoride content, as well as excellent safety, stability, and 

handling profiles, tetrafluoroborate (BF4
−) salts are particularly attractive sources of 

nucleophilic fluorine.[16] However, aside from the well-developed Balz-Schiemann process, 

they have seldom been employed in the formation of C(sp2)−F bonds due to the weak 

nucleophilicity of this anion, and the handful of examples in which they are employed as 

fluorine sources in vinyl fluoride synthesis generally entail the use of exotic functional 

groups or strongly oxidizing conditions.[17] Given the canonical status of the alkyne 

hydrochlorination, –bromination, and –iodination reactions[18a] and mechanistic studies 

supporting a concerted AdE3 mechanism or an AdE2 mechanism featuring a vinyl cation 

intermediate for these processes,[18b,18c] we hypothesized that a metal-free hydrofluorination 

could result from a mild and selective protonation of the alkyne, followed by trapping of the 

resultant Brønsted acid–alkyne complex or vinyl cation intermediate by BF4
−. Therefore, we 
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posited that a suitable fluoroboric acid (HBF4) equivalent could serve as a general and 

practical hydrofluorinating reagent for alkynes.

By employing pyridine•9HF, the hydrofluorination of alkynes using a base-modulated 

source of hydrogen fluoride was already the subject of pioneering investigations by Olah and 

coworkers in the 1970s.[19] More recent studies by Hammond, Xu, and co-workers lead to 

the development of several ‘designer’ base-complexed sources of hydrogen fluoride.[20] 

However, both reports indicate that, in general, even with careful control of the reaction 

temperature (0 to 50 °C), HF-amine reagents deliver the gem-difluoride 

bis(hydrofluorination) product (Scheme 1B, b), without allowing for the isolation of the 

presumed vinyl fluoride intermediate except in special cases where the alkyne bears a donor 

heteroatom substituent (e.g., ynamide[21] or alkynyl sulfide substrates[22]).

We reasoned that an acidic reagent based on the tetrafluoroborate ion, [B–H]+[BF4]– 

(‘B•HBF4’), where B is a weak Brønsted base, could serve as an attenuated and better 

controlled source of nucleophilic fluorine. Moreover, we expected that the acidity, and thus, 

the reactivity of these reagents could be rationally tuned through the variation of the 

electronic properties of B. From the point of view of cost and availability, such a reagent 

would be nearly ideal for the hydrofluorination of alkynes, provided that the 

hydrofluorination reactions proceed with functional group tolerance and control over the 

reaction stoichiometry, as well as the regiochemical and stereochemical outcomes. Here, we 

report the discovery and development of a simple and practical reagent for the 

stereodivergent hydrofluorination of alkynes which, in most cases, delivers products with 

excellent control of the regio- and stereoselectivity (Scheme 1C). For certain substitution 

patterns, we report complementary conditions for the synthesis of either the E or Z isomer of 

the hydrofluorination product with good to excellent E/Z ratios. The conditions reported 

here are tolerant of a variety of functional groups, and we applied them to the late-stage 

functionalization of drug derivatives and the synthesis of fluorinated drug analogs.

A mechanistic study of the process was performed through kinetics experiments and density 

functional theory (DFT) calculations. These studies support the intermediacy of vinyl 

cations in the hydrofluorination reaction. They also provide insight into the excellent 

stereochemical control and account for the ability to selectively obtain the E or Z isomer 

through the variation of reagent and reaction conditions. Previously, vinyl cations have been 

generated through several approaches,[23] including metal catalysis,[24,25] photochemical 

processes,[26] ionization of vinyl iodonium[27] and diazonium species,[28] (pseudo)halide 

abstraction with Lewis acids,[29,30] as well as protonation of alkynes with strong Brønsted 

acid or a Brønsted/Lewis acid complex.[31,32] Despite the challenging and specialized 

conditions that are often required for their generation, the versatility of this intermediate has 

led to a recent renaissance in their synthetic applications.[33] In this context, the 

hydrofluorination conditions reported here represent an unprecedentedly mild, 

stereocontrolled, and functional group compatible approach for utilizing these intermediates.
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Results and Discussion

Reaction development

We began the exploration of our hydrofluorination strategy using 

(cyclohexylethynyl)benzene as a starting material, inspired by the lack of literature 

precedent employing secondary alkyl-substituted phenylacetylenes as substrates for 

hydrofluorination (Table 1). We anticipated that the preparation of various amine salts of 

HBF4 would allow for the tuning of reagent acidity and provide control over 

hydrofluorination reactivity. Thus, a diverse collection of amine salts of HBF4 was 

evaluated. While it was found that reagents based on triethylamine (A), pyridine (B), and 2-

chloropyridine (C) were unreactive in CHCl3 at room temperature or 70 °C (entries 1–3), the 

more electron-poor 3,5-dichloropyridinium salt (D) provided a trace of the desired product 

(entry 4). Continuing with more electron-deficient and strongly acidic pyridinium salts, we 

found that the 2,6-dihalopyridinium salts (E and F) were more efficient reagents, with the 

more electron-deficient chlorinated reagent providing the desired product with good yield 

and excellent stereoselectivity (Z/E > 50:1, entry 6). During the course of optimization, the 

major side product was identified as 2-cyclohexylacetophenone, formed from adventitious 

hydration of the alkyne. To further favor fluorination over hydration, additional 

tetrafluoroborate sources were investigated as additives. When LiBF4 (25 mol %) was 

added, the yield of the vinyl fluoride was indeed enhanced (entry 7). While diminished, the 

formation of the ketone could not be suppressed altogether, and under optimized conditions, 

the ketone was still formed in approximately 10% isolated yield. Importantly, we did not 

detect the formation of the regioisomeric vinyl fluoride or the gem-difluoride product upon 

careful examination of the 19F NMR of the crude material.

As anticipated, optimization of the reagent structure proved critical for the development of a 

protocol for hydrofluorination. The tetrafluoroborate salts were generated by the treatment 

of an ethereal solution of the amine or pyridine with commercially available HBF4•Et2O, 

followed by filtration to isolate the solid product. This straightforward procedure was readily 

scaled to allow for the synthesis of reagents on 50 mmol (> 10 g) scale. The acidity of the 

pyridinium species was found to be a key factor, and pyridinium salts effective for 

hydrofluorination had aqueous pKa values of –2 or lower. On the other hand, for very 

weakly basic pyridines (e.g., pentachloropyridine, pKa
aq. ~ –8),[34] the abovementioned 

procedure did not result in an isolable solid material, presumably because the acidity of 

ethereal fluoroboric acid was insufficient for quantitative protonation of the pyridine. 

Among the pyridinium salts examined (see SI for details), 2,6-dichloropyridinium 

tetrafluoroborate (F, pKa
aq. = –2.86)[35] possessed the best reactivity and handling 

properties. In particular, reagent F precipitated from ether as easily filtered crystals. On the 

other hand, its solubility in hot halogenated solvents (> 0.2 M in CHCl3 at 70 °C) was 

beneficial for its reactivity. In terms of its handling properties, F was not especially 

hygroscopic and could be stored as a colorless solid in the desiccator for at least a week or in 

the glovebox indefinitely (> 3 months) without noticeable deterioration or loss of activity. 

Thus, when the hydrofluorination of (cyclohexylethynyl)benzene was repeated with the 

starting materials weighed and reaction tube sealed under air, the decrease in yield was 
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found to be modest, with the yield of 2 decreased to 78% yield by 19F NMR, compared to 

82% under standard conditions.

Lastly, we also examined HBF4•Et2O itself as another potential reagent. Surprisingly, we 

found that treatment of the model substrate with HBF4•Et2O (1.0 equiv) at room temperature 

for 6 h resulted in the formation of desired hydrofluorination product 1 in moderate yield 

(42% yield) and good selectivity for the opposite E stereoisomer (E/Z = 11:1, entry 9). 

Under these conditions, alkyne hydration was a significant side reaction, with 2-

cyclohexylacetophenone formed in 30–35% isolated yield. On the other hand, the use of this 

reagent at 70 °C resulted after 1 h in the complete consumption of starting material and 

formation of a complex mixture of products (tar), with neither of the stereoisomeric vinyl 

fluoride products observed by 19F NMR. These results indicate that HBF4•Et2O is a 

powerful though harsh reagent for hydrofluorination, in contrast to the tempered reactivity of 

the pyridinium tetrafluoroborates. In spite of the modest yields, we felt that this 

complementary protocol for generating the E isomer may be of some synthetically utility. 

Moreover, this intriguing stereochemical outcome prompted us to apply experimental and 

computational tools to scrutinize the mechanism of the hydrofluorination process.

Substrate scope

Under these optimized conditions, we set out to investigate the scope of this 

hydrofluorination reaction (Scheme 2). Using reagent F for hydrofluorination, alkyl aryl 

acetylenes bearing electron-withdrawing (e.g., products 9, 19, 20, 22) to electron-donating 

(e.g., products 23, 24, 25) aryl substituents reacted effectively to afford the (Z)-configured 

fluoroalkene products in moderate to good yields and excellent regio- and stereoselectivities. 

Moreover, several common functional groups on the aryl ring including a methyl ester (19), 

a cyano group (20), a trifluoromethanesulfonyl ester (22), and a phthalimide (23) were 

tolerated. Heteroaryl alkyl acetylenes, including an indole and a furan likewise delivered the 

desired product (24, 25). The structure of 22 was determined by single crystal X-ray 

diffraction for confirmation of the alkene stereochemistry.

We next explored the scope of alkyl substituents on the substrate. A range of primary, 

secondary, cyclic or acyclic alkyl-substituted alkynes could be employed in the 

hydrofluorination to furnish respective products again with moderate to good yields and 

excellent regio- and stereoselectivities (27-39). Remarkably, substrates with potentially 

sensitive functional groups including a primary chloro (40, 46), a carboxymethyl (41), a 

cyano (42), a pyridyl (43), and a phthalimido group (44) also delivered the vinyl fluoride 

products in moderate to good yields, highlighting the mildness and good functional group 

tolerance of this protocol. This scalability of the procedure was demonstrated by the gram-

scale preparation of 44, which proceeded with unchanged regio- and stereoselectivities and 

only a slightly reduced yield (1.65 g, 64%). The protocol was insensitive to steric effects on 

the alkyl substituent, with a methyl group (47, 48) and a cyclododecyl (49) group giving 

similar yields, both with excellent regio- and stereoselectivities.

It is noteworthy that in hydrofluorination reactions employing alkyl aryl acetylenes, the 

vinyl fluoride products were delivered exclusively with C–F bond formation taking place 
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adjacent (α) to the aryl group. These results complement Au-catalyzed hydrofluorination 

procedures, which deliver the fluorine to the carbon adjacent to the alkyl group, β to the aryl 

group.[7–12] This divergence likely stems from the ability for the aryl group to stabilize both 

an adjacent positive charge in the case of the current metal-free process and an adjacent 

C(sp2)–Au bond in case of the Au-catalyzed protocols to give the α– and β–fluorinated 

regioisomers, respectively.

We also explored the scope of the complementary E-selective hydrofluorination with 

HBF4•Et2O using a subset of the previously investigated alkyl aryl acetylenes (condition B). 

Substrates bearing mildly electron-withdrawing or electron-donating substituents could 

afford the vinyl fluoride products with moderate to very good E-selectivity (E/Z ratio from 

4:1 to > 20:1) and modest to moderate yields (32% to 48% yield).

Electron poor substrates like 1-haloalkynes and ethyl phenylpropiolate were also suitable 

substrates for this reaction. In each case, a single regio- and stereoisomer was produced 

(51-55). The reactivity order of the 1-halo-2-phenylacetylenes was I > Br > Cl, reflecting the 

inductive electron withdrawing power of the halogen. In the case of Cl and Br, the low and 

moderate isolated yields resulted from incomplete conversion of the starting material to the 

vinyl fluoride product.

The hydrofluorination reaction could also be applied to terminal alkynes and 

diarylacetylenes. When using terminal alkyl-substituted alkynes as substrates, gem-

difluorides were obtained as the primary products with exclusive internal regioselectivity. A 

variety of functional groups such as a phthalimide (57), a ketone (59), esters (58, 60), an 

indole (59), as well as a ferrocene derivative (60) were well tolerated. On the other hand, 

terminal aryl-substituted alkynes could be employed in this hydrofluorination to give the 

corresponding monofluoroalkene as the major fluorination product with low to moderate 

yields (61-70). In cases where yield was low (e.g., 61, 62) the major side product observed 

was the ketone hydration product. With 1,2-dichloroethane as the solvent, symmetrical 

diarylacetylenes could give corresponding monofluoroalkene products in moderate to good 

yields and excellent Z-selectivities (71-74). For unsymmetrical substrates, when one of the 

benzene rings was substituted by an electron-withdrawing group (e.g., 4-CO2Me, 2-Cl), the 

hydrofluorination proceeded with excellent Z-selectivities and was regioselective for 

fluorination nearer the more electron-rich aryl group (75-80). Finally, it was found that by 

switching to chloroform as the solvent, the monofluoroalkene product could be formed with 

E-selectivity (81-84).

With the exception of dialkyl acetylenes, the gem-difluoride product was either not observed 

(<1%) or observed as very minor components (1–5% yield by 19F NMR) of the crude 

product. However, a reduction in selectivity was observed for a dialkylacetylene substrate, 

which gave the gem-difluoroalkane in addition monofluorinated product (50, 4:1 Z/E, 5:3 

vinyl fluorides/difluoroalkane). In the alkyl aryl acetylenes and terminal acetylenes, no 

evidence of the other regioisomeric hydrofluorination product could be observed (< 1%) in 

the crude material by 19F NMR. In the case of the hydrofluorination of diarylacetylenes, 

regioisomeric products were sometimes observed. When direct comparisons were available 
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(for 75, 77, 82), the regioisomeric ratios (15:1 to > 20:1) exceeded those previous reported 

for the Au-catalyzed transformation (2:1 to 4.3:1).[12]

Synthetic applications

To demonstrate the potential applicability of this new hydrofluorination method to the late-

stage modification of structurally complex substrates, including biologically active 

molecules and natural products, we explored several readily available alkynes derived from 

exo-norborneol (85) and ferrocene (86), natural products (1S)-(+)-10-camphorsulfonic acid 

(87) and estrone (88, 89), as well as drug molecules probenecid (90), febuxostat (92) and 

telmisartan (94) to afford monofluoroalkene products with moderate to good yields and high 

regio- and stereoselectivities (Scheme 3a). In addition, terminal alkyl-substituted alkynes 

derived from drug molecules probenecid and febuxostat could also be employed in the 

dihydrofluorination to form gem-difluorides with moderate yields and exclusive 

regioselectivity (91, 93). These examples demonstrated that our hydrofluorination and 

difluorination protocols were suitable for the late-stage, protecting-group-free modification 

of biologically active molecules and could tolerate a range of functional groups and 

heterocycles including ketones (87-89), esters (90-94), a ferrocene (86), a sulfonate (87), a 

sulfonamide (90, 91), a nitrile (92, 93), a thiazole (92, 93), and benzimidazoles (94).

To explore other applications of this chemistry, we prepared 95 on 5-mmol scale to access 

fluorinated analogs of antihistamines cinnarizine (97), flunarizine (98) and antifungal drug 

naftifine (99) (Scheme 3b). Via allylic bromination of 95, we prepared a common 

brominated intermediate 96, which could be applied to synthesize all three analogs. 

Moreover, we also prepared vinyl fluoride 100, a known precursor for the synthesis of 

antimicrobial agents (protein synthesis inhibitors) through the coupling with 2-oxazolidone 

(Scheme 3c).[36,37] These transformations demonstrate the excellent potential of this method 

for future applications in a drug discovery setting.

Mechanistic discussion

The experimental results have demonstrated that 2,6-dichloropyridinium tetrafluoroborate is 

an effective fluorinating reagent for stereodivergent alkyne hydrofluorination. As shown in 

Scheme 2, high levels of Z-selectivity are obtained in a polar solvent (i.e. DCE, condition 

D), while reactions in a less polar solvent (i.e. chloroform, condition C) or under lower 

temperatures (see SI) completely switch the stereoselectivity to favor E-products. 

Mechanistic studies were then performed to investigate whether the hydrofluorination occurs 

through a concerted or stepwise mechanism and the origin of the divergent stereoselectivity. 

DFT calculations[38] of the hydrofluorination of 1,2-diphenylacetylene 101 indicated a 

stepwise AdE2-type protonation-fluorination mechanism with a BF4
−/vinyl cation ion-pair 

intermediate (Figure 1). Prior to the alkyne protonation, the H⋯F hydrogen bond in the 

fluorinating reagent F dissociates to release a free pyridinium cation as the proton source. 

Two protonation transition states were located (TS-1 and TS-1a), in which the 

tetrafluoroborate anion is syn and anti to the pyridinium, respectively. Bonding interactions 

between BF4
− and the alkyne were not observed in either protonation transition state, which 

is likely due to the weak nucleophilicity of BF4
−. The stepwise hydrofluorination 

mechanism is confirmed by intrinsic reaction coordinate (IRC) calculations, which indicated 
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that TS-1 and TS-1a lead to BF4
−/vinyl cation ion pairs 102 and 102a, respectively, rather 

than the direct formation of hydrofluorination products. Fluorination of the highly 

electrophilic vinyl cation with BF4
− (via TS-2 and TS-2a) is facile, which makes 

protonation (TS-1) the rate-determining step. This mechanistic picture is consistent with 

experimental Hammett analysis (Scheme 4C) and kinetics studies (see SI for details), which 

indicated a ρ value of –3.43 consistent with previously reported vinyl cation-mediated 

reactions[23] and first-order kinetics in alkyne and H+ and zero-order kinetics in excess BF4
− 

(Scheme 4C). The E-selective pathway (shown in black in Fig. 1) is kinetically favored in 

both protonation and fluorination steps. The syn-protonation transition state TS-1 is more 

stable than the anti-TS (TS-1a) due to more favorable electrostatic interactions between 

BF4
– and the pyridinium cation. The E-selective fluorination transition state TS-2 is 0.9 

kcal/mol more stable than the Z-selective fluorination (TS-2a) because of steric 

repulsions[21] between BF4
− and the β-phenyl group in TS-2a.[39] Therefore, regardless of 

whether ion pairs 102 and 102a have sufficient lifetime to interconvert prior to the 

fluorination, kinetic E-selectivity is expected. The relatively low barrier for the reverse 

reaction of E-81 (via TS-2, ΔG‡ = 23.6 kcal/mol) to generate the vinyl cation indicates the 

E-to-Z vinyl fluoride isomerization may occur at elevated temperatures through BF3-

mediated fluoride anion elimination followed by fluorination of the vinyl cation via TS-2a. 

A polar solvent, which could stabilize ion-pair intermediates 102 and 102a, is expected to 

promote such isomerization (see Fig. S15 in the SI for energy profiles computed in DCE). 

Because the Z-stereoisomer Z-71 is 2.3 kcal/mol more stable than E-71, high Z-selectivity is 

expected under these thermodynamically controlled conditions.

(1)

(2)

In light of the strength of the C(sp2)–F bond (124 kcal/mol),[40] the reversibility of C–F 

bond formation seemed surprising, and we sought to obtain experimental support. The BF3-

mediated E/Z-vinyl fluoride isomerization was verified experimentally under conditions 

with Et2O•BF3 (eqs 1 and 2). The addition of 2,6-di-tert-butylpyridine did not shut down the 

BF3-mediated isomerization, which excludes the possibility that the presence of a Brønsted 
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acid is required for isomerization.[41] In certain cases, (e.g., 86 and 87), we observed that 

better Z-selectivity could be obtained by addition of exogenous Et2O•BF3 to promote E-to-

Z-isomerization (see the SI for detailed conditions). In addition, the increase of the Z-

product ratio over a reaction time of 12 h at 70 °C further confirmed the isomerization of the 

kinetic E-isomer to Z-vinyl fluoride in the hydrofluorination of di-p-tolylacetylene (E/Z ratio 

from 6:1 to 1:2.4) (Scheme 4A). Further experimental study of the dielectric constant of 

solvent suggested that higher Z-selectivity could be obtained when increasing the dielectric 

constant of solvent (E/Z ratio from 20:1 to 1:16.2) (Scheme 4B), which verified the 

hypothesis that polar solvent could promote E-to-Z-vinyl fluoride isomerization. The 

increase of reaction temperature was also found to favor the formation of Z-vinyl fluoride 

(see the SI for details).

Based on these mechanistic studies, a general mechanism is proposed to elucidate the 

stereoselectivity control in the alkyne hydrofluorination (Scheme 4D). The rate-determining 

syn-protonation of alkyne (k1) leads to an ion pair intermediate (I), which then undergoes 

fluorination (k2) to afford the kinetically favored E-vinyl fluoride. The thermodynamically 

more stable Z-product is formed from the isomerization of the E-vinyl fluoride, which takes 

place via BF3-mediated fluoride dissociation (k-2) and isomerization of the ion pair 

intermediate (k3) followed by Z-selective fluorination with BF4
– (k4). The experimental and 

computational mechanistic studies revealed several factors that control the rate of the E-to-Z 
isomerization and thus the E/Z-selectivity. Higher temperatures and polar solvents (e.g. 
DCE) promote the BF3-mediated fluoride dissociation (k-2) to form the ion pair intermediate 

(I). Experimentally, excess BF4
− (condition A) was also found to favor the formation of the 

Z-isomer (see SI), an effect that may be ascribed to the increased availability of BF4
− for 

anti-attack (k4) or a change in the solvent polarity due to higher ionic content. In addition, 

our DFT calculations suggested that sterically less hindered alkyne substituents (e.g. R = 

methyl) lead to lower barriers to the Z-selective fluorination (k4) due to diminished steric 

repulsions with BF4
– in the fluorination transition state. On the other hand, lower 

temperatures (e.g. in the HBF4•Et2O mediated hydrofluorination), less polar solvents, and 

bulkier alkyne substituents (e.g. R = aryl) that suppress the ion pair isomerization (k3) and 

the Z-selective fluorination (k4) would lead to higher E-selectivity under kinetic control.

Conclusion

We have developed a simple, practical, and metal-free strategy for the regio- and 

stereoselective controlled mono- and dihydrofluorination of alkynes by employing 2,6-

dichloropyridinium tetrafluoroborate as a new, safe, and stable fluorinating reagent. 

Mechanistic and DFT studies reveal that the stereoselectivity of hydrofluorination results 

from either kinetic or thermodynamic control in a stepwise protonation-fluorination 

pathway. We anticipate that this hydrofluorination protocol will find wide applications in 

drug discovery and related fields by facilitating the preparation of fluorinated molecules of 

biological interest. Studies further exploiting the synthetic applications of vinyl cation 

intermediates generated under similar mild conditions are ongoing.
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Figure 1. 
Reaction energy profiles of the hydrofluorination of 1,2-diphenylacetylene 101 with 2,6-

dichloropyridinium tetrafluoroborate. The bond lengths are in angstrom. All energies were 

calculated at the M06–2X/6–311+G(d,p)/SMD(chloroform)//M06–2X/6–31+G(d)/

SMD(chloroform) level of theory. See Fig. S10 and S11 in SI for the computational results 

with the cyclohexyl and methyl-substituted alkynes.
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Scheme 1. 
Strategies for the synthesis of vinyl fluorides
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Scheme 2. 
Substrate scope of alkynes. Condition A: fluorinating reagent F (1.0 equiv), LiBF4 (25 mol

%), CHCl3 (0.2 M), 70 to 90 °C. Condition B: HBF4·Et2O (1.0 equiv), CHCl3 (0.2 M), r.t., 6 

h. Condition C: fluorinating reagent F (3.0 equiv), CHCl3, 80 to 100 °C, 12 h. Condition D: 

fluorinating reagent F (2.0 equiv), DCE, 70 to 100 °C, 12 h. a1.0 equiv of Et2O•BF3 was 

used as additive. bgem-difluoroalkane (<5 % 19F NMR yield) was detected. cgem-

difluoroalkane; the yield shown is the combined yield of the vinyl fluoride and gem-

difluoroalkane products. See the Supporting Information for detailed conditions.
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Scheme 3. 
Synthetic applications of stereodivergent alkyne hydrofluorination. a, The late-stage 

modification of biologically active molecules or complex natural products. b, The synthesis 

of different fluorinated analog of drug molecules. c, The preparation of key intermediate for 

the synthesis of antimicrobial agents with high regio- and Z/E-selectivities. See supporting 

information for detailed conditions.
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Scheme 4. 
Mechanistic studies A. Change of the Z/E-ratio of the hydrofluorination product over the 

course of reaction and the variation of temperature. B. Dielectric constant study. C. 
Hammett-plot analysis for para-substituted aryl cyclohexyl alkynes and kinetic studies. See 

supporting information for detailed conditions. D. Proposed mechanism for the 

stereodivergent hydrofluorination of alkyne
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Table 1.

Optimization of reaction conditions for hydrofluorination

Entry Fluorinating reagent Temp./°C Yield/% Z/E

1 A 70 0 —

2 B 70 0 —

3 C 70 0 —

4 D 70 < 5 1 : 5

5 E 70 45 36 : 1

6 F 70 74 > 50 : 1

7 F 70
82[a] (76)[b] > 50 : 1

8 F r.t. < 5 1 : 5

9 HBF4•Et2O r.t.
42[b] 1 : 11

10 HBF4•Et2O 70
0[c] —

[a]
LiBF4 (25 mol %) was added as an additive.

[b]
Isolated yield.

[c]
Reaction time: 1 h, with complete conversion of the starting alkyne to tarry materials.
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