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Graphical Abstract

1. Non-small cell lung cancer (NSCLC) patients achieving complete pathologic
response (CPR) after neoadjuvant chemoimmunotherapy seem to have a distinc-
tive peripheral blood immune status at diagnosis and surgery.
2. At diagnosis, CPR patients are characterized by a stronger previously induced
immune response with a higher cytotoxic profile and lower levels of inhibitory
cytokines and cells.
3. This exploratory analysis of the NADIM study supports the use of blood as a
valid source for response biomarkers and may serve as a first step to elucidate
response mechanisms to chemoimmunotherapy in NSCLC.
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Abstract
Background: Immunotherapy is being tested in early-stage non-small cell lung
cancer (NSCLC), and achieving higher rates of complete pathological responses
(CPR) as compared to standard of care. Early identification of CPR patients has
vital clinical implications. In this study, we focused on basal peripheral immune
cells and their treatment-related changes to find biomarkers associated to
CPR.
Methods: Blood from 29 stage IIIA NSCLC patients participating in the NADIM
trial (NCT03081689) was collected at diagnosis and post neoadjuvant treatment.
More than 400 parameters of peripheral blood mononuclear cells (PBMCs) phe-
notype and plasma soluble factors were analyzed.
Results: Neoadjuvant chemoimmunotherapy altered more than 150 immune
parameters. At diagnosis, 11 biomarkers associated to CPR were described, with
an area under the ROC curve >0.70 and p-value <.05. CPR patients had sig-
nificantly higher levels of CD4+PD-1+ cells, NKG2D, and CD56 expression on
T CD56 cells, intensity of CD25 expression on CD4+CD25hi+ cells and CD69
expression on intermediate monocytes; but lower levels of CD3+CD56–CTLA-
4+ cells, CD14++CD16+CTLA-4+ cells, CTLA-4 expression on T CD56 cells and
lower levels of b-NGF, NT-3, and VEGF-D in plasma compared to non-CPR. Post
treatment, CPR patients had significantly higher levels of CD19 expression on B
cells, BCMA, 4-1BB, MCSF, and PARC and lower levels of MPIF-1 and Flt-3L in
plasma compared to non-CPR.
Conclusions: Patients achieving CPR seem to have a distinctive peripheral
blood immune status at diagnosis, even showing different immune response to
treatment. These results reinforce the different biology behindCPRandnon-CPR
responses.

KEYWORDS
biomarkers, chemoimmunotherapy, immune cells, neoadjuvant, non-small cell lung cancer

1 INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for 80%–85%
of all lung cancer cases, being the primary cause of cancer-
related death worldwide and the second by incidence.1
Over 30% of NSCLC patients are diagnosed at locally
advanced stage known as stage III.2 Specifically, patients
with resectable stage III disease, which are potentially
curable, are usually treated with multimodal neoadjuvant
treatment, based on chemotherapy and surgery.3 How-
ever, clinical outcomes of current treatments based on
chemotherapy are still discouraging, with complete patho-

logical responses (CPR) near 4%,4 and 2-year overall sur-
vival (OS) rates of 60%.5
Cancer immunology knowledge has remarkably

advanced with the discovery of immune checkpoint
proteins. The immune checkpoint PD-1 in lymphocytes6
and myeloid cells7 binds to PD-L1 in the tumor cells,
leading to immune cell inactivation and tumor escape.8
This has led to anti-PD-1 or anti-PD-L1 antibodies use
against cancer, bringing a new era of treatments known as
immunotherapies.9 The adaptive immune response lead
by T cells plays a major role on antitumor responses10;
however, macrophages,11 natural killer (NK) cells,12 B
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cells,13,14 or NK-T cells15 are also involved in antitumor
responses.
Immunotherapy treatment has become the standard of

treatment for advanced stages and is now being studied
for early and locally advanced stages.16 Recently, the com-
bination of nivolumab (anti-PD-1) and platinum-based
chemotherapy as neoadjuvant treatment for resectable
stage III (NADIM clinical trial, NCT03081689) has shown
63% of CPR for resected patients, and 2-year OS of 90%.17
These results open the possibility of transforming locally
advanced NSCLC to a curable disease in a substantial per-
centage of patients, as CPRmay be predictive of long-term
survival following neoadjuvant therapy.18,19
Consequently, there is a clinical need for predictive

biomarkers to identify such patients achieving CPR, which
could potentially be free of disease after neoadjuvant treat-
ment. Current biomarkers such as PD-L1 tumor propor-
tion score (TPS) and Tumor mutational burden (TMB)
remain controversial in clinical practice for anti-PD-1
monotherapies.20,21 Moreover, their value for combined
chemoimmunotherapy is more limited,22 and its power to
identify patients achieving CPR insufficient.17,23
Thus, additional predictive biomarkers beyond PD-L1

and TMB are required. In this way, an increasing num-
ber of investigations are focusing on the host antitumor
immune response. Accordingly, patients achieving CPR
showed a distinct tumor infiltrating lymphocytes (TILs)
component at surgery evaluation.17 Additionally, an asso-
ciation between TILs24 or peripheral blood mononuclear
cells (PBMCs) characteristics,25,26 with clinical benefit of
lung cancer patients under immunotherapy, has been
described. These differences seem to indicate that CPR
may also be reflected in patient’s immune system at the
peripheral level. This would allow a noninvasive alterna-
tive to tissue biopsy in predicting and monitoring treat-
ment outcomes.
Here, we present the first research study focused on

the composition and phenotypic characteristics of differ-
ent peripheral immune cell subpopulations and plasma
factors inNSCLCpatients receiving chemoimmuneneoad-
juvant therapy, in order to characterize treatment effective-
ness and identify biomarkers of CPR.

2 MATERIALS ANDMETHODS

2.1 Patients and samples

Patients were selected from NADIM clinical trial: neoad-
juvant chemotherapy plus nivolumab in resectable stage
IIIA non-small-cell lung cancer, an open-label, multicen-
ter, single-arm, phase 2 trial.17 All patients with available
peripheral blood sample were included. Peripheral blood

samples from 30 patients at baseline (pretreatment) and
34 patients after three cycles of neoadjuvant treatment
with nivolumab plus carboplatin (posttreatment) were
obtained. Blood samples at both time points were avail-
able for 29 patients. Informed consent for the collection of
research samples and study protocol were approved by the
clinical research ethics committee of Hospital Puerta de
Hierro and the Spanish Lung Cancer Group (SLCG) Board
in accordance with the International Conference on Har-
monization Guidelines on Good Clinical Practice and the
Declaration of Helsinki. Clinical characteristics of patients
with blood sample available for this study are described in
Table S1.Hospitals and patients recruited are listed inTable
S2.
Pathologic response evaluation was carried out as

previously described following international guidelines
recommendations.17,27 We classified patients in complete
pathological response (CPR, 0% of viable tumor cells
in tumor bed or any lymph node tested) and non-CPR
(patientswith any percentage of viable tumor cells in resec-
tion specimens). Patients that did not undergo surgery
were excluded from the pathological response analysis;
however, they were included in comparisons of treatment
effect and correlation analysis. Additionally, PD-L1 TPS
and TMB were retrieved from previous report17 and cor-
related with blood parameters analyzed at diagnosis from
this study.

2.2 Cell and plasma isolation

Peripheral blood was diluted 1:1 in 1640 RPMI (Corn-
ing, NY, USA), and mononuclear cells (PBMCs) were iso-
lated by Lymphoprep (Stemcell, Vancouver, Canada) den-
sity gradient centrifugation and cryopreserved using freez-
ing medium (1:1 RPMI/FBS, Linus, Spain) containing 10%
DMSO (Carl Roth, Germany) until use. Plasma fraction
was collected after density gradient centrifugationwas per-
formed and stored at −80◦C until use.

2.3 Immunophenotyping of PBMCs

Cryopreserved pretreatment and posttreatment PBMCs
were thawed in parallel, washed with 5% FBS in 1× PBS,
and surface stained with CD3-PerCP (clone BW264/56),
CD4-Viogreen (clone REA623), CD8-APCVio770 (clone
BW135/80), CD14-APC (clone Tük4), CD16-Viogreen
(clone REA423), CD19-FITC (clone LT19), CD56-
APCVio770 (clone REA196), CD69-FITC (clone REA824),
CD107a-FITC (clone H4A3), CTLA4-PE (clone BNI3),
PD1-PEVio770 (clone PD1.3.1.3), NKG2D-PE (clone
REA797), NKp44-PEVio770 (clone 2.29) from Miltenyi
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Biotec (Germany) and CD25-PeCy7 (clone M-A251) from
BD Bioscience (NJ, USA). Detection of PD-1 using anti-
PD-1 clone PD1.3.1.3 was almost technically abrogated in
posttreatment samples due to PD-1 binding of nivolumab
as previously described.28 However, percentage of PD-1+
cells and PD-1 MFI in PD-1+ cells was still analyzed in
posttreatment samples to discard possible differences
between groups.
Cells were acquired on aMACS Quant 10 cytometer and

DAPI (ThermoFisher, CA, USA) staining prior acquisition
was used to exclude dead cells during analysis on FlowJo
V10 software. The median number of viable cells after
freezing, thawing, and staining was 93.6%, IQR 91.2–95.2.
A minimum of 100,000 lymphocyte events were recorded.
Expression of surface markers was evaluated by percent-
age of positive cells and median fluorescence intensity
(MFI) using fluorescence minus one (FMO) controls. Gat-
ing strategy for all panels is shown in Figure S1A–F. Flow
cytometry analysis was performed only in paired samples
(29 patients).
Immunophenotyping of circulating NK cells

(CD3–CD56+), T cells (CD3+CD56–), cytotoxic T cells
(CD3+CD8+), helper T cells (CD3+CD4+), T CD56 cells
(CD3+CD56+), B cells (CD3–CD19+), and monocytes
(CD14+) was determined.

2.4 Immunoassays for detecting
cytokines and soluble factors in plasma

Sixteen key soluble factors from plasma were measured
in duplicate using the human immuno-oncology check-
point protein panel (Cat. #HCKPMAG-11K,Millipore,MA,
USA) following manufacturer’s instructions. Plasma lev-
els of 200 cytokines were measured on the same sam-
ples using G-Series HumanCytokine Antibody Array 4000
(RayBiotech, GA, USA) following manufacturer’s instruc-
tions. Cytokine array and soluble factor analysis were per-
formed on all samples.

2.5 Statistical analysis

Raw data generated from flow cytometry and cytokine
analysis is available in Table S3. Nonparametric Wilcoxon
signed rank test was used for analysis of treatment vari-
ation and Mann–Whitney U-test was performed to deter-
mine differences between CPR and non-CPR patients.
Pearson’s chi-square test was used for association between
categorical groups (for baseline characteristics with patho-
logical response). We considered area under the curve
(AUC)>0.70with significant p-value as relevant predictive
biomarker using receiver operating characteristic (ROC)

curve analysis. Relationship between variables was done
by Spearmanťs correlation consideringR>±0.80 as strong
linear correlation with significant p-value. For all statisti-
cal tests, p-value <.05 was considered statistically signifi-
cant; *, **, and *** indicated p-values<.05,<.01, and<.001,
respectively. For p-values between .05 and .1, the numeri-
cal value is included. Because the research was designed
as a discovery study, p-values were not adjusted in order to
maximize the finding of new biomarkers and the genera-
tion of new hypothesis. IBM SPSS Statistics 25 was used for
all statistical analyses. All authors had access to the data
and certify the accuracy of the results presented.

3 RESULTS

3.1 Patient characteristics

No statistical differences on age, sex, smoking status,
histology, and lymph node involvement were observed
according to the degree of pathological response (Table 1).
Patients included in this study showed similar clinical
characteristics to NADIM trial complete cohort (Table S1).
At baseline and prior to surgery, similar proportions of

circulating NK cells (p-value .864), T cells (p-value .845),
CD56+ T cells (p-value .306), B cells (p-value .262), and
monocytes (p-value .124) were found between CPR and
non-CPR patients (Figure S2A). However, deepening into
their phenotype and activation levels, we found significant
differences described below.

3.2 Association of immunocheckpoints
expressed in PBMCs and pathological
response

3.2.1 PD-1 expression on lymphocytes

PD-1 expression and percentages of PD-1+ cells on differ-
ent lymphocytes subsets, as T cells, CD4+ T cells, CD8+
T cells, CD56+ T cells, and NK cells were measured. At
diagnosis, CPR patients showed a higher percentage of PD-
1+ cells compared to non-CPR patients, for all lymphocyte
subsets, reaching to statistically significant differences for
CD4+PD-1+ cells (p-value .045). PD-1+ cells were almost
technically undetectable after initiating the treatmentwith
chemotherapy plus nivolumab (Figure 1A). The percent-
age of CD3+CD4+PD-1+ cells at diagnosis had a predic-
tive value to distinguish CPR and non-CPR patients, with
an AUC of 0.728 (p-value .045) (Figure 1B). No differences
between pathologic response groups were found on MFI
PD-1 expression neither at diagnosis nor after neoadjuvant
treatment (Figure S2B).
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TABLE 1 Baseline characteristics of patients according to pathological response

Total (N = 27) CPR (N = 15) Non-CPR (N = 12)
p-Value (CPR
vs. non-CPR)

Age (years)a 67 (59–72) 69 (60–70) 64 (57.5–72.5) .695
Sexb .756
Male 21 (77.8) 12 (80) 9 (75)
Female 6 (22.2) 3 (20) 3 (25)

Cigarette-smoking historyb .795
Former smoker (≥1 year) 15 (55.6) 8 (53.3) 7 (58.3)
Current smoker 12 (44.4) 7 (46.7) 5 (41.7)

Histologyb .115
Adenocarcinoma 15 (55.6) 9 (60) 6 (50)
Squamous 9 (33.3) 3 (20) 6 (50)
NOS/undifferenciated 3 (11.1) 3 (20) 0

Nodesb .984
N0 7 (25.9) 4 (26.7) 3 (25)
N1 2 (7.4) 1 (6.7) 1 (8.3)
N2 18 (66.7) 10 (66.7) 8 (66.7)

Note: Age, sex, smoking status, histology, and affected lymph nodes comparison between pathological responses groups (CPR, complete pathological response)
and non-CPR using Pearsonťs chi-square test. p-Value of chi-square or Kruskall–Wallis when adequate.
aMedian and interquartile range (IQR).
bN (%).

3.2.2 NKG2D expression on T lymphocytes
and NK cells

When analyzingNKG2D expression, we found that at diag-
nosis, NKG2D expression was higher in CD56+ T cells in
CPR patients compared to non-CPR patients (p-value .012)
and there was a trend for CD8+ T cells (p-value .051) (Fig-
ure 1C). Post neoadjuvant treatment, higher expression of
NKG2D on CD4+ T cells was found in CPR patients (p-
value .017) (Figure 1C). NKG2D expression at diagnosis on
CD3+CD56+NKG2D+ cells showed an AUC of 0.786 (p-
value .012) (Figure 1D).
On the contrary, no significant differences at diagno-

sis or post treatment in the percentage of NKG2D+ cells
for T cells, CD56+ T cells, and NK cells between CPR and
non-CPR patients were obtained. However, a trend toward
higher percentage of CD8+NKG2D+ cells was observed in
CPR patients (p-value .07) (Figure S2C).
Furthermore, we noticed that NKG2D expression

inversely correlate with plasma levels of neurotrophin 3
(NT-3) on CD8 T cells and T CD56 cells, as well as with
vascular endothelial growth factor D levels (VEGF-D) on
T CD56 cells (Figure S3A–D). Lower levels of these factors
and the nerve growth factor beta (b-NGF) were found
on plasma from CPR patients at diagnosis (Figure 1E).
Moreover, these soluble factors can be used as biomarkers
associated to CPR at diagnosis, shown by an AUC of 0.750
(p-value .028) for b-NGF, 0.778 (p-value .015) for NT-3, and

0.728 (p-value .045) for VEGF-D (Figure 1F and Figure
S3F–H).

3.2.3 CTLA-4 expression on lymphocytes

We analyzed CTLA-4+ surface expression on T cells,
CD56+ T cells, NK cells, B cells, and monocytes and,
despite of the scarcity of CTLA-4+ cells in peripheral
blood, significant differences were found on NK cells and
monocytes (Figure 2). We observed lower pretreatment
percentages of CTLA-4+ NK cells (CD3–CD56+CTLA-
4+) in patients with CPR (Figure 2A). Similarly, lower
percentages of CTLA-4+ classical monocytes (p-value
.026) and nonclassical monocytes (p-value .071) were
determined in CPR patients (Figure 2C). At diagnosis,
higher expression of CTLA-4 was found on CD56+
T cells (CD3+CD56+CTLA-4+), but not on T cells
(CD3+CD56–CTLA-4+) in non-CPR patients (Figure 2E).
These three subsets of cells showed an AUC ROC of 0.750
(p-value .028), 0.753 (p-value .026), and 0.844 (p-value
.011), respectively (Figure 2B,D,F).
Summarizing these initial results, our study

describes the relevance of PD-1, CTLA-4, and NKG2D
immunocheckpoints on immune cells subsets and, even
greater, their value as biomarkers associated to complete
pathological response to neoadjuvant chemoimmunother-
apy in lung cancer patients.
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3.3 Association between immune
phenotype of PBMCS and pathological
response

3.3.1 CD56 expression on NK and T cells

CD56 expression was used as a cytotoxic activation marker
in NK and CD56+ T cells. CPR patients had higher lev-
els of CD56 expression on CD56+ T cells at diagnosis, (p-
value .003) and post treatment (p-value .060) (Figure 3A1).

Moreover, the AUC of CD56 expression at diagnosis on
CD56+ T cells was 0.836 (p-value .003). Thus, MFI higher
than 460 relative units predicts, with a 60% sensitivity and
100% specificity, patients achieving CPR. This population
of patients entails one-third of analyzed patients (nine out
of 27) (Figure 3A2).
We did not find any differences in CD56+ T cells and

NK cells percentages, even though CPR patients showed
a trend toward higher CD56+ T cells at diagnosis (p-value
.306) and post treatment (p-value .092) (Figure S2D). In
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addition, CD56 expression on CD56+ T cells was inversely
correlated to b-NGF (p-value .031) shown in Figure S3E.

3.3.2 CD25 expression on CD4 T
lymphocytes

Regulatory T cells (Tregs) were determined selecting
CD4+CD25high cells, as described inmethods (Figure S1B).
At diagnosis, CPR patients had higher levels of CD25
expression onCD3+CD4+CD25high (Figure 3B1). The value
of pretreatment CD25 MFI on regulatory T cells as a
biomarker associated to CPR is shown by an ROC AUC
of 0.758 (p-value .023) (Figure 3B2). Meanwhile, no differ-
ences were seen in percentage of CD3+CD4+CD25hi cells,
at diagnosis or post treatment (Figure S2E).

3.3.3 CD19 expression on B cells

B cells were subdivided, finding a larger size population
named as CD19high, as described in methods (Figure S1B).
Post neoadjuvant treatment, CPR patients have higher lev-
els of CD19MFI on B cells and on CD19high cells post treat-
ment (Figure 3C1). Furthermore, higher posttreatment lev-
els of TNF receptor superfamily member 17 (TNFRSF17;
BCMA) were found on CPR patients (Figure 3D1). On the
contrary, no differences were seen in percentage of B cells
or CD19hi cells at diagnosis or following neoadjuvant treat-
ment for CPR patients or non-CPR patients (Figure S2F).

3.3.4 Monocytes and macrophages
activation

To measure activation of monocytes and macrophages, we
used CD69 expression and levels of different soluble fac-
tors. At diagnosis, only intermediate monocytes were early
activated in CPR patients, showing higher CD69 expres-
sion (p-value .017) (Figure 4A). The use of these activated
intermediate monocytes as CPR biomarker is shown by an
AUC ROC of 0.772 (p-value .017) (Figure 4B).
Moreover, posttreatment cytokine levels related to

immune system activation, TNF receptor superfamily
member 9 (TNFRSF9; 4-1BB) and macrophages function
such as, macrophage colony-stimulating factor 1 (CSF-1;
MCSF), C–C motif chemokine ligand 18 (CCL18; PARC),
Fms-related receptor tyrosine kinase 3 ligand (Flt-3L) and
C–C motif chemokine ligand 23 (CCL23; MPIF-1), seem to
have an association with pathological response. We found
higher levels of 4-1BB,MCSF, and PARC but lower levels of
Flt-3L andMPIF-1 in CPR patients after neoadjuvant treat-
ment (Figure 4C).

3.4 Correlations between immune
phenotype of PBMCs and cytokines

To unravel potential association between immune cell sub-
populations and cytokines, we assessed the correlations
among the described biomarkers and pathologic response.
At diagnosis, there is a positive correlation between

CD19 expression on B cells with CD4+PD-1+ cells (R 0.419;
p-value .024), CD25 expression on Tregs CD4+CD25high (R
0.570; p-value .001), and CD56 expression on CD56+ T cells
(R 0.512; p-value .005) (Figure S4A–C). A positive correla-
tion between CD56 expression on CD56+ T cells and CD25
expression on Tregs (R 0.555; p-value .002) was found (Fig-
ure S4D). Furthermore, NKG2D expression on T cells cor-
relate positively with CD56 expression (R 0.465; p-value
.011) and NKG2D expression (R 0.652; p-value .0001) on
CD56+ T cells (Figure S4E,F).
Following neoadjuvant treatment, we observed a nega-

tive correlation between CD19 expression on B cells and
NKG2D on T cells (R −0.488; p-value .007) and CD56+ T
cells (R −0.565; p-value .001). A positive correlation was
found between NKG2D expression on T cells and CD56+
T cells (R 0.783; p-value .000) (Figure S4G–I).
Nevertheless, focusing on cytokines, on one hand, NT-

3 correlated positively with VEGF-D and Flt-3L, and neg-
atively with PARC and MPIF-1 (Figure S5A–D). Simi-
larly occurred with VEGF-D, as it correlated positively
with b-NGF and Flt-3L and negatively with PARC (Figure
S5E–G).On the other hand, therewas a positive correlation
between PARC and Flt-3L and a negative correlation with
MPIF-1 (Figure S5H,I). Lastly, BCMA positively correlated
with 4-1BB (Figure S5J).
Remarkably, none of the blood parameters analyzed at

diagnosis in this study were associated to basal PD-L1 TPS
or TMB (data not shown).

3.5 Neoadjuvant treatment influence
on immune cells and plasma factors

We also describe the significant effect of chemoim-
munotherapy on immune cells (Table S4A,B) and plasma
factors (Table S5A–C) in all patients and stratifying by
pathologic responses. As previously shown, percentage of
general population T cells, CD4+ T cells, CD8+ T cells,
monocytes, B cells, NK cells, and CD56+ T cells did not
vary with treatment (Figure S2A).
Independently of pathologic response and follow-

ing treatment initiation, a decrease of cells’ percent-
ages was observed for most of the subgroups except
for CD8+PD-1–, CD8+NKG2D–, CD3+CD56+CD16–, and
CD3+CD56+NKG2D–. Moreover, these cells are increased
after treatment only in CPR patients. (Figure 5A).
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However, when looking at the expression of analyzed
markers by MFI, all patients have a slightly decrease
on PD-1 detection on monocytes, T cells, CD4+ T cells,
CD8+ T cells, and NK cells (Figure 5A). Regarding CD8
expression, measured as MFI, there was an increase on
CD8 expression in all patients (p-value .0004). Concerning
CD56, on one hand, its expression on NK cells increased
after treatment in all patients (p-value .002) and this
significance was only maintained in CPR patients (p-value
.031). On the other hand, CD56 expression on CD56+
T cells was increased only in non-CPR patients (p-value
.019) (Figure 5A).
Focusing on the effect of neoadjuvant chemoim-

munotherapy on cytokines and soluble factors, there were

no differences found on soluble factors as a predictive
biomarker or associated to pathological response. How-
ever, when comparing samples at diagnosis versus post-
neoadjuvant treatment, major differences were found in
non-CPR patients with a decrease, post treatment, of all
soluble factors analyzed except for HVEM (p-value .049)
and TIM-3 (p-value .002) (Figure 5B).
Lastly, levels ofmany cytokines changed after treatment.

Considering the focus of this study and space limitation,
we describe here only the changes that are exclusive of
patients achievingCPR. These patients showed an increase
of ANG (p-value .027), angiostatin (p-value .041), CTACK
(p-value .031), HCC-1 (p-value .001), MICA (p-value
.041), RAGE (p-value .041), TARC (p-value .020), TIM-1
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F IGURE 5 Neoadjuvant treatment influence on immune cells and plasma factors. (A) Percentage of immune cells from peripheral
blood and MFI on immune cells from peripheral blood. (B) Soluble factors secretion in plasma. (C) Cytokine secretion on plasma. Legend:
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comparisons, (empty, not significant; *p-value <.05; **p-value <.01; ***p-value <.001)

(p-value .020), andTIMP-2 (p-value .003), and a decrease of
Fcr RIIB/C (p-value .045), GRO (p-value .036), and TRAIL-
R4 (p-value .041) (Figure 5C).

4 DISCUSSION

Immunotherapy alone or in combination with chemother-
apy is revolutionizing the therapeutic approach of early-
stage lung cancer patients, achieving a remarkable rate
of CPR in potentially resectable patients. In lung can-
cer, CPR has been proposed as a surrogate of OS ben-
efit in the neoadjuvant setting. In our study, patients
achieving CPR showed a trend toward higher basal lev-
els of PD-1+ cells for T, NK, and T subsets, which was

statistically significant only for CD4+, but not for CD8+
T cells.
To our knowledge, there are no studies focused on

predictive peripheral biomarkers of complete patholog-
ical responses in the neoadjuvant setting. Besides, as
chemoimmunotherapy seems superior to monotherapy16
and chemotherapy modifies the antitumor immune
response,29,30 the potential biomarkers described for
anti-PD(L)-1 monotherapy may be useless for chemoim-
munotherapy. In fact, it is likely that these biomarkers
may vary also depending on tumor stage, treatment timing
(neoadjuvant or adjuvant), and the pathologic response
rate used as threshold (CPR vs. non-CPR analysis identi-
fied different parameters compared to MPR vs. non-MPR
in our cohort), making the contrast of our results an
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arduous task. Additionally, PD-L1 TPS and TMB at diag-
nosis were not associated to any parameter analyzed in
this study, indicating an independent value of these blood
biomarkers.
Although PD-1 interaction with its ligands leads to T-

cell inhibition, PD-1 expression is induced after antigen
recognition. Thus, PD-1 levels may reflect chronic activa-
tion of antitumor-specific lymphocytes.31 Few studies have
described the importance of early proliferation of PD-1+
cells, mainly CD8+, after anti-PD-1 treatment in NSCLC
patients.32,33
Another population of T cells that seems to recapitu-

late the basal immune status of patients achieving CPR is
Tregs (CD4+CD25hi). The levels of these cells are higher
in the blood of NSCLC patients compared to healthy
individuals,34,35 they are implicated on immune self-
tolerance36 and have been associated with favorable clin-
ical outcomes to anti-PD-1 therapy.37 We have previously
described in NSCLC patients that tumor-infiltrating Tregs
after chemoimmunotherapy are associated with CPR.17 In
this study, we describe their predictive value for CPRwhen
measured in peripheral blood at diagnosis. The associa-
tion between CPRs and basal PD-1+ or Tregs cells may
reflect the immunogenicity of the tumor and the tolerance
to chronic immune responses.
In addition to T cells, CD56+ T cells also appear to

be characteristic of the immune system of CPR patients.
Reduced blood levels of CD56+ T cells has been described
on NSCLC38 and other solid tumors,39–41 compared to
healthy controls. Although, in a similar way to other
groups,42 the levels of CD56+ T cells were not related with
response, but we observed that CPR patients had higher
expression of activating receptors, such as NKG2D and
CD56. Besides the lack of knowledge in CD56+ T cells, and
in particular of these receptors in responses to anti-PD-1
therapy, CD56+ T cells have been described as modulators
of the immune system.43
Traditionally, CD56 receptor is used to classify between

two types ofNKcells, CD56bright (cytokine-producing cells)
and CD56dim (cytotoxic cells). However, its expression is
also widely accepted as activation marker, associated with
potent effector functions, in NK, classical αβ CD8 T cells,
and CD56+ T cells.44 Supporting this, we found a correla-
tion between CD56 and NKG2D for CD56+ T cells.
NKG2D is a cytotoxic-related activation receptor

expressed in NK, CD8+ T cells, and T CD56 cells. NKG2D
ligands (MICA, MICB, and ULBP1-6) are expressed on
stressed or tumor cells, favoring their destruction. Inter-
estingly, a tumor evasion mechanism involves releasing
these ligands from the tumor cell surface, inducing
receptor internalization on immune cells, and therefore
reducing their activation capacity.45,46 In our study,
patients with CPR showed statistically significant higher

levels of NKG2D in CD56+ T cells and nearly significant
in CD8+ T cells, but not for NK cells. Furthermore, the
levels of MICA and MICB ligands were similar between
CPR and non-CPR patients, suggesting that this evasion
mechanism is not relevant in our cohort of patients. On
the other hand, NKG2D levels in CD56 T cells and CD8+
T cells were inversely correlated with NT-3 plasma levels,
which could imply a mechanism of inhibition by this
neurotrophin on immune cells.47,48 Similarly, an inverse
correlation between VEGF-D and NKG2D was observed,
although this was only statistically significant for CD56+
T cells. To our knowledge, there is no specific information
on the role of VEGF-D and NKG2D regulation, although
a protumoral role of VEGF-D in lung cancer has been
described.49
Other receptor involved in tumor evasion mechanisms

is CTLA-4, originally described on T cells. There are few
studies on other cell types, such as monocytes and NK
cells, pointing in the same direction of inhibiting immune
responses.50,51 Supporting this, we have seen that CPR
patients presented reduced basal levels of CTLA-4+ on
NK and classic monocytes. Despite CTLA-4 and PD-1 are
inhibitory receptors and markers of antigen experienced
cells, in our study these receptors behave in the oppo-
site way, which could be explained by their participation
in different pathways in which CTLA-4 is not affected by
nivolumab treatment.52
In this way, at diagnosis, antitumor immune status

for CPR patients seems to be characterized by a previ-
ously induced immune response (PD-1+ cells and Tregs),
with a cytotoxic profile (NKG2D and CD56 receptors),
and lower levels of inhibitory cytokines and cells (neu-
rotrophins, VEGFD, and CTLA-4+ cells). This intense
immune response would be hampered by some therapy-
sensitive mechanisms, such as PD-1+ and Tregs, but not
by CTLA-4+ or determined inhibitory cytokines, that
after chemoimmunotherapywould lead to complete tumor
elimination. Importantly, we were able to characterize this
phenotype through peripheral blood, and moreover, to
identify some biomarkers that could be useful as baseline
biomarkers for CPR.
Most of these differences for pretreatment biomarkers

are lost posttreatment, probably due to treatment effect,
that is able to modulate the immune cell repertoire. The
main cell-related biomarker associated with CPR after
treatment is CD19 expression. CD19 is a classic marker
for B-cell identification, but also plays a key role as a
coactivator for B-cell function and proliferation.53 Elevated
levels of this marker may be associated with increased
humoral response and better clinical outcomes, because
tertiary lymphoid structures have been associated with
favorable prognosis.13 In fact, we found a correlation
between CD19 expression and other immune cells, such as
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CD4+PD-1+ and Tregs and CD56+ T cells, similar to previ-
ous results.14,54
Althoughneoadjuvant chemotherapy for cancer has his-

torically been considered immunosuppressive, we see that
patients maintain general lymphocyte populations during
treatment, similar to other studies evaluating monother-
apy with anti-PD-1.32 In our study, neoadjuvant chemoim-
munotherapy modified many subpopulations of lympho-
cytes and monocytes in peripheral blood, as well as more
than 50 cytokines and soluble factors in plasma. Addition-
ally, to general changes that occurred in all patients, our
results show that some changes were exclusive of patients
who achieved CPR or non-CPR. This once again reinforces
that they are distinct biological entities and the poten-
tial role of these changes as biomarkers of pathological
response.
This study has several limitations such as the lim-

ited number of patients included in this analysis or the
lack of control arm to discern between prognostic and
predictive biomarkers. Additionally, the scarcity of dis-
ease progression events or deaths in these patients,17 pre-
cluded the association of these parameters to patient’s
survival.
To conclude, this is the first study focused on the compo-

sition and phenotypic characteristics of PBMCs in NSCLC
patients treated with neoadjuvant chemoimmunotherapy.
Patients achieving CPR seem to have a characteristic
peripheral blood immune status at diagnosis that allows
the identification of baseline blood-based biomarkers asso-
ciated to CPR. Additionally, CPR patients also showed a
distinctive modification of their immune status as a con-
sequence of neoadjuvant treatment with a different pro-
file prior surgery. Further studies using larger cohorts of
patients and including a control arm are warranted to
validate these biomarkers in the neoadjuvant chemoim-
munotherapy setting.
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