Skip to main content
letter
. 2021 Jul 19;11(7):e435. doi: 10.1002/ctm2.435

TABLE 1.

DEmiRs: Comparison with published studies

Plasma Myocardial tissue
HCM (our study) CAD HF AF AMI other pathologies HCM (our study) other pathologies References_DOI References_full citation
miR‐19a UP UP UP (chronic Chagas disease) NDE UP (chronic Chagas disease)

https://doi.org/10.3390/ijms20164064

Nonaka, C.K.V. et al, Circulating miRNAs as Potential Biomarkers Associated with Cardiac Remodeling and Fibrosis in Chagas Disease Cardiomyopathy. International journal of molecular sciences, 20.

https://doi.org/10.31557/apjcp.2020.21.4.975

Mansouri, F. and Seyed Mohammadzad, M.H. Molecular miR‐19a in Acute Myocardial Infarction: Novel Potential Indicators of Prognosis and Early Diagnosis. Asian Pacific journal of cancer prevention: APJCP, 21, 975–982.

https://doi.org/10.3390/ijms151120355

Zhong, J. et al, Circulating microRNA‐19a as a potential novel biomarker for diagnosis of acute myocardial infarction. International journal of molecular sciences, 15, 20355–20364.

https://doi.org/10.1038/s41467‐019‐09530‐1

Gao, F. et al, Therapeutic role of miR‐19a/19b in cardiac regeneration and protection from myocardial infarction. Nature communications, 10, 1802.

miR‐20b UP DOWN (T2DM) NDE

https://doi.org/10.1038/s41598‐020‐63606‐3

Wander, P.L. et al, Short Report: Circulating microRNAs are associated with incident diabetes over 10 years in Japanese Americans. Scientific reports, 10, 6509.

https://doi.org/10.1161/circresaha.110.226357

Zampetaki, A. et al, Plasma microRNA profiling reveals loss of endothelial miR‐126 and other microRNAs in type 2 diabetes. Circulation research, 107, 810–817.

https://doi.org/10.3892/ijmm.2014.1691

Zhou, J.et al, microRNA expression profiling of heart tissue during fetal development. International journal of molecular medicine, 33, 1250–1260.

miR‐29b UP UP UP (chronic Chagas disease) NDE UP (chronic Chagas disease, arrythmogenic right ventricle cardiomyopathy)

https://doi.org/10.3390/ijms20164064

Nonaka, C.K.V. et al, Circulating miRNAs as Potential Biomarkers Associated with Cardiac Remodeling and Fibrosis in Chagas Disease Cardiomyopathy. International journal of molecular sciences, 20.

https://doi.org/10.1111/cpr.12764

Yang, Q. et al, Aberrant expression of miR‐29b‐3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell proliferation, 53, e12764.

miR‐126 UP DOWN UP UP UP DOWN (T2DM, chronic renal disease) NDE

https://doi.org/10.4314/ahs.v17i2.22

Wang, X. et al, Expression of miR‐126 and its potential function in coronary artery disease. African health sciences, 17, 474–480.

https://doi.org/10.1159/000447794

Li, H.Y. et al, Plasma MicroRNA‐126‐5p is Associated with the Complexity and Severity of Coronary Artery Disease in Patients with Stable Angina Pectoris. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 39, 837–846.

https://doi.org/10.1038/s41598‐019‐41101‐8

Fourdinier, O. et al, Serum levels of miR‐126 and miR‐223 and outcomes in chronic kidney disease patients. Scientific reports, 9, 4477.

miR‐144 UP UP UP UP (arrythmogenic right ventricle cardiomyopathy) DOWN UP (arrythmogenic right ventricle cardiomyopathy)

https://doi.org/10.1016/j.rec.2017.05.013

de Gonzalo‐Calvo, D. et al, Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs. Revista espanola de cardiologia (English ed.), 70, 763–769.

https://doi.org/10.1016/j.yjmcc.2016.05.009

Bye, A. et al, Circulating microRNAs predict future fatal myocardial infarction in healthy individuals ‐ The HUNT study. Journal of molecular and cellular cardiology, 97, 162–168.

https://doi.org/10.1371/journal.pone.0226164

Abu‐Halima, M. et al, Micro‐RNA signatures in monozygotic twins discordant for congenital heart defects. PloS one, 14, e0226164.

https://doi.org/10.1111/jcmm.12380

Song, L. et al, MiR‐451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. Journal of cellular and molecular medicine, 18, 2266–2274.

miR‐182 DOWN UP UP UP (arrythmogenic right ventricle cardiomyopathy) NDE DOWN (arrythmogenic right ventricle cardiomyopathy)

https://doi.org/10.1042/cs20100043

Taurino, C. et al, Gene expression profiling in whole blood of patients with coronary artery disease. Clinical science (London, England : 1979), 119, 335–343.

https://doi.org/10.2459/jcm.0000000000000233

Cakmak, H.A. et al, The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome‐wide expression study. Journal of cardiovascular medicine (Hagerstown, Md.), 16, 431–437.

https://doi.org/10.1038/srep21228

Li, N. et al, miR‐182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart. Scientific reports, 6, 21228.

miR‐223 NDE DOWN

https://doi.org/10.1155/2015/592512

Barsanti, C. et al, Differential regulation of microRNAs in end‐stage failing hearts is associated with left ventricular assist device unloading. BioMed research international, 2015, 592512.

miR‐223 (Cont.)

https://doi.org/10.1155/2015/943659

Chuang, T.Y. et al, MicroRNA‐223 Expression is Upregulated in Insulin Resistant Human Adipose Tissue. Journal of diabetes research, 2015, 943659.

https://doi.org/10.1093/cvr/cvq010

Lu, H., Buchan, R.J. and Cook, S.A., MicroRNA‐223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovascular research, 86, 410–420.

miR‐374b NDE DOWN UP (STEMI vs. NSTEMI) UP DOWN (calcific aortic stenosis: valves)

https://doi.org/10.4172/2327‐4972.1000108

Ward, J.A. et al, Circulating Cell and Plasma microRNA Profiles Differ between Non‐ST‐Segment and ST‐Segment‐Elevation Myocardial Infarction. Family medicine & medical science research, 2, 108.

https://doi.org/10.1007/s11010‐017‐2947‐7

Xu, H.X. et al, Differential Expression of MicroRNAs in Calcific Aortic Stenosis. Clinical laboratory, 63, 1163–1170.

miR‐451a NDE NDE DOWN https://doi.org/10.1111/jcmm.12380 Song, L. et al, MiR‐451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. Journal of cellular and molecular medicine, 18, 2266–2274.
miR‐454 DOWN UP (DCM in children) *** NDE   https://doi.org/10.3109/1354750x.2015.1118533 Enes Coşkun, M. et al, Plasma microRNA profiling of children with idiopathic dilated cardiomyopathy. Biomarkers: biochemical indicators of exposure, response, and susceptibility to chemicals, 21, 56–61.
miR‐4485 NDE UP / /
miR‐4732 UP UP (congenital heart defetcs) NA https://doi.org/10.1371/journal.pone.0226164 Abu‐Halima, M .et al, Micro‐RNA signatures in monozygotic twins discordant for congenital heart defects. PloS one, 14, e0226164.

LEGEND: NDE, not differentially expressed vs. ctrl; UP, up‐regulated; DOWN, down‐regulated; NA, undetermined by RT‐qPCR.