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On the Necessity of Recurrent Processing during Object
Recognition: It Depends on the Need for Scene
Segmentation
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Although feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object rec-
ognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the
relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants
(female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations
are increasingly important for segmenting objects from more complex backgrounds. Three lines of evidence show that recur-
rent processing is critical for recognition of objects embedded in complex scenes. First, behavioral results indicated a greater
reduction in performance after masking objects presented on more complex backgrounds, with the degree of impairment
increasing with increasing background complexity. Second, electroencephalography (EEG) measurements showed clear differ-
ences in the evoked response potentials between conditions around time points beyond feedforward activity, and exploratory
object decoding analyses based on the EEG signal indicated later decoding onsets for objects embedded in more complex
backgrounds. Third, deep convolutional neural network performance confirmed this interpretation. Feedforward and less
deep networks showed a higher degree of impairment in recognition for objects in complex backgrounds compared with
recurrent and deeper networks. Together, these results support the notion that recurrent computations drive figure-ground
segmentation of objects in complex scenes.

Key words: deep convolutional neural network; natural scene statistics; object recognition; scene segmentation; visual cat-
egorization; visual perception

(s )

The incredible speed of object recognition suggests that it relies purely on a fast feedforward buildup of perceptual activity.
However, this view is contradicted by studies showing that disruption of recurrent processing leads to decreased object recog-
nition performance. Here, we resolve this issue by showing that how object recognition is resolved and whether recurrent
processing is crucial depends on the context in which it is presented. For objects presented in isolation or in simple environ-
ments, feedforward activity could be sufficient for successful object recognition. However, when the environment is more
complex, additional processing seems necessary to select the elements that belong to the object and by that segregate them
from the background. /
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The efficiency and speed of the human visual system during
object categorization suggests that a feedforward sweep of visual
information processing is sufficient for successful recognition
(VanRullen and Thorpe, 2002). For example, when presented
with objects in a rapid serial visual presentation task (RSVP;
Potter and Levy, 1969) or during rapid visual categorization
(Thorpe et al., 1996), human subjects could still successfully rec-
ognize these objects, with EEG measurements showing robust
object-selective activity within 150 ms after object presentation
(VanRullen and Thorpe, 2001). Given that there is substantial
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Stimuli and experimental paradigm. A, Exemplars of two categories (cat, fire hydrant) from each stimulus complexity condition. Backgrounds were either uniform (segmented,

black), or had low (red), medium (green), or high (blue) CE and SC values. B, Experimental design. On masked trials, the stimulus was followed by a dynamic mask (5 x 100 ms); on unmasked
trials this was replaced by a blank screen (500 ms). Participants were asked to categorize the target object by pressing the corresponding button on the keyboard.

evidence for the involvement of recurrent processing in figure-
ground segmentation (Lamme and Roelfsema, 2000; Scholte et
al., 2008; Wokke et al., 2012), this seems inconsistent with recog-
nition processes that rely on explicit encoding of spatial relation-
ships among parts and suggests instead that rapid recognition
may rely on the detection of an unbound collection of image fea-
tures (Crouzet and Serre, 2011).

Recently, a multitude of studies have reconciled these seem-
ingly inconsistent findings by indicating that recurrent processes
might be used adaptively, depending on the visual input or task.
Although feedforward activity might suffice for simple scenes
with isolated objects, more complex scenes or more challenging
conditions (e.g., objects that are occluded or degraded) may need
additional visual operations (routines) requiring recurrent com-
putations (Seijdel et al., 2020; Groen et al., 2018; Tang et al,,
2018; Spoerer et al.,, 2018; Kar et al., 2019; Rajaei et al., 2019;
Kreiman and Serre, 2020). For objects in isolation or in very sim-
ple scenes, although recurrent computations might still aid effi-
cient recognition during more natural viewing (Kietzmann et al.,
2019), rapid recognition may thus rely on a coarse and unseg-
mented feedforward representation (Crouzet and Serre, 2011).
For cluttered images, recurrent computations become more im-
portant or even necessary as extra visual operations; grouping
parts of the object and segmenting it from its background might
be needed. Similarly, even for simple scenes, recurrent processing

might be used adaptively when the experimental task requires
explicit encoding of spatial relationships among parts (e.g., con-
tour detection, curve tracing, or image completion (Roelfsema et
al., 1999; Bennett et al., 2016; Linsley et al., 2020).

Several studies have already shown that the segmentability of
a natural scene might influence the degree of recurrent process-
ing. For example, Koivisto et al. (2014) reported that masking, a
technique shown to affect mainly recurrent but not feedforward
processing (Fahrenfort et al., 2007), was more effective for
objects that were difficult to segregate. Also in a more recent
study, we showed that natural scene complexity, providing infor-
mation about the segmentability of a scene, modulates the degree
of feedback activity (Groen et al., 2018). However, both studies
did not test for effects of segmentation explicitly and used natural
scenes that were uncontrolled and in which complexity could cor-
relate with other contextual factors in the scene. Therefore, we
here systematically investigated whether scene complexity influ-
enced the extent of recurrent processing during object recognition.
To this end, participants performed an object recognition task
with objects embedded in backgrounds of different complexity
(Fig. 1), indexed by two biologically plausible measures: spatial co-
herence (SC) and contrast energy (CE; Ghebreab et al.,, 2009;
Groen et al., 2013; Scholte et al., 2009). Using these hybrid stimuli,
we combined relevant features of objects in natural scenes with
well-controlled backgrounds of different complexity.
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Figure 2.  Experimental procedure. Sixty-two participants took part in the EEG experiment.
Data from 40 participants were used to perform exploratory analyses. The resulting data (20
participants) were used to confirm our results. For the decoding analyses, five new partici-
pants took part in a separate experiment to characterize multivariate EEG activity patterns
for the different object categories.

In half the trials, we impaired feedback activity with visual
masking. In addition to behavior, we measured electroencepha-
lography (EEG) responses to examine the time course of visually
evoked activity. In addition to human participants, we also inves-
tigated recognition performance in deep convolutional neural
networks (DCNNs), which received visual stimuli identical to
that of our human participants, and performed a five-choice rec-
ognition task.

A convergence of results from behavior, EEG and DCNNs
indicated that recurrent computations were critical for recogni-
tion of objects that were more difficult to segment from their
background. Together, the results support the notion that recur-
rent computations drive figure-ground segmentation of objects
in complex scenes.

Materials and Methods

Subjects main experiment. Forty-two participants (32 females, 18-
35years old) took part in a first EEG experiment. Data from two partici-
pants were excluded from further analysis because of technical problems.
We used this first dataset to perform exploratory analyses and optimize
our analysis pipeline (Fig. 2). Based on this dataset, we defined the time
windows for further evoked response potential (ERP) analyses, electrode
selection, and preprocessing steps. To confirm our results on an inde-
pendent dataset, another 20 participants (13 females, 18-35years old)
were measured. Sample sizes were chosen so that the confirmatory data-
set was comparable to earlier work using similar paradigms (Groen et
al,, 2018; Rajaei et al., 2019). Data from one participant were excluded
from ERP analyses because of wrong placement of electrodes I1 and I12.

Stimuli. Images of real-world scenes containing birds, cats, fire
hydrants, Frisbees, or suitcases were selected from several online data-
bases, including MS COCO (Lin et al., 2014), the SUN database (Xiao et
al, 2010), Caltech-256 (Griffin et al, 2007), Open Images V4
(Kuznetsova et al., 2020), and LabelMe (Russell et al., 2008). These five
categories were selected because a large selection of images was available
in which the target object was clearly visible and not occluded. For each
image, one CE and one SC value was computed using a simple visual
model that simulates neuronal responses in one of the earliest stages of
visual processing. Specifically, they are derived by averaging the simu-
lated population response of contrast filters at the lateral geniculate nu-
cleus across the visual scene (Ghebreab et al., 2009; Scholte et al., 2009;
Groen et al., 2013. Computing these statistics for a large set of scenes
results in a two-dimensional space in which sparse scenes with just a few
scene elements are separate from complex scenes with a lot of clutter
and a high degree of fragmentation.

Together, CE and SC appear to provide information about the seg-
mentability of a scene (Groen et al., 2013, 2018). High CE/SC values cor-
respond with images that contain many edges that are distributed in an
uncorrelated manner, resulting in an inherently low figure-ground
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segmentation. Relatively low CE/SC values, on the other hand, corre-
spond with a homogenous image containing few edges, resulting in an
inherently high figure-ground segmentation (Fig. 1). Each object was
segmented from a real-world scene background and superimposed on
three categories of phase-scrambled versions of the real-world scenes.
This corresponded with low, medium, and high complexity scenes.
Additionally, the segmented object was also presented on a uniform gray
background as the segmented condition (Fig. 1). For each object cate-
gory, 8 low CE/SC, 8 medium CE/SC, and 8 high CE/SC images were
selected, using the cutoff values from Groen et al. (2018), resulting in 24
images for each object category and 120 images in total. Importantly,
each object was presented in all conditions, allowing us to attribute the
effect to the complexity (i.e., segmentability) of each trial, and rule out
any object-specific effects.

Experimental design. Participants performed a five-choice categoriza-
tion task (Fig. 1), differentiating images containing cats, birds, fire
hydrants, Frisbees, and suitcases as accurately as possible. Participants
indicated their response using five keyboard buttons corresponding to the
different categories. Images were presented in a randomized sequence for
a duration of 34 ms. Stimuli were presented at eye level in the center of a
23-inch ASUS TFT LCD display, with a spatial resolution of 1920*1080
pixels, at a refresh rate of 60 Hz. Participants were seated ~70 cm from
the screen so that stimuli subtended a 6.9° visual angle. The object recog-
nition task was programmed in and performed using Presentation soft-
ware version 18.0 (Neurobehavioral Systems). The experiment consisted
of 960 trials in total, of which 480 were backward masked trials, and 480
were unmasked trials, randomly divided into 8 blocks of 120 trials for
each participant. After each block, participants took a short break. The be-
ginning of each trial consisted of a 500 ms fixation period in which partici-
pants focused their gaze on a fixation cross at the center of the screen. In
the unmasked trials, stimuli were followed by a blank screen for 500 ms
and then a response screen for 2000 ms. To disrupt recurrent processes
(Breitmeyer and Ogmen, 2000; Fahrenfort et al, 2007; Lamme et al,
2002), in the masked trials five randomly chosen phase-scrambled masks
were presented sequentially for 500 ms. The first mask was presented im-
mediately after stimulus presentation, and each mask was presented for
100 ms (Fig. 1). The ambient illumination in the room was kept constant
across different participants.

Subjects pattern localizer. Five new participants took part in a sepa-
rate experiment to characterize multivariate EEG activity patterns for
the different object categories. For this experiment, we measured EEG
activity while participants viewed the original experimental stimuli fol-
lowed by a word (noun). Participants were asked to press the button
only when the image and the noun did not match to ensure attention
(responses were not analyzed). A classifier was trained on the EEG data
from this experiment and subsequently tested on the data from the main
experiment using a cross-decoding approach. All participants had nor-
mal or corrected-to-normal vision, provided written informed consent,
and received monetary compensation or research credits for their partic-
ipation. The ethics committee of the University of Amsterdam approved
the experiment.

Deep convolutional neural networks. First, to investigate the effect of
recurrent connections, we tested different architectures from the
CORnet model family (Kubilius et al., 2018), CORnet-Z (feed forward),
CORnet-RT (recurrent), and CORnet-S (recurrent with skip connec-
tions). In CORnet-RT and CORnet-S, recurrence is introduced only
within an area (no feedback connections between areas). In CORnet-S a
skip connection is included so that the result of adding the state to the
input is combined with the output of the last convolution just before
applying a nonlinearity. Recurrent processing in all CORnet models is
different from recurrent processing in the brain. However, compared
with strictly feedforward models, they include and imitate, to a limited
extent, recurrent processing.

Then, to further evaluate the influence of network depth on scene
segmentation, tests were conducted on three deep residual networks
(ResNets; He et al., 2016) with an increasing number of layers, ResNet-
10, ResNet-18, and Resnet-34. Ultra-deep residual networks are mathe-
matically equivalent to a recurrent neural network unfolding over time,
when the weights between their hidden layers are clamped (Liao and
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Human performance on the object recognition task. Performance (percentage correct) on the five-option object recognition task. For masked trials, performance decreased with an

increase in background complexity. Left, Results from the exploratory set are plotted. Right, Results from the confirmatory set are plotted. Error bars represent the bootstrap 95% confidence

interval; dots indicate the average performance of individual participants.

Poggio, 2016). This has led to the hypothesis that the additional layers
function in a way that is similar to recurrent processing in the human
visual system (Kar et al., 2019).

After initialization of the pretrained networks (on the ImageNet
Large Scale Visual Recognition Challenge dataset), the model’s weights
were fine-tuned for our task on images from the MSCoco database (Lin
et al,, 2014), using PyTorch (Paszke et al,, 2019), generating five proba-
bility outputs (for our five object categories). To obtain statistical results,
we fine-tuned each network architecture 10 different times.

EEG data acquisition and preprocessing. EEG was recorded using a
64-channel Active Two EEG system (Biosemi) at a 1024 Hz sample rate.
As in previous studies investigating early visual processing (Groen et al.,
2013, 2018), we used caps with an extended 10-10 layout modified with
two additional occipital electrodes (I1 and 12, which replaced F5 and
F6). Eye movements were recorded with additional electro-oculograms
(VEOG and hEOG). Preprocessing was done using MNE software in
Python (Gramfort et al., 2014) and included the following steps for the
ERP analyses: (1) After importing, data were rereferenced to the average
of two external electrodes placed on the mastoids. (2) High-pass (0.1 Hz,
0.1 Hz transition band) and low-pass (30 Hz, 7.5 Hz transition band) ba-
sic finite impulse response filters were sequentially applied. (3) an inde-
pendent component analysis (Vigario et al., 2000) was run to identify
and remove eye-blink- and eye-movement-related noise components
(mean = 1.73 of the first 25 components removed per participant). (4)
Epochs were extracted from —200 ms to 500 ms from stimulus onset. (5)
Trials were normalized by a 200 ms prestimulus baseline. (6) Five percent
of trials with the most extreme values within each condition were removed,
keeping the number of trials within each condition equal. (7) Data were
transformed to current source density responses (Perrin et al., 1989).

Statistical analysis: behavioral data. For human subjects, choice ac-
curacy was computed for each condition in the masked and unmasked
trials (Fig. 3). Reaction times were not analyzed as participants were
asked to perform the task as accurately as possible and were told that the
speed of their reaction was not important. Differences between the con-
ditions were tested using two-factor (scene complexity: segmented, low,
med, high; and masking: masked, unmasked) repeated measures
ANOVAs. Significant main effects were followed up by post hoc pairwise
comparisons between conditions using Sidak multiple comparisons correc-
tion at & = 0.05. For DCNNG, a nonparametric Friedman test was used to
differentiate accuracy across the different conditions (segmented, low, me-
dium, high), followed by pairwise comparisons using a Mann-Whitney U
test. Behavioral data were analyzed in Python using the following packages:
Statsmodels, SciPy, NumPy, Pandas, (Jones et al, 2001; Oliphant, 2006;
Seabold and Perktold, 2010; McKinney, 2010).

Statistical analysis: EEG event-related potentials. EEG analyses were
conducted in Python, using the MNE software. For each participant, the
difference in ERPs to scene complexity was computed within masked
and unmasked conditions, pooled across occipital and perioccipital elec-
trodes (Oz, POz, O1, 02, PO3, PO4, PO7, PO8). This was done by

subtracting the signal of each complexity condition (i.e., low, medium,
or high) from the segmented condition. Doing so enabled us to investi-
gate differences among low-, medium-, and high-complex scenes regard-
less of masking effects. Based on the exploratory dataset, we established
five time windows by performing f tests on every time point for each
condition and selecting windows in which the amplitude differed from
zero for all complexity conditions (low, med, high). Then, a repeated
measures ANOVA with factor background complexity (low, medium,
high) and masking (masked, unmasked) was performed on the average
activity in these established time windows.

Statistical analysis: EEG—exploratory multivariate classification.
The same preprocessing pipeline was used as for the ERP analyses. To
evaluate how object category information in our EEG signal evolves over
time, cross-decoding analyses were performed by training a support vec-
tor machine classifier on all trials from the pattern localizer experiment
(performed by five different subjects) and testing it on each of the main
experiment conditions. Object category classification was performed on
a vector of EEG amplitudes across 22 electrodes, including occipital (I1,
Iz, 12, O1, Oz, O2), perioccipital (PO3, PO7, POz, PO4, PO8), and parie-
tal (Pz, P1-P10) electrodes. Per condition, decoding accuracy was tested
against chance (20%) and against the other conditions using Wilcoxon
signed rank tests. Given the large number of statistical comparisons, all
p values were corrected for multiple comparisons across the two masking
conditions, four complexity conditions and 151 time points by means of
false discovery rate (FDR) correction at a = 0.01.

Differences in onset latency were compared using Wilcoxon signed-
rank tests. Following the procedure in Rajaei et al. (2019), we defined onset
latency as the earliest time where performance became significantly above
chance for at least three consecutive time points (~11.7 ms). Onset latencies
were calculated by leave one subject out, repeated for N =58 times.

Data availability. Data and code to reproduce the analyses in this arti-
cle are available at https://github.com/noorseijdel/2020_EEG_figureground.

Results

Behavior

During the task, participants viewed images of objects placed on
top of a gray (segmented), low-, medium-, or high-complexity
background. On each trial, they indicated the object category the
scene contained, using the corresponding keyboard buttons. In
half of the trials, the target image was followed by a dynamic
backward mask (5 x 100 ms); the other half of the trials was
unmasked (Fig. 1). Accuracy (percentage correct trials) was com-
puted for each participant. A repeated measures ANOVA on the
exploratory dataset (N = 40), with factors background (seg-
mented, low, medium, high) and masking (masked, unmasked)
indicated, apart from main effects, an interaction effect. Results
indicated that masking impaired performance for objects presented
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Figure 4.  Deep convolutional neural network performance on the object recognition task. Performance (percentage correct) on the five-option object recognition task. Networks were fine-
tuned on the five target categories; top-1 accuracy was computed. For the CORnets (left), performance of the feedforward architecture decreased with an increase in background complexity.
For recurrent architectures, this decrease was less prominent. For CORnet-S, there was no difference between conditions. Error bars represent the bootstrap 95% confidence interval.

on more complex backgrounds stronger than for less complex back-
grounds (F(3117) = 185.6748, p < 0.001). Post hoc comparisons
showed that for masked trials, accuracy decreased for both medium
(tae) = 2.88, p = 0.038 Sidak-corrected) and high (f;0) = 3.84, p =
0.003 Sidak-corrected) complexity condition compared with the
low condition (all other p > 0.203). For unmasked trials, all condi-
tions differed from each other, with an incremental decrease in ac-
curacy for objects presented on more complex backgrounds.
Analysis of the confirmatory dataset (N = 20) indicated similarly,
apart from the main effects, an interaction between masking and
background complexity. For masked trials, there was a larger
decrease in performance with an increase in background complexity
(F(357) = 101.3338, p < 0.001). Post hoc comparisons showed that
for masked trials, accuracy decreased for both medium- and high-
complexity conditions compared with the segmented (t) = 3.47,
p = 0.003 Sidak-corrected; (t;9) = 3.47, p = 0.003 Sidak corrected)
and low conditions (f¢) = 4.23, p < 0.001 Sidak-corrected, (f;9) =
4.31, p < 0.001 Sidak corrected). For unmasked trials, all conditions
differed from each other with the exception of medium and high,
with an incremental decrease in accuracy for objects presented on
more complex backgrounds.

Network performance

Next, we presented the same images to deep convolutional neu-
ral networks with different architectures. For the CORnets (Fig.
4, left), a nonparametric Friedman test differentiated accuracy
across the different conditions (segmented, low, medium, high)
for all architectures, Friedman’s Q(3) = 27.8400, 24.7576,
26.4687 for CORnet-Z, -RT, and -S respectively, all p < .001. A
Mann-Whitney U test on the difference in performance between
segmented and high complexity trials indicated a smaller
decrease in performance for CORnet-S compared with CORnet-
Z (Mann-Whitney U = 100.0, nl = n2 = 10, p < 0.001, two
tailed). For the ResNets (Fig. 4, right), a nonparametric
Friedman test differentiated accuracy across the different
conditions for ResNet-10 and ResNet-18, Friedman’s Q
(3) = 23.9053, 22.9468, for ResNet-10 and ResNet-18,
respectively, both p < .001. A Mann-Whitney U test on the
difference in performance between segmented and high-
complexity trials indicated a smaller decrease in perform-
ance for ResNet-34 compared with ResNet-10 (Mann-
Whitney U = 100.0, nl = n2 = 10, p < 0.001, two tailed).
Overall, in line with human performance, results indicated
a higher degree of impairment in recognition for objects in
complex backgrounds for feedforward or more shallow net-
works, compared with recurrent or deeper networks.

EEG event-related potentials

To investigate the time course of figure-ground segmentation in
the visual cortex, evoked responses to the masked and unmasked
scenes were pooled across occipital and perioccipital electrodes
(Oz, POz, 01, 02, PO3, PO4, PO7, PO8) for each condition.
Although we certainly do not rule out frontal effects and acknowl-
edge that (recurrent) processing through frontal regions contributes
to object recognition (Kar and DiCarlo, 2021; Scholte et al., 2008),
we based our pooling on previous work showing neural correlates
of figure-ground segmentation in these channels (Scholte et al.,
2008; Pitts et al.,, 2011; Wokke et al., 2012; Groen et al., 2018).

Difference waves were generated by subtracting the signal of
each condition from the segmented condition (Fig. 5B,E). Doing
so enabled us to eliminate the effect of masking on the EEG sig-
nal and to investigate differences between low-, medium-, and
high-complex scenes. For each participant, data were averaged
across five time windows based on analyses on the exploratory
dataset (see above, Materials and Methods).

For every time window, a repeated measures ANOVA was
performed on the average EEG amplitude of the difference
waves, with complexity (low, medium, high) and masking
(masked, unmasked) as within-subject factors. As the prepro-
cessing procedure and time point selection were based on ¢ tests
on the exploratory set, we do not report subsequent repeated
measures ANOVA for this dataset. Results on the confirmatory
dataset (Fig. 5D-F) showed no main or interaction effects in the
first time window (92-115ms; Fig. 5F). Critically, differences
among complexity conditions only emerged in time windows 2
and 3 (120-150 ms: F(sq) = 22.87, n** = 0.56, p < 0.001; 155-
217 ms: F(s) = 24.21, nP*" = 0.57, p < 0.001), suggesting a differ-
ential contribution of recurrent processing to object recognition in
varying complexity scenes. In time window 2, there was a main
effect of masking (F,s) = 5.38, 77" = 0.576, p = .03). Only in time
window 4 (221-275ms), an interaction effect of masking and com-
plexity (Fys) = 59.60, %" = 0.07, p < 0.001) started to emerge.

Exploratory: EEG multivariate classification

To further investigate the representational dynamics of object
recognition under different complexity conditions, exploratory
multivariate decoding analyses were performed on the EEG data
from all participants (N = 58; Fig. 6). As compared with the con-
firmatory behavioral and ERP analyses, we used data from all
participants to increase statistical power, and we did not a priori
decide on the testing procedure. To control for response-related
activity (keyboard buttons were fixed across the task), a cross-
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P07, P08) for masked and unmasked trials. Shaded regions indicate SEM across participants. Mask onsets are indicated with thin dashed lines (bottom only). B, Difference waves were gener-
ated by subtracting the signal of each condition from the segmented condition. C, Based on significant time points in the exploratory dataset, five time windows were defined: 92115 ms,
120-150 ms, 155-217 ms, 221275 ms, 279—245 ms). Symbol markers indicate main or interaction effects: asterisk, main effect of condition; diamond, main effect of masking; x sign, interac-

tion effect. D—F, Analyses repeated for the confirmatory dataset.

decoding analysis was performed by training the classifier on all
trials from an independent pattern localizer experiment and test-
ing it on each of the main experiment conditions (see above,
Materials and Methods). Statistical comparisons (FDR corrected
across all time-points, masking conditions and complexity con-
ditions) of the decoding accuracy indicated above-chance decod-
ing for unmasked segmented trials and low trials early in time
(Fig. 6; ~106 and ~110, respectively). For objects on a medium-
complex background, decoding accuracy did not diverge from
chance before ~186ms. For objects on high-complex back-
grounds, there was no successful decoding. Direct comparison of

the decoding accuracy across conditions indicated that decoding
accuracy for the segmented and low conditions was significantly
enhanced compared with to high and medium conditions
(Fig. 6; blue x, high vs segmented; blue dot, high vs low, green x,
medium vs segmented; green dot, medium vs low). Comparison
of the onset latencies (earliest time where performance became
significantly above chance for at least three consecutive time
points) indicated the earliest onset latency for segmented trials,
followed by low and then medium trials (segmented vs low W =
15; segmented vs medium W = 0; low vs medium W = 0; all p <
0.001, two-sided Wilcoxon signed rank). For masked trials,



Seijdel et al. ® Recurrent Computations Drive Scene Segmentation

unmasked

J. Neurosci., July 21,2021 - 41(29):6281-6289 - 6287

masked
x g2 3

— segmented
— low
= med
= high

Time (ms)

Figure 6.

T T
100 200 300 400 500
Time (ms)

Cross-decoding results using the pattern localizer. Decoding object category in EEG signal for masked and unmasked trials with varying complexity. The dotted line represents the

20% chance level, shaded error bars represent the bootstrap 95% confidence interval. Results from the Wilcoxon signed rank tests across chance (20%) are indicated with thick lines at the bot-
tom of the graphs. Symbol markers at the top of the graphs indicate significant differences in decoding accuracy between conditions: blue x, high versus segmented; blue dot, high versus low;
green x, medium versus segmented; green dot, medium versus low. All p values are corrected for multiple comparisons using an FDR of 0.01.

successful decoding for the segmented objects started ~111 ms,
followed by later additional decoding of low-complexity
(186 ms) and high-complexity (257 ms) trials. Again, decoding
accuracy was enhanced for the segmented and low condition
compared with images with a high-complex background.
Comparison of the onset latencies indicated an earlier onset for
segmented trials compared with low trials (W = 0, p < 0.001).
For high trials, the presence of a significant onset (>3 time
points) varied across repetitions, depending on which subject
was left out.

Overall, these findings showed that different objects evoked
reliably different sensor patterns when presented in isolation or
in simple environments within the first feedforward sweep of
visual information processing. Additionally, results indicated
decreased and later decoding for objects embedded in more
complex backgrounds, suggesting that object representations for
objects on complex backgrounds emerge later. Finally, these
findings indicate that object category representations generalized
across tasks and participants. Whether these effects are robust
should emerge from future confirmatory research.

Discussion

This study systematically investigated whether recurrent processing
is required for figure-ground segmentation during object recogni-
tion. A converging set of behavioral, EEG and computational mod-
eling results indicated that recurrent computations are required for
figure-ground segmentation of objects in complex scenes. These
findings are consistent with previous findings showing enhanced
feedback for complex scenes (Groen et al., 2018) and visual back-
ward masking being more effective for images that were more diffi-
cult to segment (Koivisto et al., 2014). We interpret these results as
showing that figure-ground segmentation, driven by recurrent proc-
essing, is not necessary for object recognition in simple scenes, but
it is for more complex scenes.

Effects of scene complexity using artificial backgrounds

In an earlier study using natural scenes, we already showed that
feedback was selectively enhanced for high-complexity scenes,
during an animal detection task. Although there are numerous

reasons for using naturalistic scenes (Felsen et al., 2005; Felsen
and Dan, 2005; Talebi and Baker, 2012), it is difficult to do con-
trolled experiments with them because they vary in many
(unknown) dimensions. For example, SC and CE (measures of
scene complexity) could correlate with other contextual factors
in the scene (e.g., SC correlates with perception of naturalness of
a scene (Groen et al.,, 2013) and could be used as diagnostic in-
formation for the detection of an animal. Additionally, previous
research has shown that natural scenes and scene structure can
facilitate object recognition (Davenport and Potter, 2004; Kaiser
and Cichy, 2018; Neider and Zelinsky, 2006). Results from the
current study, using artificial backgrounds of varying complexity,
replicate earlier findings while allowing us to attribute the effects
to SC and CE and the subsequent effect on segmentability. A li-
mitation of any experiment with artificially generated (or artifi-
cially embedded) images is that it is not clear whether the
findings will generalize to real images that have not been manip-
ulated in any way. Together with the previous findings, however,
our results corroborate the idea that more extensive processing
(possibly in the form of recurrent computations) is required for
object recognition in more complex, natural environments
(Groen et al., 2018; Rajaei et al., 2019).

Time course of object recognition

Based on the data from the exploratory dataset (N = 40), we
selected five time windows in the ERPs to test our hypotheses on
the confirmatory dataset. For our occipital-perioccipital pooling,
we expected the first feedforward sweep to be unaffected by scene
complexity (i.e., low, medium, high). Indeed, amplitudes of the
difference waves (complexity condition, segmented ERP ampli-
tudes) averaged across the selected time windows indicated no
influence of masking or scene complexity early in time (92-
115 ms). The observation that all three difference waves deviated
from zero, however, indicates that there was an effect of segmen-
tation. In this early time window, background presence thus
seems to be more important than the complexity of the back-
ground. This difference could be attributed to the detection of
additional low-level features in the low-, medium-, and high-
complexity condition, activating a larger set of neurons that par-
ticipate in the first feedforward sweep (Lamme and Roelfsema,
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2000). In the second and third time window (120-217 ms), dif-
ferences among the complexity conditions emerged. We inter-
pret these differences as reflecting the increasing need for
recurrent processes when backgrounds are more complex.

Our results are generally consistent with prior work investi-
gating the time course of visual processing of objects under more
or less challenging conditions (Cichy et al., 2014; Contini et al.,
2017; CDiCarlo and Cox, 2007; Rajaei et al., 2019; Tang et al.,
2018). In line with multiple earlier studies, masking left the early
evoked neural activity (<120 ms) relatively intact, whereas the
neural activity after ~150 ms was decreased (Boehler et al., 2008;
Del Cul et al, 2007; Fahrenfort et al, 2007; Koivisto and
Revonsuo, 2010; Lamme et al, 2002; Lamme and Roelfsema,
2000).

Exploratory decoding results corroborated these findings,
showing decreased or delayed decoding onsets for objects em-
bedded in more complex backgrounds, suggesting that object
representations for those images emerge later. Additionally,
when recurrent processing was impaired using backward mask-
ing, only objects presented in isolation or in simple environ-
ments evoked reliably different sensor patterns that our
classifiers were able to pick up (Figs. 5, 6).

Influence of masking on behavior

Based on the strong interaction effect on behavior, it is tempting
to conclude that complexity significantly increases the effect of
masking on recognition accuracy. However, performance on all
unmasked trials was virtually perfect (96-97%), raising concerns
about ceiling effects obscuring the actual variation among these
conditions (Uttl, 2005). Therefore, although masked stimuli
show a decrease in performance along increases in complexity,
based on the current findings we cannot conclude that this is
because of masking (ie., reducing recurrent processes).
Although we do not claim that unmasked segmented, low, me-
dium, or high images are equally difficult or processed in the
same way (we actually argue for the opposite), our results show
that apparently the brain is capable of arriving at the correct an-
swer with enough time. It is hard to come up with an alternative
(more difficult) task without affecting our experimental design
and subsequent visual processing (e.g., stimulus degradation gen-
erally affects low-level complexity; reducing object size or vary-
ing object location creates a visual search task that could benefit
from spatial layout properties). Combined functional magnetic
resonance imaging and EEG results from an earlier study already
showed that for complex scenes only, early visual areas were
selectively engaged by means of a feedback signal (Groen et al.,
2018). Here, using controlled stimuli and backward masking, we
replicated and expanded on these findings. Importantly, results
from both EEG and deep convolutional neural networks sup-
ported the notion that recurrent computations drive figure-
ground segmentation of objects in complex scenes.

Probing cognition with deep convolutional neural networks

One way to understand how the human visual system processes
visual information involves building computational models that
account for human-level performance under different condi-
tions. Here we used deep convolutional neural networks because
they show remarkable performance on both object and scene
recognition (He et al., 2016; Russakovsky et al., 2015). Although
we certainly do not aim to claim that DCNN s are identical to the
human brain, we argue that studying how performance of differ-
ent architectures compares to human behavior could be informa-
tive about the type of computations that are underlying this
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behavior (Cichy and Kaiser, 2019). In the current study, it pro-
vides an additional test for the involvement of recurrent connec-
tions. Comparing the (behavioral) results of DCNNs with
findings in humans, our study adds to a growing realization that
more extensive processing, in the form of recurrent computa-
tions, is required for object recognition in more complex, natural
environments (Groen et al.,, 2018; Tang et al., 2018; Kar et al,,
2019; Rajaei et al, 2019). Here it’s important to note that
although multiple runs of fine-tuning do introduce some var-
iance, the current results rely on a single DCNN instance only.
As shown by Mehrer et al. (2020), different network seeds may
give rise to substantial differences in the network internal repre-
sentations. Additionally in the current study, using different pre-
trained networks, the question remains whether our behavioral
findings are the result of network architecture (recurrent connec-
tions and network depth) and/or network training (optimization).
However, a separate investigation comparing object decoding per-
formance based on the final layer of trained and untrained networks
(J. Loke, N. Seijdel, L. Snoek, R. van de Klundert, M. van der Meer,
E. Quispel, N. Cappaert, and H.S. Scholte, unpublished observa-
tions) indicated a lack of convergence for untrained networks, sug-
gesting that there is no reliable object representation in these layers
and that above-chance performance on our experimental task
requires training. Further analyses, examining the contribution of
different layers within the networks, indicated that layers from
trained networks are better at explaining variance in neural activity
and that untrained networks do capture background complexity
properties (segmentation, scene complexity), but not object
category.

Conclusion

Results from the current study show that how object recognition
is resolved depends on the context in which the target object
appears. For objects presented in isolation or in simple environ-
ments, object recognition appears to be dependent on the object
itself, resulting in a problem that can likely be solved within the
first feedforward sweep of visual information processing on
the basis of unbound features (Crouzet and Serre, 2011). When
the environment is more complex, recurrent processing seems
necessary to group the elements that belong to the object and
segregate them from the background.
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