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Abstract

Background: Brain metastases are manually identified during stereotactic radiosurgery (SRS) 

treatment planning, which is time consuming and potentially challenging.

Purpose: To develop and investigate deep learning (DL) methods for detecting brain metastasis 

with MRI to aid in treatment planning for SRS.

Materials and Methods: In this retrospective study, contrast material–enhanced three-

dimensional T1-weighted gradient-echo MRI scans from patients who underwent gamma knife 

SRS from January 2011 to August 2018 were analyzed. Brain metastases were manually identified 

and contoured by neuroradiologists and treating radiation oncologists. DL single-shot detector 

(SSD) algorithms were constructed and trained to map axial MRI slices to a set of bounding box 

predictions encompassing metastases and associated detection confidences. Performances of 

different DL SSDs were compared for per-lesion metastasis-based detection sensitivity and 

positive predictive value (PPV) at a 50% confidence threshold. For the highest-performing model, 

detection performance was analyzed by using free-response receiver operating characteristic 

analysis.

Results: Two hundred sixty-six patients (mean age, 60 years ± 14 [standard deviation]; 148 

women) were randomly split into 80% training and 20% testing groups (212 and 54 patients, 

respectively). For the testing group, sensitivity of the highest-performing (baseline) SSD was 81% 

(95% confidence interval [CI]: 80%, 82%; 190 of 234) and PPV was 36% (95% CI: 35%, 37%; 
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190 of 530). For metastases measuring at least 6 mm, sensitivity was 98% (95% CI: 97%, 99%; 

130 of 132) and PPV was 36% (95% CI: 35%, 37%; 130 of 366). Other models (SSD with a 

ResNet50 backbone, SSD with focal loss, and RetinaNet) yielded lower sensitivities of 73% (95% 

CI: 72%, 74%; 171 of 234), 77% (95% CI: 76%, 78%; 180 of 234), and 79% (95% CI: 77%, 81%; 

184 of 234), respectively, and lower PPVs of 29% (95% CI: 28%, 30%; 171 of 581), 26% (95% 

CI: 26%, 26%; 180 of 681), and 13% (95% CI: 12%, 14%; 184 of 1412).

Conclusion: Deep-learning single-shot detector models detected nearly all brain metastases that 

were 6 mm or larger with limited false-positive findings using postcontrast T1-weighted MRI.

Summary

Deep learning single-shot detector algorithms identified brain metastases at postcontrast MRI with 

high sensitivity and moderate positive predictive value, potentially assisting treatment planning of 

stereotactic radiosurgery for brain metastases.

Brain metastases occur in approximately 20%–40% of patients with cancer, and the 

incidence rate could rise because of longer survival rates (1). Because whole-brain radiation 

therapy can cause cognitive decline and may not be necessary for patients with fewer than 

four brain metastases (2,3), stereotactic radiosurgery (SRS) is the preferred treatment 

method. With highly focused radiation delivered to small metastasis volumes, SRS treats 

metastases effectively and minimizes damage to normal brain tissues. Accurate detection of 

brain metastases and subsequent precise segmentation are essential for SRS treatment 

planning. Currently, brain metastases are manually identified by neuroradiologists, which 

can be laborious and time consuming because there is no a priori knowledge about the 

number or location of the metastases. Furthermore, if the patient has multiple metastases, 

identification of all the metastases could be challenging.

Deep learning (DL) has seen an explosion of interest and applications across the medical 

imaging domain. For brain metastasis identification with MRI, a few DL approaches based 

on semantic segmentation using fully convolutional networks have been proposed (4–7). By 

mapping images to pixelwise probability distributions of tissue compositions, these attempts 

have often led to substantial numbers of false-positive findings (up to 200 per patient) (5). In 

addition, although these implementations can be used to directly segment brain metastases, 

the segmentation performance is generally low (Dice coefficients of approximately 0.77 and 

0.67) (5,6). Furthermore, some of these approaches rely on patch-wise predictions, in which 

the patch size must be specifically tuned for different patient populations because brain 

metastases vary considerably in size. Finally, some of these approaches were developed by 

using multiple MRI acquisitions as inputs, which may reduce their feasibility for broad 

clinical application.

Recently, DL single-shot detector (SSD) algorithms (8,9) were developed for object 

detection. Unlike two-stage detectors (10–12), DL SSDs perform detection by matching 

densely aligned anchor boxes to ground truth boxes. Coordinates and prediction confidences 

of the matched anchor boxes are then simultaneously regressed on pyramidal feature maps. 

Attempts have been made to implement DL SSDs for lung or breast lesion detection and 

Zhou et al. Page 2

Radiology. Author manuscript; available in PMC 2021 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



malignancy classification in CT or diffusion MRI (13); however, to the best of our 

knowledge, detection of brain metastases using DL SSDs has not been reported.

In this study, we developed and investigated DL SSDs for brain metastasis detection by 

using contrast material–enhanced T1-weighted MRI. Variations in encoder architectures and 

loss functions were explored to compare the detection performance across different model 

constructs.

Materials and Methods

Institutional review board approval was received for this Health Insurance Portability and 

Accountability Act–compliant retrospective study. The requirement to obtain written 

informed consent was waived.

Study Participants

Two hundred sixty-six patients who underwent gamma knife SRS for brain metastases at the 

University of Texas MD Anderson Cancer Center between January 2011 and August 2018 

were included. The inclusion criterion was any patient who had undergone treatment 

planning for SRS by a board-certified radiation oncologist. We avoided selecting patients 

with a history of primary brain cancers.

MRI Examination

Each patient underwent imaging with a three-dimensional T1-weighted spoiled gradient-

echo MRI sequence after the administration of contrast material (MultiHance; Bracco 

Diagnostics, Princeton, NJ). Typical imaging parameters were as follows: repetition time 

msec/echo time msec, 6.9/2.5; number of signal averages, 1.7; flip angle, 12°; matrix size, 

256 × 256; field of view, 24 × 24 cm; and voxel size, 0.94 × 0.94 × 1.00 mm. Two hundred 

forty-six patients underwent imaging with a 1.5-T scanner (Signa HDxt; GE Healthcare, 

Waukesha, Wis), and 20 patients underwent imaging with a 3.0-T scanner (Discovery 

MR750w, GE Healthcare).

MRI Analysis

A total of 1147 brain metastases were independently identified by board-certified 

neuroradiologists (J.M.J., M.K.G., and M.M.C., with 7, 4, and 3 years of experience, 

respectively) and contoured by the treating radiation oncologist (J.L., with 12 years of 

experience). On average, each patient had four metastases. The size of a brain metastasis 

was measured as the largest cross-sectional dimension when projected onto a two-

dimensional plane in the craniocaudal direction. The mean metastasis size (±standard 

deviation) was 10 mm ± 8. The number of metastases smaller than 6 mm and 6 mm or larger 

was 507 and 640, respectively. The distributions of metastasis sizes and metastases across 

patients are shown in Figure 1.

Data Curation

The 266 MRI scans were randomly split into two groups with a ratio of approximately 

80%:20% (212:54) for model training and testing; none of the training group cases were 
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present in the testing group. The training group scans contained 6711 axial slices showing 

metastases. The slices were randomly split into training and validation sets with a ratio of 

75%:25% (5033:1678), which were used for model training and internal tuning, respectively. 

All axial slices for each patient (both with and without a lesion present) in the testing group 

comprised the testing set, which was used for model performance evaluation. Finally, all 

slices in the training, validation, and testing sets were normalized to the signal intensity 

range of 0–1.

The ground truth labels for each brain metastasis cross-section were the bounding box 

coordinates (xmin, ymin, xmax, ymax), which were prepared from the corresponding 

segmentation mask and represented the start and end positions of the box height and width. 

The bounding box was computed by using connected components analysis. Because most of 

the metastasis cross-sections were round, we set all ground truth bounding boxes to have 

aspect ratios (box height divided by width) equal to 1, in which the maximum dimension 

was repeated for the shorter dimension. The bounding box therefore tightly encompassed the 

entire metastasis cross-section and was reliable for model training and evaluation.

Construction of SSDs

SSDs were constructed by using Keras (https://keras.io/) (14). We defined the baseline SSD 

as an SSD whose context encoder was constructed only with convolutional layers. The 

baseline SSD consisted of 16 convolutional layers for feature extraction, among which six 

layers were used for metastasis detection. The six detection layers had feature maps with 

matrix sizes of 128 × 128, 64 × 64, 32 × 32, 16 × 16, 8 × 8, and 4 × 4. L2 normalization (15) 

with initial scales of 10 and five was applied to the first and second layers, respectively, 

because they had different feature scales. A detailed representation of the model’s 

construction is shown in Figure 2.

Because SSDs use pre-aligned anchor boxes for object detection, scales (defined as box 

height divided by image height) and aspect ratios (defined as box height divided by box 

width) of the anchor boxes are important hyperparameters. Because the metastasis size was 

typically small and varied continuously, the scales were determined based on two 

considerations. First, the anchor boxes should contain a minimum of 0.8 pixels on the 

corresponding feature maps. Second, the anchor boxes should cover as many sizes as 

possible. Therefore, in our models the six prediction layers had base scales of 0.008, 0.016, 

0.032, 0.064, 0.115, and 0.2. To cover a broader range of metastasis sizes besides the base 

scale, each layer had another larger detection scale, which was determined by the geometric 

mean of the base and the adjacent scales. This equated to 0.24 for the last layer. Because all 

ground truth boxes had aspect ratios of 1, the anchor boxes were set to have the same aspect 

ratio.

The threshold for SSDs to label the anchor boxes as positive (matched with the ground truth 

metastases) or negative (matched with the background) was an important consideration. To 

match more anchor boxes with the metastases, anchor boxes that had an intersection over 

union of at least 0.2 with the metastasis ground truth box were labeled as positive, whereas 

anchor boxes that had an intersection over union of 0.1 or less were labeled as negative. 
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Anchor boxes that had an intersection over union between the two thresholds were labeled 

as neutral and would not affect the loss computation.

The proposed and labeled anchor boxes were regressed by using the SSD loss function, 

which was a weighted sum of the anchor box classification and localization losses. Because 

the number of negative anchor boxes largely exceeded the number of positive ones, we set 

the negative-to-positive ratio to 3 to balance the negative and positive instances. The weight 

of the localization loss was set to 1. These two hyperparameters of the SSD loss function 

yielded the highest performance in this study.

Training Configuration and Procedure

Random affine transformations were applied to amplify the number of training set slices by 

a factor of five. The ground truth bounding boxes were transformed accordingly. No data 

augmentation was used for the validation set. The minibatch size was set to 16.

Weights of the convolutional kernels were initialized by using a He normal initialization 

(16), and all convolutional layers were activated by using rectified linear activation units 

(17). No regularization or dropout layers were used. An Adam optimizer (18) was used to 

train the network. The initial learning rate was set to 2 × 10−4 and was reduced by 20% if 

there was no improvement in validation loss after three epochs. Training was terminated if 

the validation loss did not improve after seven epochs. The models were trained on a DGX-1 

workstation (NVIDIA, Santa Clara, Calif).

Ablation Studies

In addition to the baseline SSD, three constructs using different encoder structures or loss 

functions but the same single-shot detection principles were trained and evaluated to 

compare their performance. Because performance of residual networks improves with depth 

(19), we used a ResNet50 convolutional encoder with the original SSD loss for brain 

metastasis detection. Focal loss has been proposed to improve the detection performance by 

emphasizing the misclassified objects (9). To evaluate such performance in the context of 

our study, we incorporated focal loss into the baseline SSD to train a third model. Finally, 

we tested metastasis detection combining the ResNet50 feature pyramid network (20) and 

focal loss, an algorithm termed RetinaNet (9). It was reported to reach state-of-the-art 

detection performance and to effectively detect small objects (9).

Model Evaluation

Although the SSDs were developed for slice-by-slice predictions, the final performances of 

the models were evaluated in three dimensions. The adjacent output bounding boxes were 

first stacked to form a detection volume, which was then compared with the ground truth 

volumes surrounding the metastases. The ground truth volumes were considered true-

positive findings if they had at least one voxel detected; otherwise they were false-negative 

findings. The detection volumes were considered false-positive findings if they had no voxel 

overlap with any of the ground truth volumes.

Zhou et al. Page 5

Radiology. Author manuscript; available in PMC 2021 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical Analysis

Performances of the four models, including the baseline SSD, SSD with a ResNet50 

backbone, SSD with focal loss, and RetinaNet, were assessed and compared by using 

metastasis-based sensitivity and positive predictive value (PPV) at a detection confidence 

threshold of 50%. Because all MRI scans from test patients were integrated as one data set, 

the within-patient correlation for patients with multiple lesions was not considered. 

Detection confidence is the numeric output of the SSD’s classifier and ranges from 0% to 

100%. For example, for binary classification (metastasis vs background), 50% confidence is 

the threshold that determines the object class within the bounding box.

Sensitivity was defined as the ratio between the number of true-positive findings and all 

metastases of the entire testing set (true-positive findings/[true-positive findings + false-

negative findings]). The PPV was defined as the ratio between the number of true-positive 

findings and all detections (true-positive findings/[true-positive findings + false-positive 

findings]). For the best-performing model, free-response receiver operating characteristic 

and PPV versus sensitivity curves with respect to the metastasis size (<3 mm, ≥3 mm to <6 

mm, and ≥6 mm) were plotted to inspect the model’s performance for brain metastases of 

different size ranges separately. The model’s sensitivity was also inspected with respect to 

the metastasis shape (round vs oval) and type (hemorrhagic vs necrotic).

To evaluate the variance of the models’ predictions, each model was trained five times. The 

corresponding testing results were averaged and compared by using the independent t test. 

All code developed for our study can be accessed at https://github.com/Joe15327/brain-

metastases-detection.

Results

Patient Characteristics

The mean age of the 266 patients included in our study was 60 years ± 14. There were 118 

men and 148 women. The demographic characteristics and cancer types of the patient 

population are shown in Table 1.

Detection Performance of the Baseline SSD

Inference took approximately 1 second per patient on the DGX-1 workstation. At a 

confidence threshold of 50%, the baseline DL SSD yielded the best performance among the 

four detectors and achieved an overall detection sensitivity of 81% (95% confidence interval 

[CI]: 80%, 82%; 190 of 234) and PPV of 36% (95% CI: 35%, 37%; 190 of 530) for the 

entire testing set. Specifically, for metastases smaller than 3 mm, the sensitivity was 15% 

(95% CI: 12%, 18%; three of 20) and the PPV was 100% (95% CI: 100%, 100%; three of 

three). For metastases measuring 3 mm or larger to smaller than 6 mm, the sensitivity was 

70% (95% CI: 68%, 72%; 57 of 82) and the PPV was 35% (95% CI: 32%, 38%; 57 of 161). 

For metastases 6 mm or larger, the sensitivity was 98% (95% CI: 97%, 99%; 130 of 132) 

and the PPV was 36% (95% CI: 35%, 37%; 130 of 366). Examples of true-positive, false-

positive, and false-negative inferences are shown in Figures 3 and 4.
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Detailed detection performance of the baseline SSD is shown in Figure 5. The free-response 

receiver operating characteristic analysis showed that although detection of smaller 

metastases was more challenging, for higher numbers of false-positive findings per patient, 

sensitivity improved by more than 50% for metastases 3 mm or larger to smaller than 6 mm 

and more than 100% for metastases smaller than 3 mm. Conversely, the PPV-sensitivity 

plots showed that lower PPV corresponded to higher sensitivity, and the PPV was higher for 

smaller metastases than for larger metastases.

Detection sensitivity of the baseline SSD showed nearly no difference for metastasis shape 

(round vs oval: 81% [95% CI: 80%, 82%; 91 of 113] vs 82% [95% CI: 80%, 84%; 99 of 

121]; P = .04). However, a significant difference was found between metastasis types 

(hemorrhagic vs necrotic: 78% [95% CI: 77%, 79%; 135 of 174] vs 92% [95% CI: 90%, 

94%; 55 of 60]; P < .01). In addition, the sensitivity for necrotic metastases smaller than 6 

mm was 73% (95% CI: 70%, 77%; 11 of 15), whereas that for metastases 6 mm or larger 

was 98% (95% CI: 96%, 99%; 44 of 45) (P < .01).

Detection Performance across Different Model Constructs

Detection sensitivity and PPV at the 50% confidence threshold for the baseline SSD and the 

other three models of the ablation study are summarized in Table 2. The overall sensitivities 

and PPVs of the three models were lower than those of the baseline SSD (P < .05 for all). 

Nonetheless, RetinaNet achieved more than double the sensitivity of the baseline SSD for 

metastases smaller than 3 mm. However, the PPV of RetinaNet was low for these 

metastases.

Discussion

The developed single-shot detector (SSD) algorithms showed promising results to assist 

stereotactic radiosurgery (SRS) treatment planning for brain metastases. At a 50% 

confidence threshold, the baseline SSD was able to detect 130 of 132 (98%; 95% confidence 

interval [CI]: 97%, 99%) brain metastases measuring 6 mm or larger and 60 of 102 (59%; 

95% CI: 57%, 61%) metastases smaller than 6 mm, with a positive predictive value (PPV) of 

36% (95% CI: 35%, 37%; 190 of 530). The detection sensitivity primarily depended on the 

metastasis size (P < .01): Small metastases typically had poorly defined boundaries and low 

contrast. Furthermore, 88% of the false-negative metastases smaller than 6 mm (37 of 42) 

were located near the brain-skull or gray matter–white matter interfaces of the cerebrum and 

resembled small blood vessels; 12% (five of 42) were located in the cerebellum. In addition, 

sensitivity was also higher for necrotic metastases than for hemorrhagic metastases (92% vs 

78%, P < .01). Necrotic metastases typically had more prominent features with hypointense 

regions and larger sizes (75% [45 of 60] were ≥6 mm), making them easier to be 

differentiated from blood vessels.

Like most detection algorithms, there is a trade-off between sensitivity and PPV in our 

models. By lowering the confidence threshold, more of the smaller metastases could be 

detected at a cost of reduced PPV. However, the sensitivity remained similar as the false-

positive findings increased to 15 per patient. Therefore, a confidence threshold around 40% 

may be appropriate for clinical use, wherein 20% of the very small metastases can be 
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detected by the model and the limited false-positive findings can still be easily rejected by 

neuroradiologists.

Compared with previously reported approaches using DL for detecting brain metastases, our 

study has two major differences. First, our approach used networks dedicated to object 

detection. It was able to use the entire image context, therefore avoiding patch-wise 

inferences, which may lack robustness because of the broad range of brain metastasis sizes. 

Second, many previous approaches require multiple inputs from different MRI acquisitions 

(eg, T1-weighted, T2-weighted, and fluid-attenuated inversion recovery MRI) (5,7). Our 

approach uses only postcontrast T1-weighted MRI to detect brain metastases. The use of a 

single MRI acquisition reduces the overhead costs and potential complications from 

interseries MRI co-registration, improving the feasibility for clinical applications.

An unexpected result of our study was that the other three detection models with deeper and 

more sophisticated constructs than the baseline SSD yielded lower overall performance on 

the testing data set (P < .05 for all). There are two potential explanations for these findings. 

First, although the focal loss function handles the issue of positive-negative sample 

imbalance during training, it may not be as efficient as direct mining of the negative 

samples. Second, although ResNet (19) and RetinaNet (9) were reported to achieve superior 

performance over models that used VGG16 (21) as the convolutional encoder (3% 

improvement of image classification accuracy and 4.5% improvement of object detection 

PPV), such achievements were realized on natural images, which contain different content 

than brain MRI scans having a single channel of information.

Our study has several limitations. First, all data used in this study emanated from the same 

institution and therefore do not account for variabilities in scanning techniques and hardware 

implementations across hospitals. Evaluation in patients at external locations would be 

necessary to test the models’ generalizability. Second, although we achieved high sensitivity 

for larger metastases, detection performance for smaller metastases is limited. Considering 

that metastases smaller than 6 mm comprise approximately 43% of SRS targets in our 

sample patients, approximately 17% of the targets could be missed and therefore require 

inspection by neuroradiologists. In developing SSDs, we achieved improved performance in 

detecting smaller brain metastases by including more patient MRI scans in the training set. 

Therefore, collection of more data for training the model may benefit the detection of 

smaller metastases. In addition, the use of three-dimensional fully convolutional networks 

may help boost performance, whereby the interslice information can be used to differentiate 

small metastases and small blood vessels.

Future work will involve developing automatic brain metastasis segmentation methods based 

on the detection(s). A potential segmentation approach could be training a separate fully 

convolutional network (eg, U-Net) (22) to segment the brain metastases after detection. With 

use of the coordinates of the detection bounding boxes, MRI regions containing the 

metastases can be cropped and input to the segmentation fully convolutional network to 

generate the segmentation masks. With the brain metastases specifically cropped out, we 

expect the ensemble of detection and segmentation fully convolutional networks could 
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achieve high segmentation performance with high sensitivity and specificity, assisting 

treatment planning for stereotactic radiosurgery.

Acknowledgments:

The authors thank the University of Texas MD Anderson Cancer Center’s Department of Scientific Publications for 
their help editing this article. J.W.S. would like to acknowledge the generous donors of the Pauline Altman-
Goldstein Foundation.

J.W.S. is supported by a fellowship from the donors of the Pauline Altman-Goldstein Foundation. Z.Z. and J.W.S. 
are supported in part by a sponsored research grant from Siemens Healthineers.

Disclosures of Conflicts of Interest:

Z.Z. disclosed no relevant relationships. J.W.S. disclosed no relevant relationships. J.M.J. Activities related to the 
present article: disclosed no relevant relationships. Activities not related to the present article: is a paid consultant 
for Kura Oncology; has grants/grants pending from Blue Earth Diagnostics. Other relationships: disclosed no 
relevant relationships. M.K.G. disclosed no relevant relationships. M.M.C. disclosed no relevant relationships. 
T.M.B. disclosed no relevant relationships. Y.W. disclosed no relevant relationships. J.B.S. disclosed no relevant 
relationships. M.D.P. disclosed no relevant relationships. J.L. disclosed no relevant relationships. J.M. Activities 
related to the present article: disclosed no relevant relationships. Activities not related to the present article: is a 
paid consultant for C4 Imaging; has grants/grants pending from GE Healthcare and Siemens Healthineers; receives 
royalties from GE Healthcare and Siemens Healthineers. Other relationships: disclosed no relevant relationships.

Abbreviations

CI confidence interval

DL deep learning

PPV positive predictive value

SRS stereotactic radiosurgery
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Key Results

• Overall, the deep learning (DL) algorithm using postcontrast T1-weighted 

MRI only achieved 81% sensitivity and 36% positive predictive value (PPV), 

with six false-positive discoveries per patient for brain metastasis detection.

• For metastases measuring 6 mm or larger, sensitivity of the DL model was 

98% and the PPV was 36%, with three to four false-positive findings per 

patient.
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Figure 1: 
A, Bar charts show distribution of brain metastasis sizes in training group (left) and testing 

group (right). The mean brain metastasis size was 10 mm ± 8 (standard deviation) in the 

training group and 10 mm ± 9 in the testing group, and the ratios between the number of 

metastases smaller than 6 mm and those 6 mm or larger were 405:508 and 102:132, 

respectively. B, Bar charts show distribution of brain metastases across patients in the 

training group (left) and testing group (right). Both groups had a mean of four metastases 

per patient.
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Figure 2: 
Illustration of the baseline single-shot detector (SSD) algorithm that was constructed and 

developed. The three-dimensional boxes represent the feature maps extracted from the 

original image after operations of convolution, maximum pooling, and zero padding, which 

all change the dimensionality (eg, 256 × 256, represented by the three-dimensional box 

height and depth) and channels (eg, 64, represented by the three-dimensional box width) of 

the feature maps. Predictions were made at six resolution scales. L2 normalization was used 

for the first two detection layers to account for the different scales of the feature maps. The 

classification and bounding box position regression losses were concatenated to form the 

SSD loss. The outputs of the model were the bounding box coordinates (xmin, xmax, ymin, 

ymax) and detection confidences of the brain metastases. conf. = classification value, ReLU 

= rectified linear activation unit, 2D = two-dimensional.
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Figure 3: 
MRI scans show examples of true-positive inferences from baseline single-shot detector at 

50% confidence threshold for four representative test patients. The metastasis sizes were, A, 

4, 6, 9, and 28 mm (patient 1); B, 3, 5, and 6 mm (patient 2); C, 10 and 20 mm (patient 3); 

and, D, 7 mm (patient 4).
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Figure 4: 
A, B, Examples of false-positive inferences (arrrow) at MRI. False-positive findings were 

typically, A, blood vessels (patient 5) or, B, variations in brain tissue contrast (patient 6). C, 
D, Examples of false-negative inferences (arrow) at MRI. The missed metastases were, C, 3 

mm (patient 7) and, D, 4 mm (patient 8). Missed metastases were typically located at the 

gray matter–white matter or brain-skull interfaces of the cerebrum..
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Figure 5: 
Detection performance of highest-performing detector (baseline single-shot detector). A, 

Free-response receiver operating characteristic curves for all metastases (left) and for 

metastases smaller than 3 mm, 3 mm or larger to smaller than 6 mm, and 6 mm or larger 

(right). Higher sensitivity occurred with a higher number of false-positive findings per 

patient; however, for metastases measuring 6 mm or larger, high sensitivity could be 

achieved with fewer false-positive findings per patient. B, Plots of positive predictive value 

(PPV) versus sensitivity for all metastases (left) and for metastases smaller than 3 mm, 3 

mm or larger to smaller than 6 mm, and 6 mm or larger (right). Higher sensitivity occurred 

with reduced PPV; however, for metastases measuring 6 mm or larger, high PPV could be 

achieved with high sensitivity. For all plots, data points are averages of predictions from five 
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random initializations of model training, and the horizontal and vertical error bars are 95% 

confidence intervals.
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Table 1:

Patient Demographics and Primary Cancer Types in the Training and Testing Groups

Parameter Training Group Testing Group Total

Patient demographics

 No. of patients 212 54 266

 Mean age (y)* 57 ± 14 62 ± 12 60 ± 14

 M/F ratio 93:119 25:29 118:148

Magnetic field strength

 1.5 T 197 49 246

 3.0 T 15 5 20

Primary cancer types

 Lung 79 (37) 23 (43) 102 (38)

 Melanoma 43 (20) 12 (22) 55 (21)

 Breast 38 (18) 6 (11) 44 (16)

 Renal 25 (12) 3 (5.6) 28 (11)

 Gastrointestinal 9 (4.2) 2 (3.7) 11 (4.1)

 Genitourinary 6 (2.8) 1 (1.8) 7 (2.6)

 Sarcoma 5 (2.4) 0 (0.0) 5 (1.9)

 Thyroid 2 (1.0) 2 (3.7) 4 (1.5)

 Testicular 2 (1.0) 2 (3.7) 4 (1.5)

 Head and neck 2 (1.0) 2 (3.7) 4 (1.5)

 Neuroendocrine carcinoma 1 (0.5) 1 (1.8) 2 (0.8)

Note.—Except where indicated, data are numbers of patients, with percentages in parentheses.

*
Data are means ± standard deviation.
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