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Anticipatory Energization Revealed by Pupil and Brain
Activity Guides Human Effort-Based Decision Making

Irma T. Kurniawan, Marcus Grueschow, and Christian C. Ruff
Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich 8006, Switzerland

An organism’s fitness is determined by how it chooses to adapt to effort in response to challenges. Exertion of effort corre-
lates with activity in dorsomedial prefrontal cortex (dmPFC) and noradrenergic pupil dilation, but little is known about the
role of these neurophysiological processes for decisions about future efforts, they may provide anticipatory energization to
help us accept the challenge or a cost representation that is weighted against the expected rewards. Here, we provide evidence
for the former, by measuring pupil and functional magnetic resonance imaging (fMRI) brain responses while 52 human par-
ticipants (29 females) chose whether to exert efforts to obtain rewards. Both pupil-dilation rate and dmPFC fMRI activity
increased with anticipated effort level, and these increases differ depending on the choice outcome: they were stronger when
participants chose to accept the challenge compared with when the challenge was declined. Crucially, the choice-dependent
modulation of pupil and brain-activity effort representations were stronger in participants whose behavioral choices were
more sensitive to effort. Our results identify a process involving the peripheral and central human nervous system that simu-
lates the required energization before overt response, suggesting a role in guiding effort-based decisions.
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Significance Statement

The brain’s arousal system tracks the effort we engage in during strenuous activity. But much less is known about what role
this effort signaling may play when we decide whether to exert effort in the future. Here, we characterize pupil-linked arousal
and brain signals that guide decisions whether to engage in effort to gain money. During such choices, increases in brain ac-
tivity and pupil dilation correlated with the effort involved in the chosen option, and these increases were stronger when peo-
ple decided to accept the effort compared with when they rejected it. These results suggest that the brain arousal system
guides decisions by energizing the organism for the prospective challenge.

Introduction
Should I go to the gym or skip training? Trade-offs between
effort and reward are commonplace. The ability to choose
between high-cost, high-yield and low-cost, low-yield actions is
crucial for survival in all animals (Bautista et al., 2001).
Dopaminergic (DA) reward signals have long been identified to
play a pivotal role in guiding choices (Schultz et al., 1997;

Schultz, 2002; Niv et al., 2005; Ostlund et al., 2011; Bartra et al.,
2013; Beierholm et al., 2013; Varazzani et al., 2015; Walton and
Bouret, 2019). By contrast, it is less clear how effort signals guide
decisions. Neural effort signals in the locus coeruleus noradren-
ergic (LC-NA) arousal system (Zénon et al., 2014; Varazzani et
al., 2015) and frontoinsular network (Prévost et al., 2010;
Kurniawan et al., 2013; Meyniel et al., 2013; Skvortsova et al.,
2014; Hauser et al., 2017; Arulpragasam et al., 2018; Aridan et al.,
2019) scale monotonically with increasing task difficulty
(McGuire and Botvinick, 2010), but how these processes func-
tionally contribute to choice is less understood.

Two possible roles of effort signals have been proposed. First,
a prevailing view in decision theory posits that efforts incur costs
that are by definition subtractive; that is, increasing costs lower
the motivational value of given rewards (which is calculated as
perceived reward minus perceived cost; Hull, 1943). Consistent
with this view, functional magnetic resonance imaging (fMRI)
studies show net value signals for reward that are subjectively
“discounted” by effort (Prévost et al., 2010; Burke et al., 2013;
Klein-Flügge et al., 2016; Chong et al., 2017; Arulpragasam et al.,
2018; Aridan et al., 2019; Bernacer et al., 2019). However, these
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signals reflect a combination of both the rewarding and effortful
aspects of the choice options, which impairs direct interpreta-
tions of how much these signals are truly effort-driven and how
effort per se may affect the choice process.

Second, consistent with the idea that effort requires resource
mobilization (Hockey, 1997), effort signals may represent the
energization needed for the action under consideration to be suc-
cessfully achieved (Paravlic et al., 2018). An “energization” signal
is defined to have an additive effect on the decision value, since it
is thought to enhance the readiness to take on a given effort (i.e.,
reduce the perceived effort cost) and thereby increase the
reward–cost decision value. A sizeable literature indicates that
LC-NA activity plays an important role in changing arousal
states (Takahashi et al., 2010; Pfaff et al., 2012; Poe et al., 2020)
by providing neuromodulatory input to the entire neocortex
(Porrino and Goldman-Rakic, 1982; Chandler et al., 2013;
Schwarz et al., 2015), thereby facilitating energization (Varazzani
et al., 2015; Jahn et al., 2018). NA activity can directly influence
pupil size and is linked to pupil dilation (Joshi et al., 2016;
Reimer et al., 2016; Gelbard-Sagiv et al., 2018), making phasic,
task-related pupil an accurate indicator of brain arousal states
(McGinley et al., 2015; Yüzgeç et al., 2018). However, it remains
unclear whether the effort signals that guide choices would draw
on the same pupil-linked arousal system that facilitates actual
behavior energization (Zénon et al., 2014; Varazzani et al., 2015;
Xiang et al., 2019; Borderies et al., 2020).

Teasing apart these two scenarios is not trivial. One effec-
tive way forward is to investigate how signals that scale with
effort differ depending on choice outcome (Kurniawan et al.,
2010), namely, for decisions to engage in effort versus deci-
sions to forego effort. In a cost scenario, stronger brain sig-
nals for increasing effort (after controlling for rewards) by
definition represent higher encoded costs, which decrease
the net value and push individuals toward declining the offer.
Consider an offer of 10 reward tokens for level 8 effort. A
brain signal that represents “cost” information should be
higher when this offer is rejected (the encoded cost of effort
8 dominates the reward value of 10 tokens) compared with
when the same offer is accepted (the encoded cost of level 8
is dominated by the encoded reward value of 10 tokens).
Thus, a cost scenario would predict a steeper neural effort
signal in reject compared with accept decisions. Statistically,
this would be expressed in a higher regression weight for
effort when we choose to reject effort (“no” decision) com-
pared with when we choose to engage in it (“yes” decision).
In an energization scenario, by contrast, a higher effort signal
would represent readiness to mobilize resources and there-
fore have an opposite impact on choice, tipping individuals
toward a “yes” decision. The energization scenario would
therefore predict the opposite pattern of steeper effort-
related signals (i.e., higher regression weights) in “yes” com-
pared with “no” decisions (Fig. 1A). In principle, decision
values would also change as a function of how rewards
(rather than efforts) are coded, but we control for this in our
analyses by focusing on how the slopes of effort coding
change after controlling for reward effects.

Here, we apply this experimental logic using an effort
discounting task in an fMRI setting, while simultaneously
tracking pupil dilation, a putative marker for LC-NA firing.
This combination allows us to investigate systematically to
what degree the brain arousal system may encode antici-
pated effort during decision-making as a cost or energiza-
tion signal.

Materials and Methods
Participants
Fifty-two right-handed participants [29 females, mean age = 22.3 (3)
years] volunteered to participate in this study. We determined the sam-
ple size using power analysis based on the small to medium effect size
(d=0.2–0.5) reported in past studies in the laboratory relating pupil size
and biases in choice behavior. Participants received between 80 and 100
CHF (depending on the realized choices and performance) for their par-
ticipation. Participants were screened for MRI compatibility, had no
neurologic or psychiatric disorders, and needed no visual correction.
Data from one subject were excluded because of eye-tracker data loss.
Inclusion of this subject in the behavioral analysis did not change the sta-
tistical results, but for consistency, we excluded this data set from all
analyses. We screened subjects based on their p(choose effortful) to be within
0.1 and 0.9, and excluded one subject whose choice rate was 0.95. The
final N was 49.

Procedure
Force calibration
Upon arrival, participants sat in the behavioral testing room, filled the
MRI screening and consent forms, and received general instructions on
the force task and MRI safety. Maximum voluntary contraction (MVC)
level for each hand was obtained by averaging the top 33% force values
produced during three 3-s squeezes. Continuous encouragement was
given vocally during each entire squeeze period (e.g., “keep going, keep
it up”).

Force training
Guided by a vertical bar on-screen (Fig. 1B), participants were trained to
do hand squeeze sets at levels 10–90% MVC (displayed as levels 1–9).
This dynamometer effort task mimics a typical hand force exercise at the
gym, with a cycle of repetitions (“reps”) of muscle contractions (3 s) and
relaxations (3 s) for each level. To prevent muscle fatigue, these were
done alternating between left and right hand. During training, one set
consisted of five repetitions and there were in total 10 squeeze sets (10 �
5= 50 reps) to be evaluated by a certain criterion. Levels 1–8 were pre-
sented once, pseudorandomly assigned to either left and right, and level
9 twice, once for each hand. The order of force levels was also pseudor-
andomized. Half of the subjects practiced on levels 1, 3, 5, 7, 9 with left
hand and 2, 4, 6, 8, 9 with right hand, and vice versa for the other half of
subjects. The criterion was to maintain force above the target for at least
two of the 3-s rep (non-consecutively). At the end of each training
round, participants received a summary of their performance and were
asked to repeat each unsuccessful force production. Overall, all partici-
pants underwent at most three training rounds (M=2.22, SD=0.46).
After the last round, 38 participants successfully completed all 50 reps
(0 unsuccessful rep), whereas 11 participants had a few unsuccessful reps
(M=4.3%, SD= 3.5%). These results suggest that the training was very
successful.

Following a 5-min break, they proceeded with a subjective rating
task in which they had to squeeze for each hand once at levels 1, 3, 5,
and 9 for 5 s without knowing the difficulty levels. They were told that in
some trials it would be easy to raise the bar to reach the target, which in
this task was always displayed at the midline, while in other trials it
would be harder to do it. After each 5-s squeeze, they then rated on a
continuous visual analog scale how effortful the grip was for them. They
were instructed that the leftmost and rightmost point in the scale should
refer to level 0 (merely holding the dynamometer) and level 10, respec-
tively. The force training was successful as indicated by a close relation-
ship between subjective and objective effort, mean Pearson’s r=0.93,
SEM=0.0073, t(46) = 127.63, p, 0.0001.

Before scanning, participants made five practice decisions and we
made sure that participants fully comprehended the task. The effort dis-
counting task was done in the fMRI scanner. Participants were aware
that the effort they were considering now consisted of one set of 10 reps
(instead of five). To prevent participants from taking decisions based on
anticipated muscle fatigue, only a random selection of eight decisions
were actually realized in the behavioral testing room after the scan,
and participants were fully aware of this. Participants filled some
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questionnaires, were debriefed, given payment, and thanked for their
participation before leaving the lab.

Effort discounting task
In the scanner, participants were given a series of choices between an
effortful and a non-effortful option. On each trial, the effortful option
entailed varying effort (one of six levels, levels 4–9) and reward amounts
(one of six levels, 0.5–10 CHF; Fig. 2A). The non-effortful option entailed
minimal effort (fixed at level 1) and a lower reward amount (30% or 40%
of the reward amount of the effortful option), giving a clear incentive to
choose the non-effortful option if the larger effort was not worth the
reward. To rule out risk as a potential confound (namely that accepting a
level 9 offer gives a higher risk of failure compared with accepting a level
4) we ensured that the effort training at all levels was successful (overall
failure rate during training was,1%, M=0.9%, SD=2.4%).

During a fixation period of 3–6 s (drawn from a g distribution with
shape parameter 0.8 and scale parameter 1, mean 3.7 s), the text indicat-
ing reward and effort levels was masked with a series of letters X (Fig.
1A). Following this period, the color of the1 sign at the center changed
and the effort and reward of each of the two options were presented on
either side of the fixation point for a fixed duration of 3 s. This prompted
the subjects that they were able to press either the left or the right key to

indicate their choice. To provide decision feedback, this key response
was followed promptly by a change in color for the selected option.
Regardless of key press, the stimuli remained on-screen for 3 s before the
next fixation period was presented. If participants failed to respond dur-
ing this period, the trial was coded as missing and no reward was gained.
Among 49 participants, 13 had one missing trial, five had two to five
missing trials, and one had 34 (15%) missing trials. Exclusion of this last
subject did not change any result, so we decided to include them.

Pupillometry
Participants’ right or left eye (depending on feasibility) was monitored
using MR-compatible infrared EYElink 1000 eye-tracker system (SR
Research Ltd.) with 500-Hz sampling rate. Participants were instructed
not to blink during the presentation of the options. Preprocessing of the
pupil data were performed in MATLAB (version 2017a, MathWorks).
Data indicating eye blinks were replaced using linear interpolation. The
data were visually inspected to ensure that all artefacts had been success-
fully removed. Pupil data were z-transformed within each run to control
for variability across runs and across subjects. We focused on phasic pu-
pil activity from stimulus onset until response, and therefore the time
leading up to the choice during which participants focus on the choice-
relevant information and use it to compute integrated decision values.

Figure 1. Predictions, task design, and key measures. A, Three possible patterns of anticipatory neural responses to effort. Left, Signals coding for effort per se would scale monotonically
with effort regardless of choice. Middle, Signals coding for the decision cost associated with effort should be steeper across effort levels when individuals reject the effort. Right, Signals coding
the anticipatory energization needed to accept the challenge should be steeper across effort levels when individuals accept the effort. B, Experimental paradigm. Prescan: participants received
visually-guided effort training on a hand-held dynamometer. Levels 1–9 correspond to 10–90% MVC. In the fMRI scanner, participants chose between an effortful option associated with vari-
able amounts of reward and effort and a non-effortful option with smaller reward. Postscan: outside the scanner, eight trials were randomly selected and participants executed the effort they
chose in those trials to obtain the reward. C, Behavioral effort sensitivity. This individual measure was derived by calculating for each participant the slope of the probability to choose the
effortful option across effort levels. D, Phasic pupil measure. Grand-mean of pupil width during decision-making showed a stereotypical dilation shortly following stimulus onset, peaking right
after averaged response onset (purple line), and constricting down to baseline level around stimulus offset. Pupil rate (z/s) was calculated by subtracting pupil width at response from pupil
width at stimulus onset, divided by response time (RT). stim=stimulus; resp=response.
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Note that this measure therefore did not include time periods subse-
quent to choice during which participants may engage in decision out-
come evaluation. Our prechoice pupil measure is called pupil rate of
dilation (unit: z/s), and was calculated by subtracting pupil size at button
response from pupil size at stimulus onset, divided by response time
(RT). Pretrial pupil baseline level (PBL) was calculated by averaging pu-
pil size from 500 to 1ms before stimulus onset and served as an index of
tonic arousal.

To ensure constant screen luminance level, we kept roughly the same
number of pixels throughout the events by replacing the text indicating
reward and effort levels with a series of Xs and by using text hues that
were isoluminant to the gray background (RGB gray: 178.5, 178.5,
178.5; green: 50, 100, 10; purple: 118, 60, 206; blue: 53, 77, 229).
Ensuring readability, we selected these hues out of 17 theoretically
isoluminant hues where relative luminance was calculated as a linear
combination of the red, green, and blue components based on the
formula: Y = 0.2126 R1 0.7152 G1 0.0722 B. This formula follows
the function that green light contributes the most to perceived
intensity while blue contributes the least (https://www.w3.org/
Graphics/Color/sRGB). Green was always fixed as the base hue and
blue and purple were randomly assigned trial-by-trial to highlight
the selected offer (Fig. 1A).

Additionally, in a control experiment, we recorded luminance-driven
pupil dilation without any cognitive task during presentation of fixation
screens with a series of Xs as fixation period and Ys to replace the text that
would have indicated the effort and reward levels in the main experiment,
each period lasting for 3 s. Participants were instructed to keep their eyes
open but were not required to press any key. Just like in the main experi-
ment, green was the base hue during fixation whereas blue and purple
were used to highlight the text on one side of the screen. All stimuli were
in the same text format as in the main task (Fig. 1). Order of hue and side
assignment were all counterbalanced and pseudorandomized. We found
no difference in mean pupil diameter during the presentation of these
control stimuli in different hues, confirming that the pupil response in the
main task was not driven by differences in text luminance.

fMRI acquisition and analysis
Functional imaging was performed on a Philips Achieva 3T whole-body
MR scanner equipped with a 32-channel MR head coil. Each experimen-
tal run contained 225–244 volumes (voxel size, 3 � 3 � 3 mm3; 0.5-mm
gap; matrix size, 80� 78 (FoV: [240 140 (FH) 240]; TR/TE 2334/30ms;
flip angle, 90°; parallel imaging factor, 1.5; 40 slices acquired in ascend-
ing order for full coverage of the brain). We also acquired T1-weighted
multislice gradient-echo B0 scans which were used for correction of
deformations (voxel size, 3� 3 � 3 mm3; 0.75-mm gap; matrix size,
80� 80; TR/TE1/TE2 // 400/4.3/7.4ms; flip angle, 44°; parallel imaging;
40 slices). Additionally, we acquired a high-resolution T1-weighted 3D
fast-field echo structural scan used for image registration during post-
processing (170 sagittal slices; matrix size, 256� 256; voxel size, 1 � 1 �
1 mm3; TR/TE/TI // 8.3/3.9/1098ms).

We used Statistical Parametric Mapping (SPM12; Wellcome Trust
Center for Neuroimaging, London, United Kingdom; http://www.fil.ion.
ucl.ac.uk/spm) for imaging analyses. Five preprocessing steps included
(1) realignment and unwarping, (2) slice-timing correction, (3) co-regis-
tration and normalization, (4) smoothing, and (5) correction for physio-
logical noise. First, we re-aligned all functional volumes to the first
volume to correct for inter-scan movement. Images were unwarped
using field maps to remove unwanted variance because of field inhomo-
geneity (Anderson and Platten, 2011). Second, unwarped functional
images were slice-time corrected (to the acquisition time of the middle
slice). Third, each subjects’ T1 image was co-registered (as reference
image) with the mean functional image (as source image) using segmen-
tation parameters performed on both images (Ashburner and Friston,
2004). These images were then normalized using the inverse deforma-
tion procedure and spatially re-sampled to 3-mm isotropic voxels.
Fourth, all images were smoothed using a Gaussian kernel (full-width at
half-maximum 8 mm). Finally, we performed correction for physiologi-
cal noise via RETROICOR (Glover et al., 2000; Hutton et al., 2011) using
Fourier expansions of different order for the estimated phases of cardiac
pulsation (third order), respiration (fourth order), and cardio-respira-
tory interactions (first order; Hutton et al., 2011). We created the

Figure 2. Behavioral and pupil results. Choice proportions (A) and RT (C) as a function of reward and effort associated with the effortful option. B, Weights of logistic regression of choice on
reward, effort, and the interaction from a standard model based on the offers the participants see on the screen. D, Weights of multiple regression of RT on reward, effort, and the interaction from
a standard model based on the offers the participants see on the screen and the choice outcome. E, Weights of logistic regression of choice from an extended model containing the standard model,
RT, pupil rate, and other variables (see Results), showing a significant effort-by-pupil rate interaction. This extended regression (E) had a higher model-fit (adjusted R2) than the standard one (B; see
Results), suggesting that pupil measures together with other task parameters can explain choice above and beyond the standard option attributes (reward and effort). Symbols indicate significance
levels against zero: star for p, 0.001, triangle for p, 0.01, diamond for p, 0.05. Bar plots display mean6 1 SEM. RT=response time; PBL=pupil baseline level.
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corresponding confound regressors using the PhysIO Toolbox (Kasper
et al., 2009; https://www.translationalneuromodeling.org/tapas).

We performed random-effect, event-related statistical analyses. For
each subject, we first computed a statistical general linear model (GLM)
by convolving a series of boxcar functions (time-locked to the stimulus
onsets and with the trial-wise RT as each event’s duration) with the ca-
nonical hemodynamic response functions and their first derivatives
(temporal derivative). We also added to these GLMs 18 physiological
regressors and 6 motion parameters. At the second level, we then tested
the significance of subject-specific effects (as tested by t-contrasts at the
first level) across the population. For these analyses, we used a gray mat-
ter mask as an explicit mask, created by averaging across subjects and
smoothing (8 mm) all participants’ normalized gray matter images
(wc1p.nii) from the “segment” procedure.

We built three first level GLMs without any orthogonalization. To
identify unique variance associated with each of our trial parameters, we
generated GLM1 using the stimulus onset as a single regressor with
choice (1: effortful, �1: non-effortful), reward and effort levels of the
effortful option, RT, pupil rate, and effort-by-choice as trial-wise para-
metric modulators (all non-binary variables were z-scored and interac-
tion terms were constructed with z-scored variables). We then entered
the contrast images of each parametric modulator versus baseline into
second-level one-sample t tests. To illustrate the effort-by-choice interac-
tion effect, we generated GLM2 with two regressors containing the stim-
ulus onsets for “choose effortful” and “choose non-effortful” trials. Each
regressor contained reward and effort levels of the effortful option, RT
and pupil rate (all z-scored) as trial-wise parametric modulators. We cre-
ated functional masks based on suprathreshold voxels for the effort-by-
choice regressor from GLM1 and extracted b values within these masks.
As control analysis for the results from GLM1, we built another first-
level GLM (GLM3) containing the same regressors as GLM1 plus two
additional regressors: reward-by-choice and RT-by-choice interaction
terms. This analysis thus controlled for any differential effects of reaction
time or reward across both choice types in the second-level analysis of
our main interest, the choice-by-effort interaction.

Additional imaging tools. Functional masks were created using
xjView toolbox (https://www.alivelearn.net/xjview/). SPM tables were
created by extracting SPM results using bspmview toolbox (https://www.
bobspunt.com/software/bspmview/). All suprathreshold clusters were
overlaid on standard MNI structural brain image using MRIcroGL
(https://www.nitrc.org/projects/mricrogl).

Experimental design and statistical analysis
We used a factorial design with six effort and six reward levels (36 cells)
for the effortful option, and two reward levels for the non-effortful
option. There were three trials in each cell, resulting in 6 � 6 �
2� 3 = 216 trials. Trials were split in three fMRI runs of 72 trials (9 min)
and trial order was pseudorandomized per subject and run.

Statistical analyses for behavioral and pupil data were done with
MATLAB 2017 (MathWorks). We computed mean values per condition
per subject for all our outcome variables except for RT, where we used
median value to account for the fact that it is not normally distributed.
We conducted (multiple) logistic or linear regressions separately for
each participant and entered the regression weights of each predictor
from all participants into a one-sample t test. All continuous predictors
were z-scored across trials within each participant. This approach allows
for the intercept (constant) to vary across participants. Goodness-of-fit
is the adjusted R2 for regressions. Effect sizes (Cohen’s d) for one-sample
t tests on the regression weights (Fig. 2E) were calculated as group-level
mean of standardized regression weight for each regressor divided by its
standard deviation. Effect sizes for paired-samples t test results related to
figures 2 and 3 are reported as Cohen’s d for repeated measures with
pooled standard deviation calculated using the effect size calculator
(https://www.psychometrica.de/effect_size.html#cohen; Lenhard and
Lenhard, 2016). We used robust regression to evaluate the association
between two variables. All statistical tests were two-tailed. For inference
about the brain data, we used a cluster-defining threshold of p= 0.001
and only report suprathreshold voxels that survive cluster-level family-
wise error (FWE) corrected p, 0.05. We also used this threshold to

create functional masks for region of interest (ROI) analysis.
Additionally, to create the left postcentral gyrus mask (Fig. 3F), we used
a more stringent cluster-defining threshold of p, 0.00001 because the
original suprathreshold cluster was too extensive (k. 4000). This was
solely for illustration purposes and did not change data inference.

To calculate the effort slope in all our analyses (Fig. 3), for each sub-
ject we first averaged the pupil rate (z-scored within subject) in each of
the six effort levels separately for trials where subjects chose the effortful
option and those where they chose the non-effortful option. We then
ran a simple regression of the averaged pupil rate on effort levels (levels
4–9), separately for each choice outcome. Without any missing data, the
effort slope in each condition should be estimated based on six data
points. However, choice was clearly affected by effort level (Fig. 1C),
thus one concern is that for some subjects, there might have been too
many empty cells (e.g., if options with effort levels 7–9 were never
selected by a participant). If this were the case then there would be
unequal number of data points to estimate the effort slope in one choice
outcome versus another. To address this concern, we found that on aver-
age there weremore than five pairs of data points in both choice out-
comes (Mnon-effortful = 5.59, SD=0.67, Meffortful = 5.61, SD=0.7), and
importantly there was no significant difference between the two choice
outcomes, t(48) = 0.13, p=0.89. This result assured us that the estimation
of effort slopes between the two choice outcomes was comparable.

Computational modeling of choice
To be able to quantify choice difficulty, we modeled how effort discounts
the value of the offers by fitting a standard effort-discounting model
(containing a valuation and a selection rule) to the choice data
(Glimcher, 2009). This model contains a valuation rule assuming that
the subjective value of an offer is determined as its associated reward
devalued by its associated effort (Eq. 1). We selected a parabolic-dis-
counting model based on previous physical-effort studies (Hartmann et
al., 2013; Chong et al., 2017; Lockwood et al., 2017; Morel et al., 2017).
The computed SV for each offer is entered into a selection rule that
applies a softmax function to the difference of the subjective value, nor-
malized by a choice temperature (Eq. 2). This selection rule also allows
the sigmoid to be shifted horizontally by a bias term, to capture our ob-
servation that there is a constant bias toward accepting an effortful
option (Eq. 2), as observed in the positive intercept in the logistic regres-
sion of choice (Fig. 2B). Here, are the equations for subjective value (1)
and choice probability (2):

SV ¼ R� k pE2 (1)

p choose1ð Þ ¼ 1

11 eb p deltaSVð Þ1 bias
(2)

where SV = subjective value of an offer; R = reward amount of an offer,
E = effort amount of an offer, k = effort discounting parameter, b =
choice temperature, bias = constant toward accepting an effortful
option.

We fitted the model to the data from each subject using the VBA
toolbox (https://mbb-team.github.io/VBA-toolbox/) and analyzed the
model posterior estimates for each subject. As expected, effort discount-
ing “k” and the bias terms are significantly correlated with the choice
proportion for the effortful option, robust regression, bk(47) = �1.91,
p=0.045; bbias(47) = 1.94, p= 0.026. The subject-wise posterior estimates
demonstrated a significant bias (.0) at the group level, one-sample test,
t(48) = 8.06, p, 0.0001, suggesting that overall, participants do exhibit a
tendency to choose the effortful option regardless of the offered reward
and effort amounts. Using this model, we were able to derive measures
that allowed us to address two potential confounds in control analyses,
namely the effects of choice difficulty and choice bias on pupil dilation.
We quantified choice difficulty by calculating for each trial the absolute
distance between SV (dSV) of the effortful and non-effortful options.
Regardless of the final choice outcome, a larger distance means that the
decision was easy (and vice versa).
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Analysis plan
First, we explored whether prechoice pupil-linked arousal, as measured
in rate of pupil change (Joshi et al., 2016; Reimer et al., 2016), scales
monotonically with increasing effort, and, importantly, if such effort
coding in the pupil rate is stronger for reject . accept choice outcomes
(consistent with cost scenario) or for accept . reject choice outcomes
(consistent with energization scenario). Studies in humans have mainly
focused on absolute pupil size (de Gee et al., 2014), but we chose pupil
rate specifically to control for effects on RT that may co-occur with pupil
size changes as a consequence of arousal-related processes. Indeed, find-
ings from animal neurophysiology have established clear precedents for
using pupil rate in our study with humans; seminal work in monkeys by
Joshi et al. (2016) reported that the fastest rate of pupil dilation occurred
always ;300ms after LC firing, suggesting a tight relationship between
LC firing and not just pupil size but also the speed of dilation. These
studies underscore the importance of investigating pupil rate in
humans and suggest that pupil activity may reflect the processing
of important decision parameters that might at the same time,

determine the duration of the engagement of neural choice proc-
esses. Therefore, it is important to be able study pupil signaling
with measures that explicitly control for reaction time. In any case,
note that we could replicate all the behavioral effects reported here
in parallel analyses of absolute pupil size (pupil at response minus
pupil at stimulus), showing that the pupil-related effects we report
here are independent of the exact phasic pupil measure used.

Second, at the neural level, we similarly examined whether known
cortical representations of effort reflect a neural version of such choice-
dependent effort signal. Based on previous work with a similar paradigm
(Prévost et al., 2010; Kurniawan et al., 2013; Meyniel et al., 2013;
Skvortsova et al., 2014; Hauser et al., 2017), we expected these signals to
be localized within the frontoinsular network, which based on its con-
nectivity to the LC (Poe et al., 2020) may be strongly affected by NA
arousal processes.

Third, if such effort signaling is at all behaviorally relevant, then we
expect individuals who show stronger choice-dependent effort signals in
pupil and the brain to display stronger effort sensitivity in their behavior,

Figure 3. Energization signals in pupil and dmPFC activity correlated with behavioral effort sensitivity. Consistent with the energization scenario, effort representations in pupil (A) and in
the dmPFC (B) are higher when participants accepted compared with when they rejected the effortful option (choice “effortful” vs “non-effortful”). The positive modulation of effort-by-choice
interaction is evidenced by higher effort b weights when participants chose the effortful (“yes” decision) versus the non-effortful option (“no” decision) in pupil (D) and in extracted BOLD sig-
nal change within dmPFC functional ROI (E). Both the pupil (G) and dmPFC (H) energization signals are positively correlated with individual behavioral measure of effort sensitivity as shown in
Figure 1C. Consistent with neural processes that may reflect cost signaling, effort b weights in an extensive cluster with its peak in the postcentral gyrus (C, F) are higher when participants
rejected compared with accepted the effortful option. However, the extracted cost signal within left postcentral gyrus functional ROI did not show evidence of any relation with the behavioral
measure of effort sensitivity (I). A, Dots with error bars represent means6 1 SEM. Lines are linear fits of the means [using the MATLAB polyfit(x,y,1) function]. B, Glass-brain image and sagittal
slice showing that BOLD amplitude in dmPFC correlates uniquely with (positive) effort-by-choice regressor. C, Glass-brain image and coronal slice showing that BOLD amplitude in bilateral post-
central gyrus correlates uniquely with the (negative) effort-by-choice regressor. Panels E, F are solely for illustration purposes; no statistical test was done. Middle column, Boxplots display the
median (central line), 25th and 75th percentiles (bottom and top edges), and non-outlier low and high extreme values (bottom and top error bars). Blue lines show subjects whose effort slope
is higher in effortful choice than in non-effortful choice, gray lines show subjects who show the opposite effect. Symbols indicate significance levels between two conditions: star for
p, 0.001, triangle for p, 0.01, diamond for p, 0.05. Right column, Each data point represents a subject; p values represent significance level from robust regressions.
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namely in choice frequencies. In the cost scenario, we would expect be-
havioral effort sensitivity to correlate positively with the difference in
effort scaling of “no” . “yes” decisions, since individuals who assign
higher costs to effort should forego the effort challenge more often. The
energization scenario, by contrast, would predict behavioral effort sensi-
tivity to be positively correlated with the difference in effort scaling of
“yes” . “no” decisions, since those behaviorally more affected by effort
would need a stronger energization signal to accept a given effort level.

Fourth, we conducted a series of control analyses to ascertain that
the observed effects were not driven by changes in choice difficulty and
reward value of the options. Moreover, since endogenous fluctuations of
arousal states may cause a general bias toward exerting effort (Murphy
et al., 2014), and since elevated emotional arousal before a force-produc-
tion task can increase voluntary effort (Schmidt et al., 2009), we also con-
trolled for effects of tonic pupil signals as indexed by pretrial PBL.

Data availability
Processed data and the code to reproduce the figures are available upon
request.

Results
Systematic effort-reward trade-offs during choice
Initial analyses confirmed that participants indeed systematically
traded off the proposed efforts and rewards when making deci-
sions (Fig. 2A), as expected based on previous work (Kurniawan
et al., 2010; Prévost et al., 2010; Chong et al., 2017). Effortful
options were selected significantly more often when they offered
higher rewards and lower effort amounts (logistic regression of
choice; 1 = choose effortful, 0 = choose non-effortful; N=49;
adjusted R2 M=0.62, SEM=0.017; treward(48) = 6.93, p, 0.0001;
teffort(48) = �7.25, p, 0.0001; Fig. 2B). In particular, effortful
options were selected/abandoned most often when they were
clearly attractive (high rewards for low effort)/unattractive (low
rewards for high efforts), although the interaction effect was only
marginally significant (treward � effort(48) = �1.93, p=0.06). This
“standard” logistic regression model confirms previous findings
that decisions vary as a function of the offered rewards and the
required effort. Furthermore, multiple regression of RT (median;
z-scored) showed a significant effect of reward and choice
(0=non-effortful, 1 = effortful; N= 49; adjusted R2 M=0.148,
SEM=0.012), treward(48) = �5.13, p, 0.0001; tchoice(48) = �3.52,
p=0.0009 (other effects: tconstant(48) = 3.27, p= 0.002; teffort(48) =
0.36, p= 0.72; treward � effort(48) = 12.27, p, 0.0001; Fig. 2D).

An energization signal in the rate of pupil change
We then investigated whether pupil change rate contained infor-
mation correlated with choice outcome, over and above the
known effects of reward and effort. To this end, we added pupil
measures to the standard logistic regression of choice (Fig. 2B).
This extended regression (Fig. 2E) replicated the effects of
reward and effort (N= 49; adjusted R2 M=0.65, SEM=0.018;
treward(48) = 6.56, p, 0.0001, Cohen’s d=1.60; teffort(48) = �7.39,
p, 0.0001, Cohen’s d= 1.91), and revealed a significant reward-
by-effort interaction, treward � effort(48) = �2.41, p=0.019,
Cohen’s d=0.79. In this extended regression, we also accounted
for variables including RT (tRT(48) = �3.40, p=0.0013, Cohen’s
d= 8.66), PBL (tPBL(48) = 0.25, p=0.80, Cohen’s d= 0.25), and
many others (tpupil_rate(48) = �1.02, p=0.31, Cohen’s d= 0.68;
treward � PBL(48) = 0.22, p= 0.82, Cohen’s d= 0.22; teffort � PBL(48) =
�0.31, p=0.75, Cohen’s d= 0.32; treward � effort � PBL(48) = �0.61,
p=0.54, Cohen’s d= 0.54; treward � pupil_rate(48) = �0.78, p= 0.44,
Cohen’s d= 0.55; treward � effort � pupil_rate(48) = 1.21, p= 0.23,
Cohen’s d=0.83; tconstant(48) = 4.37, p=0.0001, Cohen’s d=0.93).
This extended regression had a higher model-fit (adjusted R2)

than the standard regression that only contained reward, effort,
and reward-by-effort, t(48) = 5.35, p, 0.0001, Cohen’s d= 0.69,
suggesting that pupil measures together with other task parame-
ters such as reward, effort, and RT, can explain choice above and
beyond the standard option attributes (reward and effort).
Crucially, the extended regression revealed a significant interac-
tion between effort level and pupil rate, teffort � pupil_rate(48) =
2.04, p= 0.04, Cohen’s d=1.74.

To examine whether this interaction effect reflects stronger
effort representations for “yes”. “no” choices (i.e., energization)
or for “no” . “yes” choices (i.e., a cost signal, see Fig. 1A), we
directly examined the slopes of the regressions of pupil signals
on anticipated effort levels during both types of choice outcomes.
Averaged across both types of outcomes, the regression slope
was indeed positive (one-sample t test on averaged effort slopes
across choice: t(48) = 3.24, p=0.002) but importantly, it was sig-
nificantly steeper when participants chose the effortful option
compared with when they chose the non-effortful option, effort-
by-choice interaction, t(48) = 2.59, p=0.012, Cohen’s d=0.371
(Fig. 3C). Thus, the pattern of effort representations in pupil sig-
nal during “yes” and “no” choices is consistent with the scenario
that arousal system engagement during choice relates to energ-
ization for the future challenge that is being pondered.

Neural responses in dorsomedial prefrontal cortex (dmPFC)
also reflect energization
To identify neural processes that may similarly reflect energiza-
tion, we then examined BOLD responses during the decision
process. Analysis of the brain responses time-locked to the pre-
sentation of the options (stimulus onset) revealed a significant,
and structurally similar, effort-by-choice interaction in dmPFC
(positive modulation; covering both supplementary motor area
(SMA) and anterior cingulate cortex (ACC); peak MNI space
coordinates: [�3, 18, 45]; t value, 5.32; extent: 301 voxels;
p , 0.0001 FWE; Fig. 3B, GLM1). No other brain areas showed
signals that survived whole-brain FWE correction (Table 1). ROI
analysis within the dmPFC functional cluster illustrates that the
activity related to anticipated effort strength is indeed higher in
trials where the effortful option was selected compared with fore-
gone [“yes” . “no” decisions (Fig. 3D, GLM2 solely for illustra-
tion); see Table 1, effort-by-choice (positive modulation), for the
relevant statistics]. Thus, similar to the pupil signals described
above, BOLD activity in dmPFC also shows anticipatory effort
signaling in a way that is consistent with energization to over-
come future physical challenges. This effort-by-choice effect in
the dmPFC remains significant (and reveals a highly overlapping
suprathreshold cluster) in a control analysis where we simultane-
ously added regressors for reward-by-choice and RT-by-choice
interaction (GLM3).

Energization signals in pupil and dmPFC relate to behavioral
effort sensitivity
To investigate whether the energization signals in pupil and
dmPFC activity are indeed behaviorally relevant, we tested
whether the difference in effort coding (slope across effort levels)
between “yes” and “no” responses was associated with individual
differences in how the anticipated degree of effort affected choice
outcomes. For this analysis, we performed for each individual a
simple logistic regression of choice on the associated effort levels
(transformed such that a positive slope means higher likelihood
to forego the option with increasing effort). The individual slopes
of these regressions, our behavioral measure of effort sensitivity,
were indeed positively correlated with the strength of each
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Table 1. MNI coordinates and statistics for GLM1: effort-by-choice, choice, reward, effort, pupil rate, and RT modulation

MNI coordinates

Effect Brain region k t value p value x y z

Effort-by-choice (positive modulation) L superior medial gyrus 301 5.324 ,0.0001 �3 18 45
L ACC 4.786 �6 27 27

Effort-by-choice (negative modulation) L postcentral gyrus 4085 6.382 ,0.0001 �33 �42 57
R superior frontal gyrus 6.248 24 �6 66
R postcentral gyrus 6.242 30 �42 57
L middle temporal gyrus 147 4.688 0.009 �60 �30 �3
L middle temporal gyrus 4.151 �57 �51 �6

Choice (effortful . non-effortful) L middle frontal gyrus 146 4.749 0.02 �30 30 36
Choice (non-effortful . effortful) No suprathreshold clusters
Reward (positive modulation) L caudate nucleus 1320 7.417 ,0.0001 �9 9 0

R IFG (p. orbitalis) 6.752 36 21 �9
L IFG (p. orbitalis) 5.662 �30 24 �3
R middle frontal gyrus 464 7.237 ,0.0001 39 21 27
L inferior parietal lobule 1046 6.61 ,0.0001 �36 �63 51
L precuneus 4.949 �3 �66 42
L middle occipital gyrus 4.948 �30 �78 27
R middle temporal gyrus 211 5.767 0.003 60 �30 �6
R middle temporal gyrus 3.781 57 �9 �18
R fusiform gyrus 900 5.57 ,0.0001 24 �81 �9
L fusiform gyrus 5.044 �24 �78 �9
L cerebelum (Crus 2) 5.018 �12 �81 �27
L middle temporal gyrus 149 5.489 0.012 �60 �21 �15
L superior frontal gyrus 478 5.06 ,0.0001 �21 36 48
L IFG (p. triangularis) 4.857 �39 21 24
L middle frontal gyrus 4.756 �36 12 57
L superior orbital gyrus 115 5.021 0.03 �30 51 3
R inferior parietal lobule 597 4.922 ,0.0001 33 �72 24
R inferior parietal lobule 4.839 39 �60 48
R middle temporal gyrus 4.706 54 �48 12
L ACC 167 4.484 0.007 �6 42 12

Reward (negative modulation) No suprathreshold clusters
Effort (positive modulation) R rolandic operculum 151 5.503 0.008 48 3 12

L linual gyrus 365 4.482 ,0.0001 �15 �84 3
L middle occipital gyrus 4.352 �30 �90 15
L calcarine gyrus 4.073 3 �75 15
R calcarine gyrus 117 4.313 0.022 30 �69 15

Effort (negative modulation) No suprathreshold clusters
Pupil rate (positive modulation) R precuneus 8334 7.993 ,0.0001 6 �78 42

L calcarine gyrus 7.485 �3 �90 0
R superior frontal gyrus 1081 6.774 ,0.0001 21 �9 69
R middle frontal gyrus 6.639 45 �9 57
L posterior-medial frontal 6.041 �18 �12 72
R temporal pole 307 6.500 ,0.0001 54 15 �6
R insula lobe 4.806 36 9 12
L rectal gyrus 287 5.715 ,0.0001 �15 12 �9
R caudate nucleus 4.519 9 6 3
R olfactory cortex 4.220 21 9 �15
L temporal pole 225 4.854 0.001 �57 9 �3
L IFG (p. opercularis) 4.283 �42 9 15
L IFG (p. orbitalis) 3.563 �30 27 �3
R superior temporal gyrus 138 4.600 0.013 57 �39 27

Pupil rate (negative modulation) L middle temporal gyrus 123 5.914 0.02 �51 �36 �3
L inferior temporal gyrus 3.581 �60 �12 �21
L angular gyrus 196 5.628 0.003 �54 �63 36
L superior medial gyrus 280 5.168 ,0.0001 �6 48 45
R superior medial gyrus 4.652 3 30 60
L middle frontal gyrus 96 4.703 0.044 �33 24 51

RT (positive modulation) L cuneus 273 7.335 0.001 3 �93 24
R cuneus 6.818 6 �84 42
R paracentral lobule 6.657 6 �48 75
R IFG (p. orbitalis) 219 5.795 0.003 45 36 0

RT (negative modulation) R fusiform gyrus 11871 �14.006 ,0.0001 36 �75 �9
L fusiform gyrus �12.751 �36 �69 �9
L middle occipital gyrus �11.346 �36 �87 6

All effects are from t tests; p values are at cluster-level FWE correction.
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individual’s effort-by-choice effect in both
pupil rate and dmPFC activity (taken
from the ROI analysis), robust regressions
bpupil_rate(47) = 0.70, p = 0.043; bdmPFC(47) =
3.56, p = 0.038; Fig. 3E,F). This effect does
not seem to be driven by the precise form
of the effort-sensitivity measure, as we
found both energization signals to be pos-
itively related also with the computation-
ally-derived parabolic effort discounting
term (see computational modeling; robust
regressions, bpupil_rate(47) = 0.036, p = 0.07;
bdmPFC(47) = 0.304, p = 0.001). Thus, sub-
jects with higher effort sensitivity (whose
overall choice was more strongly affected by
increasing effort) indeed showed, in both pu-
pil rate and dmPFC activity, steeper effort
coding when the effortful option was selected
compared with when it was foregone.
Therefore, the energization responses in pupil
rate and the brain indeed appear to be rele-
vant for guiding choices.

Consistent with neural processes that
may reflect cost signals (stronger effort cod-
ing in “no” . “yes” choice outcomes), we
found extensive suprathreshold clusters for a
negative modulation of the effort-by-choice
interaction, with the peak activation in the
bilateral postcentral gyrus (Table 1). How-
ever, the cost signals extracted from this post-
central gyrus region do not show evidence of
any relation with the behavioral measure of
effort sensitivity, bpostcentral(47) = �0.033,
p=0.166. These findings suggest that both
accounts of effort signaling (energization and
cost) fit brain activity patterns in different
brain regions, but in our dataset, only the
energization signals in dmPFC relate to
effort-based choice behavior.

Energization effects in pupil rate are
independent of reward, net value, decision
difficulty, tonic arousal, or choosing
against the default option
A number of other effects in the pupil signal
might be confounded with the energization
signal in pupil rate. Here, we describe a series
of control analyses that address each of the
potential confounds one by one (Fig. 4).
First, it is theoretically possible that the effects
we observed in pupil rate reflect differences
in reward or difficulty level of trials where
effort was accepted versus rejected. Indeed,
increases in pupil size have been observed for
rewarding stimuli (Schneider et al., 2018) and
trials that require greater cognitive control
(van der Wel and van Steenbergen, 2018). In
some cases, high-effort trials may indeed be
associated with high rewards, hence making
the decision to either select or forego the
effortful option more difficult. Our behavioral
results had already contradicted these alterna-
tive explanations, since they were derived

Figure 4. The energization signal in pupil rate is independent of value and choice difficulty, relates only to effort (not
reward), and is only evident in phasic (not tonic) arousal. A–C, Control analyses replicating the pupil-rate effects reported
in Figure 3 while regressing out (one at a time) the effect of reward (A), RT (B), and choice difficulty (denoted dSV; C).
These analyses establish that the effort-by-choice pupil-rate effects are not confounded by reward and choice difficulty.
Panels D, E show selectivity analyses to rule out reward effects on pupil rate (D) and effort-by-choice interaction effects
on tonic arousal (pupil baseline; E). The absence of effects in the selectivity analysis confirms the specificity of our find-
ings for effort-by-choice signals and phasic arousal as measured in pupil rate. First column, Dots with error bars represent
means6 1 SEM. Lines are linear fits of the means [using the MATLAB polyfit(x,y,1) function]. Middle column, Boxplots
display the median (central line), 25th and 75th percentiles (bottom and top edges), and non-outlier low and high
extreme values (bottom and top error bars). Blue lines show subjects whose effort slope is higher in effortful choice than
in non-effortful choice, gray lines show subjects who show the opposite effect. Symbols indicate significance levels
between two conditions: star for p, 0.001, triangle for p, 0.01, diamond for p, 0.05, ns for p. 0.05. Right col-
umn, Each data point represents a subject; p values represent significance level from robust regressions. rew=reward;
dSV=absolute delta subjective value; resid= residual.
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with statistical models that accounted for any variance associated
with reward levels and RT (an indirect proxy for decision diffi-
culty; Kiani et al., 2014). Nevertheless, to show more directly that
the energization effect is clearly independent of reward and diffi-
culty, we repeated the pupil analyses depicted in Figure 3 but now
on the residuals of pupil rate after partialing out the effect of
reward, RT, and choice difficulty (dSV; see computational model-
ing; orthogonalization of pupil rate relative to these variables, one
at a time). Once again, these control analyses revealed the effects
already shown in top row of Figure 3, namely, (1) stronger effort
signals in residual pupil rate when participants accepted versus
rejected the effortful option; tresid_reward_out(48) = 2.59, p=0.012;
tresid_RT_out(48) = 2.53, p=0.014; tresid_dSV_out(48) = 2.56, p=0.013;
and (2) significantly positive associations between the pupil
energization effect (effortful . non-effortful) and the be-
havioral effort-sensitivity parameter (robust regression
bresid_reward_out(47) = 0.71, p = 0.043; bresid_RT_out(47) = 0.68,
p = 0.048; bresid_dSV_out(47) = 0.71, p = 0.043; Fig. 4A–C).

Furthermore, to rule out an alternative explanation that the
pupil is merely coding for any option attribute that participants
experienced as result of their choice (in our case the other option
attribute was reward), we replaced these analyses with a reward-
by-choice interaction (instead of effort-by-choice). To rule out
the alternative explanation that pupil rate in this experiment
could be simply signaling value, we tested for a reward-by-choice
effect in pupil rate (Fig. 4D), revealing a non-significant choice
difference (effortful vs non-effortful) of the reward slopes, t(48) =
0.22, p=0.82. An analogous behavioral measure for reward sen-
sitivity was not significantly associated with the reward-by-
choice effect either, robust regression b(47) = 0.54, p = 0.22. We
also ruled out that our results might reflect potential correlations
of pupil signals with net value (reward subjectively subtracted by
effort). Since SV is entirely confounded with choice, we could not
run SV-by-choice control analysis (as we did with reward-by-
choice). Instead, we calculated for each subject the Spearman’s
correlation between pupil rate and computationally derived SV of
the effortful option. Across all subjects, the mean Spearman’s cor-
relations were not significantly different from zero, t(48) = 0.11,
p=0.91; M = �0.001, SD=0.11. Thus, the energization effect we
identified in the pupil rate is independent of reward value, net
value, decision difficulty, or a reward-by-choice interaction. These
results confirm that pupil rate indexes anticipated energization, by
signaling effort amounts one has committed to accept. Moreover,
our results suggest that these energization signals reflect different
neural mechanisms than those underlying conflict-driven pupil
dilations and behavioral adjustments (Ebitz and Platt, 2015).

To ascertain that our novel effect is independent of another
aspect of the arousal system, namely ongoing tonic arousal, we
tested how pretrial PBL may relate to choice behavior. First, we
directly tested for an effort-by-choice effect in PBL (Fig. 4E),
revealing a non-significant choice difference (effortful vs non-
effortful) of the effort slopes in PBL, t(48) = 0.45, p= 0.65. The
behavioral measure of effort sensitivity was not significantly
associated with the effort-by-choice effect either, robust regres-
sion b(47) = 0.35, p = 0.39. These results confirm that the choice-
modulated effort representations are primarily expressed in how
fast the pupil dilates but not in endogenous pretrial pupil fluctua-
tions. Second, we examined choice proportions as a function of
PBL median/tertile/quartile splits. We did not find any choice dif-
ferences across PBL bins, Fmediansplit = 0.004, p= 0.94; Ftertilesplit =
0.53, p= 0.58; Fquartilesplit = 1.13, p= 0.33 (Fig. 5A). We then ran a
logistic regression of choice on PBL, RT, reward, effort, and the
interactions. We found no effect of PBL or any interactions with

PBL on choice, tPBL(48) = 0.987, p=0.32; treward � PBL(48) = 0.5,
p=0.82; teffort � PBL(48) = �0.9, p=0.36; treward � effort � PBL(48) =
�1.12, p=0.26; other effects: tconstant(48) = 4.31, p=0.0001; tRT(48) =
�2.16, p=0.035; treward(48) = 6.43, p, 0.0001; teffort(48) = �7.91,
p, 0.0001; treward � effort(48) = �2.66, p=0.01; treward � RT(48) =
�1.93, p= 0.05; teffort � RT(48) = 4.18, p= 0.0001; treward � effort �
RT(48) = 2.32, p = 0.02 (Fig. 5B). Next, we inspected whether
regressing out influences of previous trial from PBL would
improve regression of choice of the current trial. To do this, we
first ran a linear regression of the current trial’s PBL with reward,
effort, choice, RT, and ITI of previous trial (t-1) as regressors.
Then we took the residual variance of this regression and used it
as a regressor together with RT, reward, effort, and reward-by-
effort interaction to fit choice of current trial. This analysis shows
no significant effect of the residual PBL (PBLp) on explaining
choice on current trial, tresidPBL(48) = �0.02, p=0.97, other effects:
tconstant(48) = 25.91, p, 0.0001; tRT(48) = �3.26, p=0.002; treward(48)
= 14.83, p, 0.0001; teffort(48) = �16.77, p, 0.0001; treward � effort(48)

= 2.61, p=0.012 (Fig. 5C). Together, these control analyses fail to
show any contribution of tonic arousal to effort choice, thus con-
firming the specificity of the energization effect for phasic arousal
responses during the decision process (within-trial).

Finally, another potential confound is the observation that
the pupil dilates more when participants choose an option that
goes against their baseline choice tendency (de Gee et al., 2014),

Figure 5. No effects of endogenous arousal fluctuations on choice rate. A, Choice propor-
tion for the effortful option as a function of pretrial PBL bins. B, Weights of logistic regression
of choice on reward, effort, RT, PBL, and the interactions. C, Weights of logistic regression of
choice on reward, effort, RT, and residual variance of PBL after regressing out influences
from previous trial (t-1). Bar plots display mean6 1 SEM. Symbols indicate significance lev-
els against zero: star for p, 0.001, triangle for p, 0.01, diamond for p, 0.05. c, con-
stant; RT, reaction time; R, reward levels; E, effort levels; PBLp, residual PBL.
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here denoted as the choice-bias effect.
To address this potential confound, we
re-defined decisions as those that were
either consistent (“for”) or inconsistent
(“against”) with the majority of the deci-
sions that participant made, and com-
pared pupil rate for these two choice
outcomes. Extending the effects
reported by de Gee et al. (2014), we
found significantly higher pupil rate
when subjects chose an option that
went against their bias than when they
chose an option consistent with their
bias, t(48) = 5.04, p, 0.0001 (Fig. 6A).
We also replicated the effect using the
measure originally used in de Gee’s
study (absolute pupil dilation), t(48) =
5.95, p , 0.0001; t(17) = 6.28, p ,
0.0001. Taken together, these data show
that the pupil dilates faster in trials
where people were deciding against
their overall bias.

To rule out that this choice-bias
effect confounds the energization effect
we report in the pupil rate, we correlated
the computational bias term (Eq. 2) with
the pupil energization effect [effort b
(choose_effortful minus choose_non-
effortful)]. This revealed no significant
relation, b(47) = 0.73, p=0.4, arguing for
independence of the two effects. We also
found that the size of the bias-related dif-
ference in pupil rate (comparing trials
with choices “against” . “for” the bias)
did not correlate significantly with the
energization effect in the pupil rate, b(47) =
�0.04, p=0.84 (see Fig. 6B). Thus, both
control analyses demonstrate that the
energization effect in pupil rate is inde-
pendent from the previously-reported
choice-bias effects.

Energization effects in dmPFC are
independent of neural
representations of other task
parameters
We also made sure that the observed energization effects in the
dmPFC are indeed novel and separate from known neural corre-
lates of effort-based decisions. To this end, we had included the
effort-by-choice interaction as a regressor together with main
effects of choice, reward, effort, pupil rate, and RT in the same
model without any orthogonalization (see Materials and Methods).
This allowed us to identify neural representations that are unique
to each of the task parameters, ensuring that the effort-by-choice
interaction cannot be explained by any combination of the other
factors and allowing us to inspect our data for several known neu-
ral representations active during effort-based decisions (Fig. 7).

Consistent with previous demonstrations of the role of the
dorsolateral prefrontal regions in executive function (Grueschow
et al., 2020), we observed higher activity for choosing the effort-
ful options compared with the non-effortful options in the left

medial frontal gyrus. We also replicated previous findings of
reward-related activity increases in the brain valuation system
(Bartra et al., 2013; Burke et al., 2013), with peak activity in the
ventral striatum, and effort-related activity decreases in the
insula (Prévost et al., 2010). Moreover, we found slower button
responses to be associated with higher activity in inferior frontal
gyrus and faster responses to be associated with higher activity in
a frontoparietal network that is often implicated in task engage-
ment (Dosenbach et al., 2008; Cole et al., 2013). Finally, we found
faster pupil rate to be associated with lower amplitudes of BOLD
responses to the presentation of the stimuli in the middle tempo-
ral gyrus. By contrast, faster pupil rate was associated with higher
BOLD amplitudes in a large-scale network within the occipital
cortex (extending to precuneus), consistent with established
involvement of this network in visual processing (Goodale and
Milner, 1992). Thus, our brain results show that the energization
signal in dmPFC is a conceptually new choice signal that is clearly
distinct from previously observed effects of reward, effort, choice

Figure 6. Energization signal in pupil rate is independent of choice bias effect. Control analysis extending the effects reported in de
Gee et al. (2014) that pupil dilates faster when participants choose an option against their default bias, denoted as choice-bias effect (A).
The energization effect depicted in Figure 3 is not related to the choice bias effect (B). A, Boxplots display the median (central line), 25th
and 75th percentiles (bottom and top edges), and non-outlier low and high extreme values (bottom and top error bars). Blue lines
show subjects whose effort slope is higher in effortful choice than in non-effortful choice, gray lines show subjects who show the oppo-
site effect. Symbols indicate significance levels between two conditions: star for p, 0.001, triangle for p, 0.01, diamond for
p, 0.05, ns for p. 0.05. B, Each data point represents a subject; p value represents significance level from robust regression.

Figure 7. Neural representations of choice, reward, effort, RT, and pupil rate. These plots show whole-brain statistical para-
metric maps for neural representations of choice (effortful . non-effortful), reward, effort, RT, and pupil, p, 0.05 FWE cor-
rected. These established effects were derived with the same statistical model also used to identify the energization signals
displayed in Figure 3 (GLM1); the latter signal is therefore specific and unrelated to these classic effects reported in the litera-
ture. Top right, Group-averaged bivariate Spearman’s correlations between regressors in GLM1.
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outcome, RT, and pupil signals (all reported effects survive whole-
brain FWE correction; full statistics in Table 1).

Controlling for luminance-driven pupil response
Finally, to rule out brightness-induced pupil dilation and to vali-
date our selection of theoretically isoluminant stimuli, we
recorded pupil response during a control experiment at the end
of the fMRI scan. Here, the same participants received similar
visual stimulation as in the main experiment, but without in-
formative cues or any need for making a choice. Participants
were first presented with the same fixation screen (Fig. 2A,
screen with XXX) with letters written in green for 3 s. This was
followed by the same screen but with all Xs replaced by Ys, and
in either one of the sides (counterbalanced), the letters were
printed in either purple or blue ink (to mimic the visual change
found in the main experiment) for another 3-s period. All three-
color hues are theoretically isoluminant as described in Materials
and Methods. There were 20 trials for each side and each hue,
summing to 80 trials. We confirm that indeed the hue selection
in a task without any reward-effort decision-making did not
evoke meaningful luminance-driven pupil variance (Fig. 8).
First, the scale of pupil response variance in the main task was at
least 6 times larger than that in the control experiment. Second,
if any, the deflection in pupil response to cue onset was negative,
as opposed to that found in the main task. Third, this control
experiment revealed no difference in averaged pupil size across
the entire stimulus duration between the two isoluminant hues
(purple and blue) used in the main task, paired-samples t test:
t(46) = 0.29, p= 0.76 (two missing data). These results confirm
that the pupil dilation observed in the main task was primarily
driven by meaningful cognitive considerations provoked by the
choice task, in this case by effort-reward tradeoffs, and not by
task-irrelevant physical differences in the stimuli.

Discussion
Consistent with the energization scenario, our results show that
during deliberation, effort is represented by the peripheral (as
measured via rate of pupil dilation) and central nervous systems
(selectively in dmPFC) in a way that may relate not to a “cost”
but rather to simulating the energization required for the action.
Importantly, our results control for general arousal effects that
could have been driven by value, difficulty, choice bias, or tonic
arousal, thereby emphasizing the functional specificity of this
energization signal.

Our results emphasize that phasic
pupil-linked arousal is related to chosen
effort amounts. This effect in pupil rate
occurred in the period leading up to the
choice during which participants focus
on the choice-relevant information to
compute decision values. Our results
therefore suggest that for an extended
period before the overt response, the
brain appears to focus on stimulus
aspects that are most relevant for the
upcoming decision (here the effort
that would need to be exerted in the
future). Note that conceptually simi-
lar processes have been proposed in
the value domain, where several stud-
ies have found results consistent with
anticipatory processing of the value
for the to-be chosen option (Shimojo
et al., 2003; Van Slooten et al., 2018).

The case is less clear-cut for our fMRI results, which do not
have the same fast temporal precision as the pupil signal and
therefore cannot be unambiguously attributed to the time
periods before or after choice. However, since the pupil and
fMRI effects show very similar patterns and both correlate
with the same behavioral measure, it is very likely that the
fMRI results in dmPFC similarly reflect anticipatory energ-
ization before the overt response. It could be interesting in
future studies to provide more direct evidence for a role of
dmPFC in prechoice energization, for example with time-
resolved brain stimulation in the period leading up to the
overt response [as done, e.g., by Murd et al. (2020) in the per-
ceptual domain].

What neural mechanisms may lie at the heart of this link
between pupil and choice? While the temporal sluggishness of
the BOLD signal makes it difficult to provide a conclusive an-
swer, we outline two possible causal mechanisms based on recent
advances. First, simulating energization could trigger a “bottom-
up” arousing influence that pushes decisions toward effort. This
is consistent with the widely held view (Glimcher, 2009) that the
strength of representations for decision attributes directly influ-
ence choice, for instance, it has been shown that intensifying
encoded rewards through simulation of future events is linked
with decisions that promote higher long-term pay-offs (Peters
and Büchel, 2010; Benoit et al., 2011; Dassen et al., 2016; Bulley
and Gullo, 2017) and increases prosocial behavior (Gaesser et al.,
2018). Given this assumption, the arousal signal we observed
might either down-modulate anticipated effort costs or shift the
decision rule (de Gee et al., 2014), implying that a strong arousal
signal could bias a decision toward accepting the physical chal-
lenge. One plausible bottom-up pathway includes feedforward
transmission by phasic LC activity to ACC via ascending projec-
tions to prefrontal areas (Porrino and Goldman-Rakic, 1982;
Chandler et al., 2013; Schwarz et al., 2015). Nervous-system read-
out of autonomous arousal could provide a signal for the orga-
nism that it is indeed ready to exert effort, instantiating an
additional mechanism to bias choices.

Second, simulated energization could be a by-product of
choice, implying a top-down influence from the cortical decision
circuit to arousal. Decision outcomes could be relayed as de-
scending input from the PFC into LC. Recent evidence in human
fMRI demonstrates that dmPFC is functionally coupled with LC
in a behaviorally-relevant way: the study showed that the

Figure 8. Pupil during main versus control experiment. A, Pupil time course in main and in control task for stimuli in blue
and purple ink, subtracted by PBL. Inset, (B) Zoomed-in pupil time course and (C) averaged pupil size across 3 s, showing no
difference in pupil responses between blue and purple. Bar plots display mean6 1 SEM.
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strength of dmPFC-LC functional coupling is related to the level
of individual cognitive control (Grueschow et al., 2020).
Similarly, ACC/dmPFC activity has been found to be coupled
with pupil diameter in non-human primates during cognitive
control (Ebitz and Platt, 2015). Moreover, it has been shown that
the timing of pupil modulation by ACC precedes that by LC
(Joshi et al., 2016). Existing tracing data in rodents and monkeys
also show afferent PFC projections as the main direct cortical
influence on LC (Dalsass et al., 1981; Arnsten and Goldman-
Rakic, 1984). Intracranial stimulation in human ACC leads to
subjective accounts of changes in arousal states, coupled with the
anticipation of challenges and a strong motivation to overcome
obstacles (Parvizi et al., 2013). Taken together, these observations
are consistent with the idea of a top-down influence from
dmPFC to the NA arousal system (Aston-Jones and Cohen, 2005;
Grueschow et al., 2020) that may serve to transmit information
about the commitment to exert effort, thus resulting in speeded
upregulation of arousal to prepare for the future challenge.
Future studies may need to employ neuroimaging methods with
higher temporal resolution to disambiguate these two hypotheses.
Such studies may also employ pharmacological manipulation to
increase NA tone activity, bio/neuro-feedback with pupil/LC ac-
tivity, and mental simulation training (Steinmetz et al., 2018) to
increase arousal in a bottom-up fashion.

In our study, future efforts were signaled by the pupil-linked
arousal system and dmPFC activity during choices that preceded
actual exertion by ;1 h. Why would the brain energize in situa-
tions when it seems unnecessary? In line with the memory-based
simulation account of decision-making (Wimmer and Shohamy,
2012; Bornstein and Norman, 2017), we believe that energization
signals may not serve to immediately enhance motor readiness but
rather to simulate, based on prior experiences, to what degree the
organism would be able to take on this challenge in the future (sim-
ilar to how anticipatory reward signals during such experiments
may be used to simulate the pleasure derived from consuming this
reward at a much later time point). That the noradrenergic system
is capable of such simulation, and that this can be read out via pupil
signals, is indicated by several previous studies. For example, it has
been shown that despite constant illumination levels, the pupil
responds to mere imagination of contextual settings that people
have strong experiences with (e.g., mere recall of bright stimuli;
Zokaei et al., 2019). We believe similar experience-related simula-
tions may underlie the pupil effects observed here (Binda and
Murray, 2015), indicating some form of unconscious simulation of
the energization required to take on the challenge in the future.

Our results may also seem at odds with those of monkey stud-
ies employing LC electrophysiology and NA pharmacology, which
clearly showed effort sensitivity in the NA-system only during
force production, but not during cues just moments before the
effort (Varazzani et al., 2015; Jahn et al., 2018). The differences
between our results and these datasets may reflect the very differ-
ent time-periods separating choices from effort execution. As dis-
cussed above, in a paradigm such as ours, the brain may need to
perform a mental estimation of the amount of resources that will
have to be mobilized to make the decision. This kind of simulation
may not be needed, or may even be counterproductive, when deci-
sions and exertions occur within seconds of one another. These
methodological differences are not specific to our case but are
rather a reflection of the state of the literature. Many monkey stud-
ies presented forced or choice cues that directly preceded actual
exertions, whereas many human studies presented choice cues
involving efforts that are delayed or even hypothetical. We clearly
need studies that systematically investigate how the different time

courses present in these experiments affect effort coding in the
NA arousal system and throughout the brain.

Our results highlight that choices may be jointly guided by
DA and NA systems for reward and effort processing, respec-
tively. Previous effort studies have mainly reported a net value
representation (reward discounted by effort) within the core
brain valuation network (Prévost et al., 2010; Aridan et al., 2019)
and in dmPFC (Prévost et al., 2010; Burke et al., 2013; Klein-
Flügge et al., 2016; Chong et al., 2017; Arulpragasam et al., 2018;
Bernacer et al., 2019). These fMRI results are consistent with ani-
mal data showing reduced willingness to choose a high-effort/
high-reward option when dopamine is depleted (Salamone et al.,
2007) and with the overarching dopaminergic role in motiva-
tional reward processing (Walton and Bouret, 2019). Our data
concur with these studies, showing reward coding within the
brain valuation network (Prévost et al., 2010; Aridan et al., 2019)
and notably NA-linked pupil dilations and dmPFC brain repre-
sentations for physical effort (Kurniawan et al., 2013; Meyniel et
al., 2013; Skvortsova et al., 2014; Zénon et al., 2014; Varazzani et
al., 2015). This potential “partnership” of DA-coding for reward
and NA-coding for effort does not seem to concur with the clas-
sical (but possibly simplistic) view that DA-linked reward proc-
essing is discounted in a subtractive fashion by NA-linked effort
cost representations. We emphasize that our behavioral data and
some aspects of our neural results are in line with previous compu-
tational suggestions that an option is selected based on a reward-
effort trade-off (Fig. 2). However, to our knowledge, prior work in
humans has not examined how arousal-linked effort coding directly
relates to choice. Here, we were able to scrutinize this functional
role using concurrent pupil-fMRI in an effort discounting task. Our
results suggest that NA may play a complementary function to DA.
Future studies may build on our results to further characterize the
interaction between DA and NA, using the pupil rate measure to
quantify energization signals that guide human decision-making.

Variations in pupil-linked arousal states, such as locomotion and
sleeping, are coupled with oscillatory state changes in brain networks
(Takahashi et al., 2010) that are thought to result from noradrenergic
innervation to the cortex (Schwarz et al., 2015). However, there are
also observations that arousal may relate to movement during wake-
fulness and REM sleep, which is guided by cholinergic neuromodu-
latory projections from the basal forebrain to the cortex (Saper et al.,
2010). This raises the concern whether we can truly draw the conclu-
sions that our pupil-linked arousal effects originate from LC-NA
neuromodulation alone. While we cannot fully rule out potential
effects of cholinergic activity, a recent analysis with pupil ac-
tivity and noradrenergic and cholinergic projections demon-
strated that pupil rate in mice is more tightly linked with NA
projections to the cortex, whereas activity in the cholinergic
pathways more closely matched pupil size (Reimer et al.,
2016). Relatedly, a recent pharmacological study using cloni-
dine to upregulate NA signaling in humans shows increased
tonic pupil diameter during task-free intervals (Gelbard-Sagiv
et al., 2018), but unfortunately does not report task-related
phasic pupil rate, or a comparison with cholinergic signaling.
Thus, data from mice generally support the view that our
effects in pupil rate may reflect phasic arousal variations that
most likely originated from NA-LC activity, but more human
studies are needed to replicate these findings.

Our results have relevance for the diagnosis and therapy of
brain disorders with deficits in motivated behavior. The inability
to commit to effort may bring about a cascade of clinical symp-
toms of apathy (Kurniawan et al., 2011; Husain and Roiser, 2018;
Le Heron et al., 2018). Neurocomputational work has identified
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promising phenotyping approaches of motivation disorders;
these reflect key involvement of the frontosubcortical circuitry
and neuromodulatory systems including dopamine, serotonin,
and noradrenaline (Meyniel et al., 2016; Pessiglione et al., 2018;
Berwian et al., 2020). A specific role for noradrenaline is sug-
gested by the finding that deficits in depression, namely fatigue and
loss of energy, are inadequately treated by serotonergic antidepres-
sants, but can significantly improve following administration of
NA (and dopaminergic) agents (Nutt et al., 2007). This highlights
the critical yet overlooked role of NA in motivation regulation
(Moret and Briley, 2011). Chronic exercise in mice increases LC-
NA derived neuropeptide galanin that later conferred stress resil-
ience (Tillage et al., 2020), providing evidence of an adaptive role
of NA-related energization signal. Our study contributes to this lit-
erature, by showing that the pupil-brain arousal system is sensitive
to deliberations regarding future efforts. Future work should thus
incorporate autonomic arousal and noradrenergic systems in
quantitative models of motivation deficits (Pessiglione et al., 2018).
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