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ABSTRACT
Convolutional neural network (CNN) and its variants have led to many state-of-the-art results in various
fields. However, a clear theoretical understanding of such networks is still lacking. Recently, a multilayer
convolutional sparse coding (ML-CSC) model has been proposed and proved to equal such simply stacked
networks (plain networks). Here, we consider the initialization, the dictionary design and the number of
iterations to be factors in each layer that greatly affect the performance of the ML-CSCmodel. Inspired by
these considerations, we propose two novel multilayer models: the residual convolutional sparse coding
(Res-CSC) model and the mixed-scale dense convolutional sparse coding (MSD-CSC) model.They are
closely related to the residual neural network (ResNet) and the mixed-scale (dilated) dense neural network
(MSDNet), respectively. Mathematically, we derive the skip connection in the ResNet as a special case of a
new forward propagation rule for the ML-CSCmodel. We also find a theoretical interpretation of dilated
convolution and dense connection in theMSDNet by analyzing theMSD-CSCmodel, which gives a clear
mathematical understanding of each. We implement the iterative soft thresholding algorithm and its fast
version to solve the Res-CSC andMSD-CSCmodels.The unfolding operation can be employed for further
improvement. Finally, extensive numerical experiments and comparison with competing methods
demonstrate their effectiveness.

Keywords: convolutional neural network, convolutional sparse coding, residual neural network,
mixed-scale dense neural network, dilated convolution, dense connection

INTRODUCTION
Nowadays, neural networks have become effective
techniques in many fields, including computer vi-
sion, natural language processing, bioinformatics,
etc. Their predecessor perceptron was proposed by
Rosenblatt in 1958 [1]. However, the perceptron
is too simple to solve the Exclusive OR (XOR)
problem. To tackle more complex problems, multi-
layer perceptron (MLP) was proposed. Neural net-
works can be seen as generalized MLPs with a se-
ries of special operations. The activation functions
(e.g. Sigmoid, Tanh and the rectified linear unit
(ReLU) [2]) have been used for computing the out-
puts of hidden layers in neural networks to simulate
the thresholding activation of neurons in the human
brain.

Convolution is another important operation
used for processing data that has a known, grid-
like topology. For example, time-series data can be

regarded as one-dimensional grid data and an image
can be thought of as a two-dimensional grid of pix-
els. Convolution operation simulates human eyes,
capturing features locally and scanning globally.The
range within which features are captured is called
the receptive field [3]. Early convolutional neural
network (CNN) related architectures proposed in
the 1980s [4–6] greatly inspired current deepCNNs
(DCNNs).

Rapid improvements in hardware and public
availability of highly optimized software [7–9]make
it possible to train a neural networkwith a large num-
ber of parameters. AlexNet [10] is such a classical
CNN architecture, which draws attention to DC-
NNs. Deeper networks have a stronger ability to
fit complex distributions, so it is easier to achieve
better performance than ever before. ‘The deeper,
the better’ becomes a belief [11]. However, DC-
NNs are hard to train because of diverse optimiza-
tion issues. The problem of vanishing or exploding
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gradients [12,13] is a notorious problem that has
been addressed in two novel ways: normalized ini-
tialization [13,14] and batch normalization [15].
When deep neural networks are trained using these
two techniques, the degradation phenomenon that
deep networks achieve lower accuracy than shallow
networks is exposed [16]. The residual neural net-
work (ResNet) [16] is a special architecture with
skip connections that tackles this phenomenon. Dif-
ficulties have been resolved, but the optimization is-
sues behind the degradation phenomenon are still
not clear.

The densely connected CNN [17] and mixed-
scale dense convolutional neural network (MSD-
Net) [18] are also well-known architectures with
skip connections. Usually, they have fewer parame-
ters to overcome the overfitting issue. Besides, there
are many other architectures and methods, such as
Dropout [19], VGG [11], GoogLeNet [20], R-
CNN [21], YOLO [22] and FCN [23]. All these
have become very important solutions in neural
networks.

We still however do not understand the prin-
ciple of CNNs clearly. All the above successes are
mainly based on empirical exploration. A clear and
profound theoretical understanding of such neural
networks is still lacking. On the one hand, architec-
tures with excellent performance are hard to strictly
interpret. On the other hand, the design of architec-
turesmainly dependson intuitionor inspiration.The
lack of theory is currently a key problem that limits
further development of neural networks. This situ-
ation brings uncertainty when people apply neural
networks to some challenging fields, such as self-
driving, medical diagnosis and identity recognition.

Recently, the connection between convolutional
sparse coding (CSC) [24,25] and CNNs has been
established [26–28]. It brings a fresh view to CNNs.
In sparse coding, we assume that a signal can be rep-
resented as a linear combination of a few columns
from a matrix, called the dictionary, and the lin-
ear combination can be written as a sparse vector.
The task of retrieving the sparse representation of a
signal is called sparse coding or basis pursuit (BP)
[29–32]. It is also known in the statistical learning
community as the least absolute shrinkage and selec-
tion operator (Lasso) problem [33]. Neuroscience
also indicates that sparse coding plays an important
role in the human brain [34]. Moreover, sparsity
has been shown to be a driving force in a myriad of
applications in computer vision [35,36] and statis-
tics [33]. For a given dictionary, orthogonal match-
ing pursuit [37,38], the iterative soft thresholding al-
gorithm (ISTA) and its fast version (FISTA) [39]
have been proposed to tackle the pursuit problem.

Besides, double sparsity has also been proposed to
accelerate the training process [40], and it assumes
the dictionary can be factorized into amultiplication
of two matrices.

Inspired by these advances, a multilayer convo-
lutional sparse coding (ML-CSC) model was pro-
posed by Papyan et al. [26], which has been shown
to equal a plain network when propagates with
the layered thresholding algorithm [26]. This re-
veals that CNN actually tries to find the sparse
coding of input signals over a very special dictio-
nary, which corresponds to a convolution operation.
CNNs compute the sparse vectors layer by layer, but
does not recover all the vectors at once, which is
computationally and conceptually challenging. The
value of an ML-CSCmodel not only gives us an un-
derstanding of CNNs, but also builds a strict math-
ematical form that provides the opportunity of uti-
lizing more mathematical tools to carry out a strict
theoretical analysis. Previous studies have explained
why ReLU behaves well in numerical experiments
[2], what the feature maps computed in each layer
represent, and what the meaning of the bias term
(which is always added after convolution) is [26].

To solve the CSCmodel, layered BP and amulti-
layer version have been proposed [26,28]. Layered
BP considers the sparsity in only one layer, while
the multilayer version considers the sparsity in all
layers. The stability of layered BP in noiseless and
noisy regimes was clarified in Ref. [26]. An error
bound was proposed to measure the distance be-
tween the solution and the true underlying sparse
coding [26]. The convergence of the multilayer ver-
sion was proved in Ref. [28]. The uniqueness of
the sparsest representation and the conditions that
guarantee finding the true underlying representation
were discussed in Ref. [27]. See Ref. [26] for a dis-
cussion of other theoretical benefits.

At present, existing studies only establish a
preliminary connection between the CSC model
and plain networks. The relationship between the
CSC model and current popular architectures (e.g.
ResNet, MSDNet) is still lacking.The roles of many
key tricks (e.g. batch normalization, dropout) in the
CSC model are still not clear. We note that neu-
ral networks with skip connections usually have bet-
ter performance [16–18]. Do the skip connections
have any theoretical interpretation? Moreover, di-
lated convolution in the MSDNet is also a power-
ful trick for extracting multiscale features [18]. To
better understand the ResNet and MSDNet, we in-
troduce a residual convolutional sparse coding (Res-
CSC)model and a mixed-scale dense convolutional
sparse coding (MSD-CSC)model, which are closely
related to the ResNet andMSDNet, respectively.
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Figure 1. (A) A plain network of five layers formed by simply stacking each layer. (B) A
ResNet of two layers. Here we assume that the operation does not change the shape
of the tensors. The symbol indicates elementwise addition of the tensors in the
current and previous layers. (C) An MSDNet of three layers. The symbol indicates
channelwise concatenation of the tensors in the current and previous layers.

NOTATION AND CONCEPTS
Convolution and matrix multiplication
Convolution is a basic operation in CNNs. We de-
note an image with m rows, n columns and c chan-
nels as X ∈ Rm× n× c. A dilated convolution kernel
Fs with dilation scales s ∈ z+ [41] convolves X to
produce a new feature map Z. This operation is de-
noted asZ=Fs⊗X. Equally, this process can bewrit-
ten as a matrix multiplication. Simple examples with
one channel and different dilation scales s = 1 and
s = 2 are illustrated in Fig. S1 of the online supple-
mentary material. Here, we use the same symbol Fs
to represent the corresponding matrix, which has a
special structure—a union of bars and circulant. We
call Fs the convolutional matrix.

The ResNet and MSDNet
Compared with the traditional CNN (Fig. 1A), a
ResNet [16] adds one operation, the skip connec-
tion (Fig. 1B), and anMSDNet [18] adds twoopera-
tions, the dilated convolution and dense connection
(Fig. 1C).The skip connection directly adds feature

maps after a transformation (Fig. 1B). This process
can be written as

Zi+1 = F(Zi ) + Zi ,

where F is a transformation and Zi is the ith layer
output.

Dilated convolutions with different dilation
scales could acquire larger receptive fields with
fewer parameters, enabling feature extraction in a
multiscale manner. Dense connection gathers all
feature maps before the current layer and computes
new feature maps with them (Fig. 1C).This process
can be written as

Zi+1 = σ (F si+1
i+1 ({Z0, Z1, . . . ,Zi }) + bi+1),

where σ (·) is the ReLU function, Z0 is an input im-
age, Zi+ 1 denotes new feature maps, Zi is the ith
layer output, {Z0, Z1, . . . , Zi} denotes feature maps
which concatenates Z0, Z1, . . . , Zi, and bi+1 is a bias
term.

Here, anMSDNetwith k layers is represented as

MSDk = {(F s1
1 , b1), (F s2

2 , b2), . . . , (F
sk
k , bk)},

where (F si
i , bi ) denotes the convolution kernels

and the bias bi in the ith layer. Note that bi is a vector
recording biases corresponding to convolution ker-
nels in F si

i . Here, we usew to denote the number of
convolution kernels in each layer and d to denote the
number of layers.

Sparse coding
LetX denote a signal vector. In sparse coding, we as-
sume that it can be represented as a linear combina-
tion of a few columns of a dictionary matrixD:

X = D�.

Here � is the coefficient vector of the linear combi-
nation, called a coding under the dictionaryD.

Sparse coding can be formulated as the following
optimization problem [29,40,42]:

(P0) : min
�

1
2
‖X − D�‖22 + β‖�‖0.

Here β is a regularization parameter to balance the
reconstruction error of the signal X and the sparsity
of �. ‖�‖0 denotes the number of nonzero entries
in�.

Problem (P0) is NP-hard because of the second
term‖�‖0 [43]. Fortunately, it has been proved that
problem (P0) can be relaxed as Ref. [44]:

(P1) : min
�

1
2
‖X − D�‖22 + β‖�‖1.
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Here problem (P1) is called the Lasso [33] or BP
problem[29–32] indifferent fields.Moreover, prob-
lem (P1) can be solved using the popular ISTA. Its
update formula is formulated as

�k+1 = Sβ/L

(
�k − 1

L
(−D�X + D�D�k)

)
,

(1)

where �k denotes the coding in the kth iteration.
The smallest Lipschitz constant (L) of the gradi-
ent of f (�) = 1

2‖X − D�‖22 isλmax (D�D),where
λmax (D�D) denotes the maximum eigenvalue of
D�D.The soft thresholding operator Sb(·) is defined
as

Sb(z) =
⎧⎨
⎩
z + b, z < −b,
0, −b ≤ z ≤ b.
z − b, z > b.

Is the sparsest representation for problem (P1)
unique? Lemma 1 provides the answer:

Lemma 1 [29,42,45]. The sparsest representation is
unique if the number of nonzeros in the underlying
sparsest representation for problem (P1) is not too high
and, in particular, less than 1

2 (1 + 1/μ(D)). Here,
μ(D) is defined as the maximal inner product of two
columns extracted fromD.This can be formally written
as

μ(D) = max
i 	= j

∣∣d�
i d j

∣∣ ,
where di is assumed to be normalized to the unit
length.

THE RELATIONSHIP BETWEEN THE CSC
MODEL AND CNN
Non-negative sparse coding
Let us consider a signalX=D�. Naturally,� can be
split into a positive part,�P, and a negative part,�N.
Then X can be written as

X = D�P + (−D)(−�N).

Obviously, if we change the dictionary to [D, −D]
then the corresponding sparse coding is [�P,
−�N]�. Note that both �P and −�N are non-
negative. Therefore, every sparse coding can
always be converted into non-negative sparse
coding [26].

The soft non-negative thresholding
operator
For a non-negative sparse coding problem, we only
need to consider the non-negative situation. So, we
can define the soft non-negative thresholding opera-
tor S+

b (·) based on the soft thresholding operator as

S+
b (z) =

{
0, z ≤ b,
z − b, z > b.

It is obvious that the soft non-negative thresholding
operator is equivalent to the ReLU:

S+
b (z) = max(z − b, 0) = ReLU(z − b),

(2)

where b is a bias term. According to Equation (1), b
depends on β and the Lipschitz constant L in prob-
lem (P1). In other words, β is a hyperparameter in
sparse coding, but it becomes a trainable parameter
in neural networks via Equation (2).

ML-CSC
TheML-CSCmodel [26] is formulated as

X = D1�1,

�1 = D2�2,

...

�k−1 = Dk�k,

where X is the input signal (e.g. an image) and {Di}
is a set of special dictionaries. Each Di is a trans-
pose of a convolutional matrix. Note that we use the
equal sign to express reconstruction rather than ex-
act equality. The ML-CSC model encodes signals
layer by layer:

�1 reconstructs X via dictionary D1,

�2 reconstructs�1 via dictionary D2,

...

�k reconstructs�k−1 via dictionary Dk .

The ith layer in theML-CSCmodel can be described
as a Lasso problem:

(P2) : min
�i

1
2
‖�i−1−Di�i‖22+β‖�i ‖1.

We use Equation (1) to compute the sparse coding
in every layer. When {Di} is known, we set �0 = 0,
and Equation (1) becomes

�1 = Sβ/L

(
1
L
(D�X)

)
. (3)
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We only update � once with Equation (3) and then
obtain the layered thresholding algorithm [26] (see
Algorithm 1 in the online supplementary material).

According to the relationship between convolu-
tion and matrix multiplication, it is obvious that us-
ing this layered thresholding algorithm to solve the
ML-CSC model is equivalent to the forward pass of
plain networks (Fig. 1A) [26]. So, the final sparse
coding�k in theML-CSCmodel corresponds to the
final feature map in the CNN. Here we set �0 = 0
in each layer and only update � once. This strategy
not only achieves the equivalence between the ML-
CSC model and plain networks, but also improves
the computational efficiency since two terms,�k and
D�D�k, are ignored. A different initializationwill be
discussed in the next section.

Until now, the ML-CSC model has been con-
nected to plain networks. Intriguingly, we believe
that three factors in each layer, the initialization,
the dictionary design and the number of iterations,
greatly affect its performance. Inspired by these con-
siderations, in the next three sections we propose
the Res-CSC and MSD-CSC models and a forward
propagation algorithm with unfolding (iterate more
than once), respectively.

LAYER-INITIALIZING QUESTION AND THE
RES-CSC MODEL
According to the above analysis, the forward pass
of plain networks can be explained by solving (P1)
with initialization �0 = 0 in each layer. It dramat-
ically improves the computational efficiency. How-
ever, this naive setting might cause large errors be-
cause the information from the other two terms is
ignored.The errors are accumulated layer by layer. It
leads to training difficulty in much deeper networks.
Thus, we propose a fundamental question about ini-
tialization.

Layer-Initializing Question. In the ML-CSC
model, Equation (1) iterates once in each layer.
Under this condition, can we design a proper
initialization for �0

i in the ith layer to approach the
optimal sparse coding�i?

To give a solution to the layer-initializing ques-
tion (LIQ), we modify the ML-CSC model. Intu-
itively, according to the form of the soft thresh-
olding operator, large values in the coding will be
decreased by a constant, and small values become
zeros directly.This results in the coding values mov-
ing towards zero. In the view of ML-CSC, the
forward pass of CNN is a series of sparse coding
problem. It repeats the soft thresholding operator
layer by layer. The coding values of each layer move

towards zero again and again.Thus, the coding grad-
ually becomes sparse. An intuitive idea is to set �0

equal to the input of a former layer. In the following,
we use the input of the layer closest to the current
layer as the initialization (denoted as�0 =X−1).We
change the forward propagation rule of each layer
partially in the ML-CSC model to reduce the accu-
mulation error, and keep part of the rule to enhance
the computational efficiency. Specifically, every two
layers we use this new initialized setting once. In the
first layer, we adopt Equation (3) to obtain the out-
put, and in the second layer we employ the following
update rule based on Equation (1):

�1 = Sβ/L

(
1
L
D�X + X−1 − 1

L
D�DX−1

)
.

(4)

LetD = D/L and c=−L. Equation (4) becomes

�1 = Sβ/L(D�X + X−1 + c · D�DX−1).

(5)

Now we obtain a new optimization rule following
the same mode of ML-CSC. In contrast, its forward
propagation implements Equations (3) and (5) al-
ternately (Fig. 2A). Note that Equations (5) be-
comes the forward propagation of the ResNet ex-
actly when we ignore the term c · D�DX−1. For
convenience, we call the ML-CSC model updated
with this new rule the Res-CSC model. The clas-
sical ResNet can be seen as a special case of the
Res-CSC model (Fig. 2B), which gives an approxi-
mate solution to the LIQ. However, it has not been
formally proposed before that the LIQ is a key of
the optimization problem behind the degradation
phenomenon [16]. Coincidentally, the ResNet ad-
dresses it by introducing such nonzero initializa-
tions. Similarly, we can obtain another approximate
update rule by ignoring the term X−1 (Fig. 2C).

The relationship between the Res-CSC model
and ResNet draws our attention to the concept of
error tolerance, which is an important characteristic
of theCNN [46,47]. Being the approximationof the
Res-CSCmodel, the ResNet presents this character-
istic inmany applications. For amore general propa-
gation rule, the Res-CSCmodel is expected to over-
come the trainingdifficultywhennetworks comprise
hundreds of layers. In the Experiments section, nu-
merical tests on the Res-CSC model, ResNet and
Res-CSC-simplifiedmodel indeed demonstrate that
the Res-CSCmodel could achieve this and the term
c · D�DX−1 in Equation (5) plays a slight role.
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Figure 2. (A) A component of the Res-CSC model with two continuous layers. (B) A
component of the ResNet with two continuous layers, which can be seen as a simpli-
fication of (A). (C) Another way to simplify (A) (referred to as the Res-CSC-simplified
model). Here, D1 and D2 are the dictionaries of the two continuous layers.

THE MSD-CSC MODEL AND
THEORETICAL ANALYSIS
The MSD-CSC model
Inspired by the layered thresholding algorithm de-
signed for the ML-CSC model, we attempt to
describe the dilated convolution and dense connec-
tion of the MSDNet from the view of sparse cod-
ing bymodifying the structure of dictionaries. In the
MSDNet, each layer uses all the previous feature
maps to compute its layer output. This leads to the
CSCmodel:

X = Ds1
1 �1,

�1 = Ds2
2 �2,

...

�k−1 = Dsk
k �k,

where X is the input signal (e.g. an image), Dsi
i =

[I, (F si
i )

�] and I is an identity matrix. The Lasso
problem in the ith layer is formulated as

min
�i

1
2
‖�i−1 − Dsi

i �i‖22 + β‖�i‖1.

We call this the MSD-CSCmodel and denote it as

MSDCSCk = {(Ds1
1 , β1), (Ds2

2 , β2), . . . , (D
sk
k , βk)},

where Dsi
i is the dictionary and β i is the regulariza-

tion parameter in the ith layer.

Theoretical analysis
Proposition 1. For a given MSDNet, there exists
an MSD-CSC model that is equivalent to the MS-

DNet when propagates with the layered thresholding
algorithm.

Proof. For a givenMSDNet,

MSDk = {(F s1
1 , b1), (F s2

2 , b2), . . . , (F
sk
k , bk)}.

Let us define the correspondingMSD-CSCmodel

MSDCSCk = {(Ds1
1 , β1), (Ds2

2 , β2), . . . , (D
sk
k , βk)},

where β i = (0, . . . , 0, Libi)� with Li the Lipschitz
constant in the ith layer. According to the layered
thresholding algorithm

�̂i = S+
bi
((Dsi

i )
��̂i−1)

= S+
bi

([
I
F si
i

]
�̂i−1

)

= S+
bi

([
�̂i−1

F si
i �̂i−1

])

= ReLU
([

�̂i−1
F si
i �̂i−1 + bi

])

=
[

�̂i−1
Zi

]

= concatenate(�̂i−1, Zi ),

where i = 1, . . . , k and bi = βi /Li =
(0, . . . , 0, bi ). We observe that the features
before the ith layer are kept in the ith feature as
the input of the next layer. This indicates that the
propagating rule of MSDCSCk is equivalent to that
of MSDk.

From Proposition 1, we can see that the identity
matrix corresponds to the dense connection in neu-
ral networks. Consider the process of reconstructing
the original signal in the MSD-CSC model. We re-
construct �̂i−1 using

[
I, (F si

i )
�] [

�̂i−1
Zi

]
= �̂i−1 + (F si

i )
�Zi .

Here (F si
i )

�Zi is a residual term to reconstruct the
signal in the previous layer, while the residual term
in the ResNet produces coding in the next layer.

Next, we prove that the coding performance of
the MSD-CSC model is better than that of the ML-
CSC model. This is due to two operations: dilation
convolution and dense connection. In the context of
the CSC model, the dilation convolution affects the
structure of the convolutional matrices. The μ(D)
is relatively smaller in the convolutional matrix,
corresponding to the dilated convolutional kernel
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compared with that without dilation (see Figs S1B
and S1C in the online supplementary material for
μ = 0.47 and μ = 0, respectively). According to
Lemma 1, a dictionary (note that the identity ma-
trices in the MSD-CSC model do not affect μ)
with smallerμ tends to ensure that the sparsest rep-
resentation is unique. More theoretical studies on
uniqueness and stability relating to μ(D) are ana-
lyzed in Ref. [26].

We now explore how theMSD-CSCmodel ben-
efits from the dense connection. According to Lasso,
larger β leads to sparser representation, but sparser
representation may cause the loss of information.
Sparsity and loss of information are contradictory.
Sometimes, an unsuitableβ can lead to a very unrea-
sonable solution. For example, set

D =
[
0.1 0.1 0.2
0.1 0.2 0.1

]
and β = 1

3
.

According to Equation (1), the coding of the sig-
nal X = (1, 1)� over D is � = (0, 0, 0)�. It is
obviously unreasonable that all the information is
lost. This ill-conditioned case leads to the following
definition.

Definition 1. For the encoding process in the
ith layer, �i−1 = Dsi

i �i , the corresponding Lasso
problem is

min
�i

1
2
‖�i−1 − Dsi

i �i‖22 + β‖�i‖1.
Let ξ = (ξ1, ξ2, . . . , ξn) = Dsi

i �i , which is used to
reconstruct the signal�i− 1. If the jth dimension sat-
isfies

|ξ j − �
( j )
i−1| > 2β,

where �
( j )
i−1 denotes the value in the jth dimension

of�i− 1, the reconstruction is considered unsuccess-
ful in the jth dimension; otherwise, it is considered a
success.

Let us conduct a simulated experiment on the
ML-CSCmodel first.Thesimulationdata is of length
100 and generated by adding the Gaussian noise to
100 different centers, which represent 100 different
classes.We generate 10 000 training data (each class
has 100 data points) and 2000 testing data. We use
an ML-CSC model with two hidden layers. After
each training iteration, we compute the reconstruc-
tion of the input signal X and count the number of
dimensions that fail to be reconstructed (i.e. unsuc-
cessful) (see the dotted line in Fig. 3). We can see
that the number of unsuccessfully reconstructed di-
mensions decreases at the beginning of the training
process and becomes stable after some iterations. Fi-
nally, there still exist some dimensions that cannot
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Figure 3. The number of unsuccessfully reconstructed di-
mensions in the original signal after each iteration identi-
fied by the models with (MSD-CSC) or without (ML-CSC) the
dense connection.

be reconstructed successfully. Similarly, we repeat
the simulated experiment on the MSD-CSCmodel.
We can see that the number of unsuccessfully re-
constructeddimensions decreases rapidly compared
with that in theML-CSCmodel and finally stabilizes
at zero (see the solid line in Fig. 3). This means that
the unsuccessfully reconstructed dimensions in the
ML-CSCmodel can be recovered in the MSD-CSC
model. We can prove this phenomenon in theory as
follows (see the online supplementary material for
the proof).

Theorem1. In the MSD-CSC model, all dimensions in
�i− 1 are reconstructed successfully.

According to the proof of Theorem 1, the iden-
tity matrix in the dictionary is critical. It prevents
the loss of information andmakes the reconstructed
value not so far from the original value. Besides,
the identity matrix brings an additional benefit. The
MSD-CSC model allows larger βs than the ML-
CSC model with the same parameters in convolu-
tion kernels based on the following lemma (see the
online supplementary material for the proof).

Lemma2. For a matrix A 	= 0, assume that the matrix
AA� has eigenvaluesλ1, . . . ,λn. As a result, thematrix

B =
(
I
A

)
· (I, A�) =

(
I A�

A AA�

)
has eigenvalues 0, . . . , 0, λ1 + 1, . . . , λn + 1. Here
the number of zeros is equal to the column number of A.

In theMSD-CSCmodel, the Lipschitz constant

LMSD-CSC=λmax

((
I
F si
i

)
(I, (F si

i )
�)

)
.
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Table 1. The relationship between the generalized CNN and generalized CSC model.

CNN CSC

The ith convolution with dilation scale si The convolutional matrix Dsi
i

Bias term The balance coefficient β and λmax (D�D)
ReLU Soft non-negative thresholding operator S+

β (·)
Feed-forward algorithm �0 = 0 in the update formula and iterate once
ResNet �0 = X−1 in the update formula and iterate

Equations (3) and (5) alternately
Dense connection The identity matrix in Dsi

i

According to Lemma 2, LMSD-CSC = LML-CSC + 1,
whereLML-CSC is the Lipschitz constant of the corre-
sponding ML-CSC model. According to Equations
(1) and (2), β = bL. So

βMSD-CSC = b(LML-CSC + 1)

= βML-CSC + b.

Clearly, the β in the MSD-CSC model becomes
larger than that in the corresponding ML-CSC
model. This means that the MSD-CSCmodel tends
to obtain sparser solutions. In addition, according to
the proof of Theorem 1, the MSD-CSC model can
prevent loss of information via the identity matrix
in the dictionary. Thus, the MSD-CSC model alle-
viates the contradiction between reconstruction and
sparsity. Besides, the identity matrix corresponds to
the dense connection in the MSDNet according to
Proposition 1. Taken together, Proposition 1 and
Theorem 1 provide a complete theoretical under-
standingof thedense connection inneural networks.
Finally, we summarize the relationship between the
generalized CNNs (including the ResNet and MS-
DNet) and the new CSCmodels in Table 1.

FORWARD PROPAGATION ALGORITHM
For the MSD-CSC model, we just need to replace
the dictionary in Equation (1) with the correspond-
ing dictionary.The update formula becomes

�k+1 = Sβ/L

(
�k − 1

L

[
I
F si
i

]

×(−X + [I, (F si
i )

�]�k)
)

.

We can adopt the ISTA and FISTA [39] to tackle
problem (P1). Besides, it is unnecessary to limit the
number of iterations to one. Iterating more than
once corresponds to the unfolding operation, which
has also been explored for solving sparse coding and
other problems. Here we adopt it to improve the

performance of the dense connection in the MS-
DNet. The case of unfolding =0 corresponds to
the MSDNet. The models with different unfolding
have the same number of parameters (see Fig. S3A
in the online supplementary material). According
to the relationship between convolution and matrix
multiplication, we can obtain the forward propaga-
tion algorithm in one layer (see Algorithms 2 and 3
in the online supplementary material).

The main difference between the two algorithms
is that the ISTA is based only on the last iteration,
but the FISTA is based on a linear combination of
the last two iterations. Obviously, the main compu-
tational effort in both algorithms remains the same.
We illustrate a simple architecture using the MSD-
CSC model for a classification task (see Fig. S3B
in the online supplementary material). In this archi-
tecture, each block represents a layer in the MSD-
CSCmodel. We can implement a propagating algo-
rithm and set an unfolding number (e.g. 0, 1, 2) in
each block. Note that the FISTA is the same as the
ISTA when unfolding <2. How the feature maps in
each block propagate is illustrated in Fig. S3A of the
online supplementary material. Max-pooling layers
are added to downsample feature maps for memory
constraints. Obviously, the number of blocks corre-
sponds to d and the number of convolution kernels
corresponds tow in the MSDNet.

EXPERIMENTS
In this section, we evaluate the Res-CSC and MSD-
CSC models and related methods using the three
typical datasets CIFAR10, CIFAR100 and SVHN
[48,49]. CIFAR10, CIFAR100 and SVHN consist
of colored natural images with 32 × 32 pixels. In
SVHN, the training and testing sets contain 73 257
images and26 032 images, respectively. InCIFAR10
and CIFAR100, the training and testing sets contain
50 000 and 10 000 images, which are drawn from 10
and 100 classes, respectively.

Experiments on the Res-CSC model
We implement standard data augmentation (trans-
lation and horizontal flip) on CIFAR10 and CI-
FAR100. The four models, the plain network, Res-
CSC-simplified, ResNet and Res-CSC, are trained
with the stochastic gradient descent (SGD) on a sin-
gle GPU. The mini-batch size is 128 and the Nes-
terov momentum is set to 0.9. Eachmodel is trained
for 200 epochs. The initial learning rate is set to 0.1
and then divided by 10 after 100 and 150 epochs.

First, we train the four types of networks with 20
and 56 layers, respectively. The plain network with
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Figure 4. Experiments on the Res-CSC model and other methods using SVHN, CIFAR10 and CIFAR100. (A) Test accuracy versus the training epochs
of the plain network Res-CSC-simplified, ResNet and Res-CSC with 56 layers and the plain network with 20 layers for comparison. (B) Test accuracy
versus the training epochs of the Res-CSC model with 20, 32, 44, 56, 110 and 218 layers. (C) Test accuracy versus the training epochs of the Res-CSC
model and ResNet with 56, 110 and 218 layers.

56 layers achieves lower accuracy than that with 20
layers (Fig. 4A and Table 2), suggesting that the
degradation phenomenon occurs. Interestingly, the
degradation phenomenon is alleviated to some ex-
tent with the Res-CSC-simplified model though the
improvement is limited. Moreover, when the num-
ber of layers is on the order of hundreds, the Res-
CSC-simplified model cannot be trained normally,

as in the case of the plain network. Both the Res-
CSC and ResNet distinctly overcome the degrada-
tion phenomenon (Fig. 4B and C). These observa-
tions are consistent with our theoretical derivation.
According to the results, the term X−1 plays a more
important role than the term c · D�DX−1.

Next, we train six Res-CSC and ResNet mod-
els with 20, 32, 44, 56, 110 and 218 layers,
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Table 2. The accuracy rates of a plain network, Res-CSC-simplified, ResNet and Res-CSC on CIFAR10, CIFAR100 and SVHN.

Modela

Dataset Layer Parameter Plain network Res-CSC-simplified ResNet Res-CSC
(%) (%) (%) (%)

CIFAR10 20 0.27Mb 90.74 91.86 91.30 91.82
32 0.46M 90.34 90.95 92.52 93.31
44 0.66M 89.41 90.19 92.92 92.89
56 0.85M 87.04 88.75 93.15 93.55
110 1.70M ×c × 93.41 93.56
218 3.40M × × 94.02 94.28

CIFAR100 20 0.27M 66.02 66.33 67.81 68.55
32 0.46M 64.31 65.35 69.79 69.35
44 0.66M 61.54 63.24 70.59 70.68
56 0.85M 59.28 60.58 71.09 71.40
110 1.70M × × 72.47 73.13
218 3.40M × × 73.28 73.50

SVHN 20 0.27M 96.67 96.70 96.57 96.81
32 0.46M 96.55 96.63 96.63 96.83
44 0.66M 96.36 96.51 96.74 96.91
56 0.85M 96.09 96.38 96.88 97.01
110 1.70M × × 96.96 97.11
218 3.40M × × 97.05 97.22

a The top result of the four methods in each setting is shown in boldface. b The number of trainable parameters is counted in millions (M). c × indicates
the model can not be trained normally.

respectively. Each Res-CSC model has the same
number of parameters as the corresponding ResNet.
Clearly, the Res-CSC model achieves very compet-
itive or even slightly better performance than the
ResNet in terms of accuracy (Fig. 4 and Table 2).
The difference is due to the effect of the last term
in Equation (5). Besides, the Res-CSC model takes
a little more time for extra convolution and trans-
posed convolution (see the online supplementary
material). In short, the Res-CSC model is a more
general white-box model for overcoming the degra-
dation phenomenon. Its special case with c= 0 leads
to an equivalent form of the ResNet. Thus, it can be
an alternative to the black-box ResNet.More impor-
tantly, it leads to amore theoretical understanding of
the ResNet in terms of the update rule.

Experiments on the MSD-CSC model
We implementMSDNet architectures withw = 32,
d = 6, 9, 12, s = 1, 2, 3 and use max-pooling layers
after one-third and two-thirds of thewhole layers, re-
spectively (see Fig. S3B in the online supplementary
material). Before the softmax layer, average pooling
is applied. We compare the results of the ISTA and
FISTA with unfoldings of 0, 1 and 2. In addition, we
choose the traditional feed-forward network (base-
line) and ML-CSC model (six layers, with kernel
sizes 4 × 4, 4 × 4, 4 × 4, 3 × 3, 3 × 3 and 3 × 3,
respectively, a stride of 2 in the first three layers and
a stride of 1 in the last three layers). The number of

kernels in each layer is set to32, 64, 128, 256, 512and
512 for comparison. These models are trained with
SGD on a single GPU with momentum 0.9. The to-
tal training epoch is set to 150. The mini-batch size
is 128.The initial learning rate is set to 0.05 and then
divided by 10 after 75 and 115 epochs.

First, we can clearly see that further unfolding
improves the accuracy compared to the MSDNet
without unfolding implicitly (Fig. 5A and Table 3).
The MSD-CSC model with d = 12 and unfold-
ing=2 improves 1.28% and 3.05%onCIFAR10 and
CIFAR100, respectively, compared with the corre-
sponding MSDNet. It should be emphasized that
this improvement is achievedwithout adding any ex-
tra parameters. Second, the MSD-CSC model uses
fewer parameters, but achievesmore accurate results
compared to other models (Table 3 and Fig. 5B).
That the MSD-CSC model has a fewer number of
parameters indicates that it has better coding abil-
ity. This is consistent with our theoretical analysis.
Note that the MSD-CSC model takes more time
to train though it has fewer parameters (see the
online supplementary material). The reason is that
existing deep learning training software does not
support the dilation convolution and dense connec-
tion operations well since they assume that all chan-
nels of a certain feature map are computed in the
sameway, andGPUconvolution routines suchas the
cuDNN library assume that feature data is stored in
a contiguous memory.Therefore, concatenate oper-
ation can be expensive in the current software [50].
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Figure 5. Experiments on the MSD-CSC model and other methods using SVHN, CIFAR10 and CIFAR100. (A) Test accuracy versus the training epochs of
the MSD-CSC model with d= 12 layers and unfoldings of 0, 1, 2 using the FISTA. (B) Test accuracy versus the training epochs of the MSD-CSC model
with d= 6 layers, unfolding =2 and other methods.

Table 3. The accuracy rates of the MSD-CSC model and other classic CSC models on CIFAR10, CIFAR100 and SVHN.

CIFAR10 CIFAR100 SVHN
Modela Layer Parameter Unfolding (%) (%) (%)

Feed-Forward 6 4.0Mb 0 82.16 43.93 94.68
ML-CSC-ISTA 6 4.0M 1 83.26 50.23 94.98

4.0M 2 83.59 50.61 95.01
ML-CSC-FISTA 6 4.0M 2 84.06 51.66 95.29
MSDNet 6 0.1M 0 87.22 60.23 94.72

9 0.3M 0 89.42 63.22 95.42
12 0.6M 0 90.35 66.18 95.73

MSD-CSC-ISTA 6 0.1M 1 88.79 62.08 94.87
2 88.85 62.24 95.75

9 0.3M 1 90.23 64.15 95.98
2 90.52 65.21 96.10

12 0.6M 1 90.81 67.31 96.14
2 91.76 68.14 96.36

MSD-CSC-FISTA 6 0.1M 2 89.21 62.53 95.50
9 0.3M 2 90.91 65.22 95.84
12 0.6M 2 91.63 69.23 96.35

a Under the same setting, the MSDNet corresponds to MSD-CSC-ISTA with unfolding=0 and the FISTA is the same as the ISTA when unfolding<2.
The top two cases in each dataset are shown in boldface. b The number of trainable parameters is counted in millions (M).
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Frequent concatenate and split operations are used
in the MSD-CSC model (see Fig. S3A in the online
supplementary material).This limits the application
of the MSD-CSC model with more unfolding and
layers. We believe that such an implementation is-
sue could be addressed with improved software in
the near future.

CONCLUSION
Inspired by the relationship between neural net-
works and theML-CSCmodel, we develop the Res-
CSC model to explore the LIQ. Intriguingly, the
ResNet can be seen as a special case of the Res-CSC
model. Hence, we think the LIQ is the key issue be-
hind the degradation phenomenon, which has not
been formally proposed before. Through evaluation
on three commondatasets,wefind that theRes-CSC
model achieves very competitive or even slightly bet-
ter performance compared to that of the ResNet.
Next, we introduce the MSD-CSC model to deci-
pher the emerging MSDNet architecture via adapt-
ing the dictionaries in theML-CSCmodel.Through
the analysis of this model, we give a theoretical un-
derstanding of the dilated convolution (mixed scale)
and dense connection in the MSDNet. As we know
that sparse coding has more complete theory com-
pared with neural networks. Thus, the bridge be-
tween sparse coding and neural networks makes it
possible to interpret advanced neural networks. In
addition, sparse coding models can be implemented
and solved with elegant mathematical optimization
algorithms, such as the ISTA and FISTA. Numeri-
cal experiments show that theMSD-CSCmodel per-
forms better than the ML-CSC model because of
the advantage of theMSDNet.Moreover, it also per-
forms better than theMSDNet because of the power
of the ISTA and FISTA with the unfolding trick,
which achieve distinctive improvements without ex-
tra parameters.

We conclude some further thinking and poten-
tial research directions. First, as shown in this pa-
per, the Res-CSCmodel gives an answer to the LIQ.
Is this answer the best? We think it is a challenge
to find a universal rule for finding the best initial-
ization since we would meet different features in
different layers. Meta learning may give a potential
solution through drawing lessons to learn the initial-
izations. Second, we can see that dilated convolution
corresponds to the dilated convolutional dictionary,
and the dense connection corresponds to an identity
matrix in the dictionary. Can we find a better dictio-
nary structure inspired by such observations? And
what operation does this new dictionary structure
correspond to? This would help us find a new basic
operation used for extracting features from data.

Since the Res-CSC and MSD-CSC models both
belong to the ML-CSC model, the error bound
for the ML-CSC model [26] also applies to the
Res-CSC and MSD-CSC models. The question is
whether there exists a tighter bound, which we ex-
pect to answer in future work. Moreover, some ar-
chitectures or operations in neural networks still lack
theoretical understanding (e.g. batch normalization,
dropout). Can we explain them in a sparse coding
framework? On the one hand, we expect to find a
mathematical understanding and improve the orig-
inal models. On the other hand, we hope to find the
key roles that these models play in the context of
sparse coding.
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