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Abstract

Imatinib is a drug for the treatment of Chronic Myeloid Leukemia (CML) and other cancers that 

works by blocking the catalytic site of pathological constitutively active Abl kinase. While the 

binding pose is known from X-ray crystallography, the different steps leading to the formation of 

the complex are not well understood. The results from extensive molecular dynamics simulations 

show that imatinib can primarily exit the known crystallographic binding pose through the cleft of 

the binding site or by sliding under the αC helix. Once displaced from the crystallographic 

binding pose, imatinib becomes trapped in intermediate states. These intermediates are 

characterized by a high diversity of ligand orientations and conformations, and relaxation 

timescales within this region may exceed 3–4 ms. Analysis indicates that the metastable 

intermediate states should be spectroscopically indistinguishable from the crystallographic binding 

pose, in agreement with tryptophan stopped-flow fluorescence experiments.

Graphical Abstract

1 Introduction

Protein kinases are enzymes that catalyze the transfer of the γ-phosphate of an adenosine 

triphosphate (ATP) molecule to a tyrosine, serine, or threonine residue of a substrate protein. 

They form a large family of proteins involved in a wide range of signaling pathways. Ever 

since the early success of the Abl kinase inhibitor imatinib (Gleevec), tyrosine kinases have 

been recognized as promising therapeutical targets1,2. In patients with Chronic Myeloid 

roux@uchicago.edu. 

Supporting Information Available
Tabulated pulling simulation data; Lengths of unbiased MD trajectories; Behaviour of structural features during unbiased MD 
trajectories; Separation plots for VAMPnet; Metastable memberships of each unbiased MD trajectory as a function of time. This 
material is available free of charge via the Internet at http://pubs.acs.org/.

HHS Public Access
Author manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2021 July 19.

Published in final edited form as:
J Chem Theory Comput. 2020 December 08; 16(12): 7852–7865. doi:10.1021/acs.jctc.0c00739.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/


Leukemia (CML), Abl is expressed as the BCR-Abl fusion protein that is constitutively 

catalytically active3. Imatinib inhibits BCR-Abl (and a few other aberrant kinases) by 

blocking its ATP binding site and by locking Abl in a catalytically inactive conformation1,2. 

The binding site is located between the N-lobe and the C-lobe of the catalytic domain and it 

is surrounded by multiple flexible structural elements: the phosphate-positioning loop (P-

loop), the activation loop (A-loop), the αC helix and the conserved Asp-Phe-Gly (DFG) 

motif, that is located at the N-terminal end of the A-loop (see Figure 1).

The high affinity and specificity of Abl for imatinib raised a number of fundamental 

questions. For example, while imatinib is a potent inhibitor of Abl, it has a much reduced 

affinity for c-Src (2400 times), despite the significant sequence identity between the two 

kinases (47%), particularly at the binding pocket7. Based on the X-ray structure of the 

imatinib-Abl complex showing that the DFG motif was flipped (DFG-out) relative to the 

more common DFG-in conformation, a “conformational selection” mechanism was 

proposed to account for the difference in binding affinity8. However, this argument was 

subsequently undermined by additional X-ray structures of c-Src kinase in complex with 

imatinib and several other inhibitors showing that the DFG-out conformation was also 

accessible for c-Src7,9–11. Computational studies showed that the DFG flip is indeed 

possible for both Abl and c-Src, but the latter is more energetically costly12–15. Different 

force fields and computational methodologies indicated that this penalty is on the order of 2–

4 kcal/mol12,14,16, which accounts for the observed difference in binding affinity. Further 

complicating this “thermodynamic penalty” mechanism, alchemical FEP computations 

revealed that additional hidden factors (intrinsic affinity, steric clash with P-loop) partly 

cancel one another to also contribute to the observed affinity of imatinib for Abl and c-

Src13,16,17.

Nevertheless, the issue regarding the molecular origin of the binding specificity of imatinib 

is not settled. Using kinetic stopped-flow tryptophan fluorescence experiments, Agafonov et 

al.6 showed that imatinib binds via a two-step process represented by the Scheme,

P+L P − L PL (1)

where P represents the protein, P-L is the protein-ligand intermediate state, and PL is the 

strongly bound complex. The first step is a concentration-dependent bimolecular association 

leading to the formation of a ligand-bound intermediate, and the second step is a slow 

concentration-independent unimolecular rearrangement. The results were interpreted as 

evidence of an induced-fit mechanism involving a conformational change of the kinase 

occurring over a slow timescale after ligand binding, assumed to be at the origin of the high 

specificity of imatinib for Abl relative to c-Src. However, the structural character of the 

intermediate state and of the induced-fit step is not known and our understanding of the 

underlying molecular mechanism is incomplete.

Detailed MD simulations offer a powerful approach to resolve this issue by providing 

molecular-level information about the binding mechanism of imatinib to Abl and c-Src. In 

principle, to explain the tryptophan fluorescence experiments, one would need to fully 

characterize the binding mechanism of the inhibitor with the two kinases, and identify all the 
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critical kinetic steps leading to the formation of the complex. Previous MD studies of the 

Abl-imatinib system have provided some clues about the binding process. Simulations by 

Yang et al.18 indicated that there are two paths for imatinib to enter the binding pocket: 

either by sliding under the P-loop or by sliding under the αC helix (see Figure 1). Lovera et 

al.19 proposed that the intermediate observed in the stopped-flow experiments corresponds 

to a structure with imatinib bound in the hydrophobic pocket with an imatinib orientation 

that is reversed with respect to the crystallographic pose (e.g. in PDB structure 2HYY20). 

The simulation length in these early works was very short (1 ns per trajectory in Yang et al.
18, and 300 ns in total in the metadynamics study by Lovera et al.19) and we expect that a 

more thorough sampling will deepen our understanding of the binding process.

Our goal with the present effort is to further our understanding of the binding mechanism by 

discovering the intermediate conformational states that the Abl-imatinib system visits along 

the binding/dissociation pathway. For this purpose, we carry out multiple non-equilibrium 

“pulling” MD simulations, followed by unbiased MD simulations initiated from 

conformations picked along the pulling trajectories. The simulation data was subsequently 

analyzed with a VAMPnet21 to detect and determine metastable states. The results show that 

a large number of long-lived intermediate states characterized by a high diversity of ligand 

orientations and conformations are possible along the binding pathways. Analysis indicates 

that the set of metastable states generated by the simulations should be spectroscopically 

indistinguishable from the bound state corresponding to the crystal structure of the imatinib-

Abl complex, in agreement with the tryptophan fluorescence experiments of Agafonov et al.
6

2 Theory and Methods

2.1 MD Setup

The simulated construct consists of residues 235 (Trp) to 498 (Gln) of Abl kinase 

(numbering scheme of PDB 2HYY20). Initial conformations were taken from PDB crystal 

structure 2HYY20. Histidines 246, 295, 396, 490 were protonated at their δ site. Histidines 

361, 375 were protonated at the ϵ site as in the simulations of Lin and Roux16. The kinase 

was solvated with 14577 water molecules (including the crystallographic waters, all of 

which were kept). We set an ionic strength of 0.15 M by adding 48 potassium ions and 41 

chloride ions with Charmm-Gui22. The aqueous concentration of imatinib is roughly 3.8 

mM, estimated from the volume occupied by the total number water molecules in the 

simulation box. For the protein, we use the Charmm-36m forcefield23. For imatinib we used 

the previously published parameters17 that were obtained from quantum computations using 

the GAAMP software24,25. MD simulations were run at a temperature of 303.15 K and 1 

atm pressure. Simulations were run with repartitioned hydrogen masses in the solute 

molecules26, allowing an integration time step of 4 fs. In the Anton runs, simulations were 

run with a time step of 3.2 fs, due to limitations of the M-SHAKE method (and the 

simultaneous requirement that 100 ns is an integer multiple of the time step, so as to avoid 

using different time units in different trajectories). All pulling simulations were conducted 

with the NAMD molecular dynamics code27 and the colvar module28. All unbiased 

simulations were performed with the Amber GPU code29 and on the Anton 
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supercomputer30. The unbiased non-Anton simulations were run on a small GPU cluster (30 

commodity GPUs, GeForce GTX 780) constantly for several months. In-house software was 

developed to achieve fault-tolerance and to automate failover in cases of GPU overheating 

and GPU memory errors. Running on a small cluster but for relatively long times allows to 

generate long trajectories (on the order of 10 μs single trajectory length) which facilitates 

data analysis.

2.2 Pulling protocol and unbiased trajectories

Unless stated differently in the main text, we applied the following undirected, time 

dependent pulling potential that acts on the center of mass of imatinib:

U(x(t), t) = k
2 COMimat(x(t)) − c − vt 2 + Ures(x(t)) (2)

where c = COMimat(xXray) is the center of mass of imatinib in the crystal structure 2HYY. k 
= 100 kcal mol−1A−2 is the spring constant, v is the pulling velocity v = 6.25 × 10−3m/s (in 

the “slow” simulations) and v = 6.25 × 10−2m/s (in the “fast” simulations).

The kinase is restrained in absolute space (lab coordinate system) with the potential 

Ures(x(t)) that contains a harmonic protein center-of-mass (force constant 200 kcal mol−1A
−2) and harmonic quaternion restraints (protein rotation restraint, force constant 1000 kcal 

mol−1)28. In these restraints, the kinase is held by the backbone atoms of its binding pocket. 

We define the binding pocket as the 85 canonical residues that are shared between kinases 

and that are reported in van Linden et al.31. From the 85 residues, we exclude residues that 

are in the flexible subdomains (A-loop, αC) which leaves 72 residues. The conformation of 

the DFG motif was not restrained in any simulation. For some simulations (labeled with 

“fix” in Table S1), we further restrained the orientation of the αC helix. The force constant 

for the αC helix was 10 kcal mol−1A−2.

From the pulling trajectories, a set of 112 initial structures was generated by sampling with 

uniform time intervals. From all initial structures, long conventional molecular dynamics 

simulations were run with the Amber GPU29 code. Simulations were terminated if imatinib 

returned to the crystallographic bound state or dissociated to the the fully unbound state. 

Only 30 trajectories were terminated, the rest is sampling states were imatinib is trapped in 

non-crystallographic bound states.

All analysis was done using a combinations of in-house software, VMD32, the MDTraj 

software33, the PyEmma software34 and the VAMPnets21 package for TensorFlow35.

2.3 Observables for Abl conformational state

To monitor the conformational state of Abl in the presence of imatinib, we use five simple 

distances that have been shown to well characterize the state of the individual flexible 

subdomains of kinases (see Table 1)36,37. As shown by Paul et al.37, the sum d3 +d4 can be 

used to approximately cluster DFG conformations into DFG-in and DFG-out states. 

Similarly, the sum d1 + d2 can be used to distinguish the extended conformation and the 

kinked conformation of the P-loop. The distance d6 describes that length of the catalytically 
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important Lys271-Glu286 salt bridge and can therefore be used as an indicator for kinase 

activation.

2.4 Visualization of re-binding and dissociating trajectories

To visualize the three groups of trajectories that rebind to the crystallographic state, those 

that get trapped in intermediate states, and those that fully dissociate, we compute the 

separating surfaces in the 3-D feature space of the center of mass (COM) position of 

imatinib. Surfaces are generated with a modified marching cubes algorithm38 as 

implemented in the scikit-image software39. The input data consists of the center of mass 

positions of imatinib in all frames of all trajectories. Each trajectory was labeled by the 

“fate” of the trajectory as determined by the committor like analysis: trajectories that reach 

zero contacts between imatinib and the kinase are labeled as fully dissociating trajectories. 

Trajectories where the RMSD between the imatinib atoms position and the imatinib atoms 

positions in the crystal structure reaches values lower than 2 Å are labeled as rebinding 

trajectories. All remaining trajectories are labeled as trapped trajectories.

The data points in all trajectories of a given category are discretized on a 3-D grid (grid 

resolution 3 bins Å−1 for the surface between rebinding trajectories and trapped trajectories 

and 1 bins Å−1 for the surface between dissociating trajectories and trapped trajectories) 

after smoothing the points with a Gaussian kernel (kernel size 1/3 Å for the surface between 

rebinding trajectories and trapped trajectories and 1.5 Å for the surface between dissociating 

trajectories and trapped trajectories). The resulting grids contain the populations for each 

category of data points. For each surface, the populations are normalized by the populations 

in the two respective grid cells, i.e. pi, j, k = ni, j, k
(1) / ni, j, k

(1) + ni, j, k
(2)  where i, j, k are the 

Cartesian grid indices and ni, j, k
(1) , ni, j, k

(2)  are the populations of the respective grids. The 

marching cubes algorithm38 is then applied to the probability grid, so find the isosurface at 

the reference value p* = 0.5. The marching cubes algorithm computes a set of triangles that 

represent the isosurface. This procedure alone does not yield the correct dividing surface, but 

includes patches that lay at the interface of e.g. trapped trajectories and empty grid cells. 

Consequently, these incorrect parts of the surface are deleted. This deletion is done by first 

testing whether each triangle separates the two correct volumes, by inspecting the 

populations grids ni, j, k
(1) , ni, j, k

(2)  on both sides of the triangle. The remaining set of triangles is 

visualized in VMD and superimposed by the crystal structure of Abl kinase domain. For a 

more rigorous but also more complicated approach (that we do not follow here) see 

reference40.

2.5 Details of VAMPnet analysis

To identify long-lived conformation and to group individual MD snapshots into an expedient 

number of discrete states, we use a tool from the world of Markov modeling: the 

VAMPnet21. While clustering is not directly part of the computational procedure for 

determining mechanisms, it helps to organize the data and to objectively define metastable, 

trapping states that might be responsible for the slow binding of imatinib (See Figure 2).
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Like Markov state models, a VAMPnet identifies the long-lived states but does not require 

the numerous individual (pre-) processing steps of Markov modeling (dimension reduction, 

clustering, transition matrix estimation, eigendecomposition) thus allowing to obtain results 

will less manual intervention in the analysis pipeline21. VAMPnets combine insights form 

dynamical operator theory with machine learning to define a differentiable coordinate 

transformation from conformational space (or alternatively from feature space) to the space 

of metastable membership functions. The metastable memberships of a conformation 

express the conformation’s degree of belonging to each of the n metastable states41. The 

differentiable transform from conformations to membership functions is optimized with 

gradient-based techniques, allowing to employ machine learning software packages such as 

TensorFlow35.

An important component in the VAMPnet is the so-called softmax non-linearity. The 

softmax is the vector map from ℝn to [0, 1]n defined as (f(z))i = ezi/∑kezk. For the special 

case of two metastable states, a softmax transform consists of a pair of Fermi-functions f(w · 

x + b) and 1 − f(w · x + b) where f(E) = 1/(1 − e−E), x is a feature vector, and (w, b) are the 

trainable parameters. Training the neuronal net amounts to optimizing the hyperplane 

parameters that encode the location of the “Fermi level” (i.e. the hyperplane in feature space/

conformational space that belongs with 50% probability to both metastable states) and the 

“temperature” parameter that encodes the abruptness of the state transition and allows the 

net to adapt itself to the scaling of the input features. In general, the softmax non-linearity 

allows to separate more than two states. Still the underlying idea remains the same: half-

plane parameters and “temperature” parameters are optimized by following the gradient of 

an (unsupervised) loss function21. Extra non-linearity can be added to the procedure, by 

stacking additional (non-linear) layers onto the neural net21. These allow to deviate from 

completely planar (linear) hyper-surfaces and equip the separating hyper-surface with 

curvature and kinks as well as with spatially dependent abruptness parameters.

We trained a shallow and wide VAMPnet comprising only a single soft-max layer on feature 

trajectories computed from the unbiased molecular dynamics simulations. The input features 

that go into the VAMPnet to define the metastable states are not the individual atom 

positions. Instead, the input features can already be grouped in a meaningful way to reduced 

the input dimension. For the protein, atoms can be grouped into amino acids. For imatinib, 

there is no such generally agreed upon grouping of atoms, so we defined six groups of atoms 

(colored differently in Figures 5 and 8). The feature trajectories consist of 1584 = 246*6 

minimal reciprocal residue distances between the 246 residues of the simulated Abl 

construct and the six groups of atoms in imatinib. Computing the reciprocal of minimal 

distances converts them to smoothed indicator functions that are approximately zero if a 

contact is broken and non-zero if a contact is formed. Such smooth contacts functions have 

been proved to preform better for Markov model construction for many molecular 

systems42. Only non-hydrogen atoms were considered in minimal distance computation.

The lag time of the VAMPnet was chosen as 10 ns. The neural net was trained with Adam 

optimizer43 with a fixed learning rate of 10−4 and using batches consisting of 1000 randomly 

shuffled transition pairs. The number of epochs was chosen as 60. Multiple repeats were run 
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with different shuffling of the input data (shuffling of transition pairs). 10% of the data 

(highly correlated to the training data) was selected for cross-validation. Since the sampling 

of conformational space is so sparse, no independent data can be held out from analysis for 

cross-validation. Even if, the held out data would be so different form the rest, that it would 

never confirm the model that was trained on the rest. To do at least some minimal cross-

validation, we split the data into two highly correlated sets: a) every tenth frame, starting to 

count at the zeroth frame b) every 10th frame, starting to count at the fifth frame. Set (a) is 

used for training while set (b) is used for this “fig leaf” cross-validation.

In almost all runs, the VAMP score21 (that is used as the negative loss function) approaches 

its theoretical maximum which is the number of macrostates. We observe this behavior for 

different choices of the number of macrostates (15, 20, 30, 40 macrostates). This suggests 

that there are at least 40 long-lived states that are sampled in our MD data. For the sake of 

interpretability of the data, we do not cluster with more than 40 macrostates.

2.6 Separation plots

The separation plots analysis is carried out in the following way. Let M ∈ ℝT × N be the 

matrix of metastable memberships for the N metastable states and the T molecular 

conformations, that was e.g. generated with a VAMPnet. Introduce the linear map 

P ∈ ℝN × 2 defined as follows

Pi, 1 = sin 2π(i − 1)
N (3)

Pi, 2 = cos 2π(i − 1)
N (4)

The separation plot is generated by first computing the projected points S ∈ ℝT × 2 as follows

S = MP (5)

and subsequently showing them as a scatter plot or 2-D histogram. In the scatter plots, 

projected memberships for different trajectories are shown with distinct colors. 

Generalizations of this projection method to other non-circular arrangements are 

conceivable.

2.7 Modeling tryptophan fluorescence quenching

To relate the results of the MD simulation data to the experimentally measured tryptophan 

fluorescence data, we recovered the specific total tryptophan fluorescences (amplitudes) 

from the stopped-flow time traces that were published by Agafonov et al.6 The relaxation 

time traces were modeled with a two-step kinetic model based on Scheme (1). The 

population dynamics in the induced fit model can be described with the following 

differential equation

d
dtc(t) = M c(t)
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subject to the initial value condition

c(0) =
[P]0

0
0

where

M =
−kon[L]0 koff 0
kon[L]0 −koff − kconf+ kconf−

0 kconf+ −kconf−

Solving the differential equations, allows to model the fluorescence time traces with the 

following expression:

x tk =
AU
AI
AX

⊤

V
eλ1tk 0 0

0 eλ2tk 0
0 0 eλ2tk

V−1
[P]0

0
0

(6)

where λ1, λ2, λ3 are the eigenvalues of M and where V is the matrix of eigenvectors of M. 

AU, AI, AX are the specific fluorescences of the unbound protein species, the ligand-bound 

intermediate and the fully bound state respectively. We aim to infer the values of AU, AI, AX 

including their error bars from the published data.

We modeled the values of the rates (kon, koff, kconf+, kconf−) with Gaussian priors with 

parameters set to the respective means and standard deviations reported by Agafonov et al.6 

The values of the initial concentrations [P]0 and [L]0 are modeled with Gaussian priors with 

parameters set to the nominal ligand and protein concentrations reported in the same 

publication. We assumed a 10% relative error of the initial concentrations. The time traces 

from the original publication were digitized with the g3data software and fit with the 

induced fit model (Eq. 6) using the pymc software package. The initial points in some time 

traces were excluded, because the fast relaxation appears as a vertical line in the plots in 

Agafonov et al.6 so that the values on the time axis in some of the initial points could not be 

determined. The missing data was replaced by putting a strong prior on AU (AU ∈ [81, 100]) 

or by adding a virtual data point x(0) = 9.1 to each trace. Each time trace was fit 

individually.

Distributions of AU/AX and AI/AX at different concentrations are shown in Figure 3. The 

plots show that the specific tryptophan fluorescences of the fully bound state and the 

intermediate state are similar, with the fluorescences of the intermediate being a bit lower 

than that of the fully bound state.

For the analysis, the solvent-accessible surface area (SASA) for each tryptophan residue was 

computed with the Shrake-Rupley algorithm44 as implemented in the MDTraj software33. 

Trp-SASA was computed from three types of data: (i) from a 1.6 μs long MD simulation 

that was started from the crystal structure 2HYY. (ii) from the set of representative 
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conformations that were sampled from each of the metastable states of the Abl-imatinib 

system (intermediates and crystal-like state). (iii) from the set of representative 

conformations that were sampled from the 30 metastable states of apo Abl that were 

published in Paul et al.37.

3 Results and discussion

3.1 Pulling simulations reveal three main pathways

To escape the crystallographic bound state in the simulation and to generate complex 

conformations distinct from that state, we performed pulling simulations at different 

velocities. In the “fast” simulations we pulled 25 Å over 40 ns and in the “slow” simulations 

over 400 ns. We know that the pathways have to end at the crystallographic pose; we 

therefore start all pulling simulations from the X-ray structure pdb id 2HYY of human Abl 

kinase and pull imatinib away from that state (see Theory and Method for details). Our hope 

with this procedure is to generate mostly conformations that are in some sense close to the 

crystallographic state, and thus are more likely to fall along the binding/dissociation 

pathways. Here, we are not especially interested in off-site binding and therefore we do not 

perform many simulations that start from fully dissociated states. Previous MD studies have 

shown that the binding-competent DFG-out state is metastable in Abl14,36,37, we therefore 

do not prepare simulations with initial conditions in the DFG-in state. (But we also do not 

prevent the DFG motif from changing conformation during the simulations.)

The results of the pulling are summarized in Figure 4 and Table S1. We find three clusters of 

broadly different pathways: exit under the P-loop, exit under the αC (i.e. through the 

hydrophobic pocket) as previously observed by Yang et al.18, and direct exit though the cleft 

of the binding site. The pathway through the hydrophobic pocket and through the cleft are 

observed in two variants each: they can take place with a concerted DFG-out→DFG-in flip 

or without a flip. Some runs produced unrealistic pathways where imatinib wedges under the 

αC helix and redirects the pulling force such that the N-lobe is strongly distorted. Such 

unphysical pathways were more frequent in the fast pulling simulations compared to the 

slow simulations (see Table S1), and are likely artifacts of the fast pulling. We excluded 

them from further analysis.

To generate the three types of pathways (under P-loop, under αC, and through the cleft), we 

ran two different types of pulling simulations: undirected and directed pulling. In the 

undirected pulling, imatinib is forced to leave the crystallographic binding pose but no 

direction of motion was imposed (see Pulling protocol in Theory and Methods). Imatinib 

then spontaneously choses to exit either under the αC or directly through the cleft (with or 

without DFG-flip). Our undirected pulling failed to produce trajectories where imatinib 

slides under the P-loop (which had been observed previously with directed pulling18). We 

therefore performed additional slow directed pulling slow simulations, that reproduce the 

exit under the P-loop. Visualizing the pulling force (see Figure 4c) shows that the slope in 

the beginning of the P-loop pathway is steeper than the slope along the other pathways. The 

pathway where imatinib squeezes through the cleft without DFG-flip, accumulates the least 

non-equilibrium work, which is preliminary evidence for its existence (see Table S1). The 

pathway with the next least non-equilibrium work is the pathway through the hydrophobic 
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pocket (without DFG-flip). Wilson et al.45 assumed that the intermediate is DFG-out, while 

we also observe a DFG-in variant in our pulling simulations.

3.2 Committor-like analysis of intermediate states

Inspection of the pulling trajectories indicates that there are qualitatively different regions in 

the Abl-imatinib energy landscape. Close to the crystallographic state, it seems that imatinib 

has to climb out of a deep well in order to leave the binding pose. Close to the fully 

dissociated state, the force needed to pull imatinib further out becomes relatively small. In 

between lies a free energy region that appears comparatively rugged (see Figure 4c).

In order to characterize the different regions of the energy landscape, that lie between the 

crystallographic bound state and the dissociated state, we carried out long unbiased MD 

simulations that are initiated from different snapshots taken along the pulling simulations. 

The aggregate trajectory length of all MD data is 529 μs. The unbiased MD simulations are 

carried out according to a “committor-like” analysis46. This means that MD trajectories are 

terminated whenever they reach the crystallographic bound state or the fully dissociated 

state. In Figure 5, the ultimate fate of these trajectories is first delineated by two spatial 

envelopes indicating the starting point of trajectories that rebind to the crystallographic 

mode (a) and the starting point of trajectories that lead to full dissociation (b).

In Figure 6 we provide a more detailed graphical summary of the committor-like analysis 

using a projection onto the long and short axis used in Figure 4. Each MD trajectory is 

represented by a disc. Disc color represents the fate of the trajectory. Cyan means that the 

trajectory reaches the fully dissociated state. Orange means that imatinib falls back to the 

crystallographic binding mode. Purple discs represent trajectories that get trapped in 

intermediate bound states. Disc size represents the time it takes a trajectory to reach its final 

state (for the cyan and orange discs) or the trajectory length (for the purple discs). Individual 

trajectory lengths are limited by our computational resources (they range between a few 

nanoseconds and 30 μs, see Figure S1). The maximum length of 30 μs can therefore only be 

understood as a lower bound on the lifetimes of the intermediates.

On the basis of Figures 5a and 6, we observe that there is a small region surrounding the X-

ray pose where trajectories return quickly to the crystallographic bound state. Conversely, 

there is a broad region surrounding the active site region where trajectories dissociate fairly 

rapidly into solvent (Figure 5b). The long-lived intermediate metastable associated states 

reside within a rugged landscape located in the region between these two surfaces, 

delineating the configurations rebinding rapidly (Figure 5a) and the configurations rapidly 

dissociating into solvent (Figure 5b). The trajectories that do not rebind quickly or escape 

into solvent, become trapped in the intermediate region. We do not observe slow rebinding 

of these intermediates to the X-ray pose (there are no large orange discs in Figure 6). This 

indicates that there is a significant bottleneck between the two regions. Figure S2b shows the 

parts of the pulling trajectories from the X-ray state to the conformation of maximal pulling 

force. The small region sampled by these trajectories should roughly correspond to the main 

basin around the crystallographic state.
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Visual inspection shows that instead of escaping or rebinding, trajectories in the intermediate 

region sample new binding modes that we did not observe in the pulling simulations. The 

modes differ in the location, orientation and conformation of imatinib as well as in the 

conformation of Abl. Imatinib binds in various poses: in the hydrophobic pocket located 

between the αC helix and the β-sheets in the N-lobe, under the P-loop, and at the entrance of 

the cleft. The DFG motif can be in the in or out state.

The observation of long-lived intermediates leads us to the next question: whether some of 

those intermediates are able to inhibit the catalytic activity of Abl. Since imatinib can move 

quite far from the crystallographic bound state while still remaining bound to Abl (see 

Figures 5a and 6), this is a nontrivial question. For most kinases the conformational 

determinants for catalytic activity are known47: the DFG motif needs to be in the in 
conformation, the salt-bridge between Lys271 and Glu286 needs to be formed (which is 

facilitated by the inwardly-rotated conformation of the αC helix) and the catalytic spine that 

involves the residues Asp421, His361, Phe382, Met290, Leu301 needs to be formed48. 

Furthermore, the catalytic site needs to be accessible to ATP and the activation loop must not 

occlude the catalytic site so that substrate proteins can bind correctly to the kinase. We 

therefore examined the conformation of the DFG motif and the state of the Lys271-Glu286 

salt bridge in all our MD trajectories. In Figure S3 to S7 we show the time-dependent state 

of the DFG motif and of the salt bridge (for details see Observables for Abl conformational 

state in Theory and Methods). The time series show that for the majority of trajectories, the 

DFG motif remains in the out conformation. Notable exceptions are simulations of the so-

called “Syk-mode” where imatinib binds under the P-loop as a type I inhibitor similar to the 

pose observed in a crystal structure of Syk kinase (pdb id 1XBB)49. A metastable 

conformation of Abl resembling that of 1XBB was previously identified in a MSM analysis 

of apo-Abl37. Three test simulations of this putative Syk-like binding pose for Abl indicate 

that imatinib would remain stable for a period of time, but then depart from the binding pose 

on a timescale of about 2 μs. In these simulations, imatinib either remains in state number 1 

(see Figure S11, Simulations 96, 98), or leave this pose to go to the superficially bound state 

number 9 (see Figure S10, Simulations 4).

In some trajectories, we observe an occasional transition of the DFG motif (see Figure S3 to 

S7 , Simulations 21, 35, 46, 51, 94 ). Since the natural timescale for DFG flipping in many 

kinases is on the order of milliseconds50, we think that the observed DFG flips correspond to 

the release of tension that has been accumulated by preparing the conformations with pulling 

simulations. In several trajectories, (Simulations 21, 31, 34, 42, 43, 46, 51, 94) the DFG 

motif remains in the in state, still the Lys271-Glu286 salt bridge is broken so that the kinase 

is catalytically inactive (see Figure S3 to S7). Only three trajectories visited the combination 

of DFG-in with a formed Lys271-Glu286 salt bridge (Simulations 21, 35, 41). However Abl 

does not become catalytically active in two of these three trajectories, (Simulations 35, 41) 

since imatinib still occupies the ATP binding pocket. In one trajectory, (Simulation 21) 

imatinib is initially bound under the P-loop while the DFG motif flips from out to in and 

imatinib slowly proceeds to dissociation. This latter trajectory captures a stage of activation.
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3.3 Orientation of the ligand in the metastable states

To understand how the overall orientation of imatinib changes as it moves along the binding 

pathway, we map out its polar and azimuthal angles as a function of its position in the plane 

that separates the N-lobe and the C-lobe. The results are shown in Figure 7.

Keeping in mind that the figure only tracks the orientation of imatinib as a function of its 

center-of-mass position with respect to the two axes, three main regions are noticeable. In 

region 1, binding under the P-loop takes place at angles that are different from that in the 

crystallographic pose. In contrast, in region 2, binding in the hydrophobic pocket and in 

front of the cleft takes place with an orientation that is quite similar to the crystallographic 

pose. In region 3, between the crystallographic pose and the hydrophobic pocket pose, there 

is a well-defined region, where the azimuthal angle changes towards positives values. This 

might correspond to the barrier where imatinib has to twist in order to transition between 

these two states. Despite the similar orientations of imatinib in some of the binding modes, 

interconversion is slow (or even absent in our MD data, e.g. the transition in and out of the 

crystallographic state) which suggests that the angles are not sufficient to completely explain 

the binding process.

3.4 Network of metastable intermediate states

We count a total of 59 state-to-state transitions (36 unique pairs of states are connected by at 

least one transition). However, since many transitions are only observed in one direction 

with the reverse transition missing in the data, we cannot build an MSM from this MD data. 

Still, defining the states allows us to estimate lower bounds on the state lifetimes. To 

systematize the diversity of binding modes and Abl conformations in the MD data, we 

cluster the data with a single-layer VAMPnet21. See Details of VAMPnet analysis in Theory 

and Methods for additional information.

As the input features for the VAMPnet we use 1584 reciprocal distances between Abl 

residues and imatinib “pharmacophores”. The VAMPnet assigns conformations to different 

metastable states21, in a similar way as the PCCA+ kinetic clustering algorithm that is used 

to coarse-grain MSMs37,52. However, VAMPnets dispense with the geometric clustering step 

that is used in Markov modeling and therefore allow a much quicker data analysis. From 

each metastable state, we sample 100 representative conformations for further analysis. The 

most central conformation of each metastable state is shown in Figure 8, together with the 

connectivity of the network. The histogram representation in Figure S9 shows that the 

trajectory data is mostly concentrated in the states that are detected by the VAMPnet (at high 

state memberships), confirming that the clustering was successful. To further validate the 

kinetic clustering, we plot in Figure S10 to S11 the metastable assignments that are output 

by the VAMPnet. The (multivariate) time series representation in these plots confirms that 

the states are indeed long-lived at the multi-microsecond timescale and that transitions 

between states are rare events.

Lower lifetime bounds for the individual states are shown below the representative structures 

in Figure 8 and range between 0.6μs and 8.5μs. Collective lifetimes of an aggregated set of 

metastable states can be even longer. For instance states 2, 3, 5, 10, 12, 15, 18, 19, and 21 
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are all states where imatinib binds in the hydrophobic back pocket indicating that the total 

dwell time in the hydrophobic pocket would be even longer. Results of the clustering 

reiterate our observation of vastly diverse binding modes, that differ in location, orientation 

and conformation of imatinib as well as in the conformation of Abl.

It is of interest to consider the relative binding affinity of the different metastable states. 

While a quantitative assessment based on free energy calculations would be prohibitive, a 

simple approximation may be sufficient to make important observations. To this end, we 

compute the number of salt-bridges, of hydrogen bonds and of hydrophobic interactions 

using the Protein-Ligand Interaction Profiler (PLIP) software51. The information is provided 

as three integers in Figure 8. For the crystal structure 2HYY, PLIP reports one salt bridge, 6 

hydrogen bonds and 11 hydrophobic contacts. For each metastable state, we compute the 

corresponding average from 100 representative frames sampled from the state. For the 

metastable state 20, that contains the crystallographic conformation (2HYY), the average 

contact numbers are slightly different from the single-conformation numbers (2 salt bridges, 

4 hydrogen bonds and 9 hydrophobic contacts). Among the non-crystallographic metastable 

states, PLIP finds other states with strong polar interactions, in particular state 27 where 

imatinib is located between the P-loop and the A-loop at the entrance of the cleft, and state 

10 where imatinib is partially inside the hydrophobic pocket and partially wedged between 

the A-loop and the C-lobe. The large number of charged and non-charged interactions in 

some macrostates strengthens our interpretation that some of the metastable binding poses of 

imatinib are long-lived. We noted earlier that the overwhelming majority of conformations 

that are explored by the committor-like analysis are likely to be catalytically inactive. This 

indicates that non-crystallographic binding of imatinib might have some (minor) 

contribution to Abl inhibition.

3.5 Overall timescales of the binding process

The transition rates that were extracted from the kinetic model fitted to the stopped-flow 

tryptophan fluorescence experiments of Agafonov et al.6 are 20 s−1 from the intermediate to 

the fully dissociated state, and 1.5 s−1 from the intermediate state to the final bound state6. 

As the data is primarily of a kinetic nature, it is important to attempt a characterization of the 

timescales involved in the different aspects of the binding process seen in the computations.

First, we need to determine how association proceeds with imatinib starting in the unbound 

state. To this end, we run 28 repeats with trajectory lengths ranging between 600 ns and 2 μs 

(≈ 50 μs of aggregate data) starting with imatinib in the solvent and Abl kinase initialized in 

the binding-competent DFG-out conformation taken from the crystal structure 2HYY20.

We observe a large number of possible superficial binding poses. These nonspecific binding 

poses can still be fairly strong, imatinib remaining associated for the entire 2 μs in some 

trajectories. In two trajectories (unbound-8, unbound-26) imatinib comes close to the entry 

of the binding tunnel close to the P-loop but does not enter the tunnel. The conformation in 

trajectory unbound-8 is reminiscent of a reverse Syk-like-mode. In trajectory unbound-21 

imatinib attempts to enter the hydrophobic pocket between the αC helix and the β-sheets in 

the N-lobe (but does not succeed in entering the binding pocket). The region accessible to 
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the ligand starting in the solvent is roughly consistent with the surface delineating the 

positions of imatinib that rapidly dissociate and escape into solvent (Figure 5b).

These observations regarding the rapid occurrence of nonspecific binding poses are in 

qualitative agreement with the two-step binding model proposed by Agafonov et al.6, which 

reports a bimolecular binding rate of kon = 1.5 μM−1s−1 at 5°C. With a simulated aqueous 

concentration [imatinib] ≈ 3.8 mM of molecules in the MD box, this translates into a mean-

first-passage time of 175 μs to the bound state. This estimate is 3.5 times longer than the 

aggregate simulation data in the unbound state, probably due the remaining long-range 

interactions between the ligand and protein in the relatively small simulation box.

The timescales of the transitions from the intermediate states to the crystallographic binding 

pose are considerably more difficult to estimate. The length of the present simulation is on 

the order of 100 μs and thus a factor of 1000 too short to confirm the experimental data 

quantitatively. The 30 metastable states shown in Figure 8 show lifetimes τ on the order of 

3–4 μs on average. If the network allowed only for a unique connected path through the set 

of N metastable states, the global timescale for visiting the entire set would go as τN2, 

yielding a timescale on the order of 3–4 ms. While this is certainly a very rough estimate, 

this naive analysis suggests that long timescales could arise from such a network of 

metastable states. Importantly, the time to actually reach the X-ray pose which is 

disconnected from the set of metastable states in Figure 8, is not even considered in this 

analysis. In this regard, it is noteworthy that, despite the fact that there are multiple pathways 

leading to the X-ray pose, none of them seems to be downhill on the timescale of the 

simulation (tens to hundreds of microseconds). On the contrary, the simulations indicate the 

presence of significant free energy barriers along all pathways. This is in qualitative 

agreement with the experimental observation of a slow conformational rearrangement in the 

ligand-protein complex6.

Despite the considerable computational resources used here, a total of nearly 600 μs (7.4 μs 

for the pulling simulations, 529 μs for the committor-like analysis, and 50 μs for the the 

simulations started with the ligand in solution), a quantitative kinetic characterization of all 

transitions mapping the binding process cannot achieved on the basis of the current 

simulations. Nevertheless, the results are generally indicative of the overall very slow 

timescale that one may anticipate for the binding process. The initial binding starting with 

the ligand in solution is rapid, while the interconversion from intermediate states to the final 

crystallographic binding pose is expected to be extremely slow.

3.6 Comparison with fluorescence quenching experiments

The tryptophan fluorescence experiments of Agafonov et al.6 revealed that imatinib binds to 

Abl kinase via a two-step process based on Scheme (1). The first step, P + L → PL, 

corresponds to a concentration-dependent bimolecular association leading to the formation 

of a protein-ligand intermediate. The second step, P−L → PL, corresponds to a slow 

concentration-independent unimolecular rearrangement that ultimately leads this 

intermediate to the strongly bound protein-ligand complex. Noting that it is this second step 

that is at the origin of the observed high affinity of imatinib for Abl kinase6, the authors 

interpreted this as evidence for an induced-fit conformational change of the protein kinase 
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that is directly responsible for the binding specificity. The present computational results 

provide useful information to clarify the interpretation of fluorescence quenching 

experiments.

Careful numerical analysis of the fluorescence quenching time traces based on the three 

states of Scheme (1) shows that there are two underlying fluorescence amplitudes (see 

Modeling tryptophan fluorescence quenching in Theory and Methods for additional 

information). The fluorescence amplitude of the intermediate and the bound states are very 

similar whereas the fluorescence amplitude of the apo state is roughly 1.4 times stronger 

(see Figure 3). To correlate the fluorescence experiments with the computational results, we 

model the amount of tryptophan quenching on the basis of solvent exposure of tryptophans 

in the MD simulations53. A comparison of the solvent exposure of the current 30 metastable 

states of imatinib-bound Abl to the 30 metastable states of apo-Abl from Paul et al.37 shows 

that the tryptophans in the apo-Abl state are generally more solvent-exposed than in 

imatinib-bound Abl (see Figure 9). In particular the exposure of the two tryptophans in the 

N-lobe (W261 and W235) most differs between apo and holo. Among these two the largest 

the largest difference is for W235, a highly conserved residue within the tyrosine kinase 

family that is located in a sensitive region near the αC-helix at the boundary of the kinase 

domain and the N-terminal linker region54. In c-Src, it is known that the structure is very 

sensitive to this residue and that substitution by an alanine (W260A mutant) leads to an 

increase in basal kinase activity54–56.

To further relate the Trp-SASA to the diverse binding modes of imatinib, we show in Figure 

10 a 2-D projection of the Trp-SASA onto the same coordinate axes that have been used in 

Figures 4 and 6. That is, each imatinib COM position is assigned an (averaged) value of the 

protein Trp-SASA. The 2-D projections show that Trp exposure is similar in all binding 

modes. The crystallographic binding has a similar Trp-SASA to the intermediate states. This 

observation is compatible with our numerical analysis of the experimental fluorescence data 

(see Modeling tryptophan fluorescence quenching in Theory and Methods for for details). In 

conclusion, this analysis indicates that the set of metastable states generated by the 

simulations should be spectroscopically indistinguishable from the bound state 

corresponding to the crystal structure of the imatinib-Abl complex, in agreement with the 

experiments of Agafonov et al.6.

4 Conclusion

Previously MSM analysis showed that the isolated catalytic domain of Abl is flexible in the 

absence of ATP and inhibitors36,37. The present simulations carried out in the presence of 

the inhibitor show that there exists a large number of metastable states corresponding to non-

specific association of imatinib with Abl kinase along two main pathways leading imatinib 

to the binding pocket: sliding under the αC helix without DFG-flip, and squeezing through 

the cleft without DFG-flip. These metastable states are located in a highly rugged and 

complex region of the kinase structure (delineated by the surfaces in Figure 5a and Figure 

5b).
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While a complete kinetic characterization of all transitions mapping the binding process 

could not be computationally achieved here, the result from more than 500 μs of aggregate 

MD data strongly support the notion that the interconversion from the metastable states to 

the fully bound state is extremely slow. This suggests that the set of metastable binding 

modes of imatinib could reasonably give rise to the long-lived intermediate state revealed by 

the tryptophan fluorescence data6. In that sense, the picture emerging from the 

computational analysis is consistent with the actual experimental observation of a slow 

concentration-independent unimolecular rearrangement leading to the final complex. 

Nevertheless, describing the slow second step in terms of an induced-fit mechanism warrants 

some caution.

In the traditional view of the induced-fit mechanism, an initial weakly bound protein-ligand 

complex induces some conformational changes in the protein that leads to a strongly bound 

protein-ligand complex. Agafonov et al.6 speculated that the slow step detected in the 

fluorescence experiment is indicative of some conformational change of the kinase that must 

take place to provide high affinity and specificity. In the present interpretation, it is rather the 

slow rearrangement of the ligand toward its correct binding pocket from a multitudes of 

long-lived metastable associated states that underlies the slow step detected in the 

fluorescence experiment.

Although such a difference may appear to be partly semantic, it is important, in order to 

avoid confusion, to develop a meaningful physical narrative of the binding process at the 

molecular-level to help rationally design specific kinase inhibitors. Effectively, a 

conformation rearrangement of the protein-ligand complex is taking place and is necessary 

to achieve a strongly bound complex. The picture emerging from the present analysis 

suggests that the high affinity binding of imatinib with Abl kinase does not involve a major 

conformational reorganization (induced-fit) of the protein.

What happens is that imatinib encounters a considerable number of non-specific long-lived 

associated states located in a highly rugged and complex intermediate region before it finds 

its way in the final high-affinity binding pose. How this picture is altered in the case of c-

Src, and its impact on binding specificity, is unknown and shall be the object of future 

studies.
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Figure 1: 
Crystallographic binding mode: imatinib (yellow) bound to the catalytic domain of Abl 

kinase (pdb id 1IEP4). The phosphate-positioning loop or P-loop (blue) as well as salt 

bridges between the activation loop or A-loop (green) and bf αC helix (orange) cover the 

binding tunnel at the front. The DFG motif is shown with sticks. Salt bridges involve 

Asp381 in the DFG motif, Arg386 in the A-loop, Glu286 in the αC helix, and Lys271. The 

so-called “hydrophobic pocket” is located between the αC helix and the β-sheets in the N-

lobe5. Tryptophan residues used to monitor the kinetics of binding in fluorescence 

experiments6 are shown as sticks. The three arrows indicate the general direction in which 

imatinib can leave the binding site. In the following, the orange and green arrows are 

referred to as the long and short axis, respectively.
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Figure 2: 
Illustration of variational approach for conformation dynamics: different functions that live 

in the conformational space are proposed (see (a) for good a example and (b) for a bad 

example). Functions are ranked by comparing the function’s value at the beginning of time 

propagation (top row) to the value at the end of the propagation (bottom row).
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Figure 3: 
Results of a re-analysis of the tryptophan fluorescence stopped flow data from Agafonov et 

al.6 (a) shows in the form of histograms all values of AU/AX that are compatible with the 

experimental data from Agafonov et al. and contains multiple time traces that were 

measured at different ligand concentrations [L]0. We fit each time trace individually (see 

Modeling tryptophan fluorescence quenching in Theory and Methods for details). (b) shows 

the corresponding histograms for AI/AX. (c) shows the corresponding ensembles of fits to 

the data (all possible model curves that are compatible with the data).
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Figure 4: 
Motion of the center of mass (COM) of the imatinib ligand during the pulling simulations. 

All three plots show the projection of the COM onto a plane that separates the N and C lobes 

of the Abl kinase domain along two main directions are referred to as a long and short axis 

(these two directions corresponding roughly the orange and green arrows in Figure 1, 

respectively). a) One can discern three clusters of pathways: trajectories where imatinib exits 

under the αC helix (orange), trajectories where imatinib exits through the cleft (green) and 

exit in the direction of the P-loop (blue). Blue trajectories were produced with directed 

pulling while the other trajectories were produced with undirected pulling and imatinib 

chose the pathway spontaneously. Trajectories were smoothed with a moving average filter 

with 1 ns window length. The colors in (b) represent the non-equilibrium work at every point 

along the pulling trajectories. Work was averaged along the path using the same moving 
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average filter (1 ns or 6.25 · 10−2 Å) as the COM positions. (c) shows the pulling force 

(averaged with the same filter).
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Figure 5: 
Dividing surfaces in (imatinib) center-of-mass feature space between different classes of 

trajectories: (a) shows the surface between trajectories that rebind to the crystallographic 

mode and trajectories that are trapped in intermediate states; (b) shows the dividing surface 

between trajectories trapped in intermediate states and trajectories that lead to full 

dissociation. The protein and ligand conformation shown in both figures corresponds to the 

crystal structure 2HYY. The two surfaces in (a) and (b) delineate the rugged and complex 

intermediate region of Abl kinase where are located several non-specific long-lived 

associated states of imatinib. See Theory and Method for additional details on how the 

surfaces were generated.
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Figure 6: 
Committor-like analysis reporting the position of imatinib’s center of mass (COM) averaged 

over the length of each unbiased trajectory. The figure shows the projection of the COM 

onto a plane that separates the N and C lobes of the Abl kinase domain (same projection as 

in Figure 4). The plus symbol (+) marks the COM position of the crystallographic bound 

state. a) Colors indicate the fate of each trajectory: trajectories that reach the fully 

dissociated state are represented with a cyan disc. Trajectories that reach the X-ray pose are 

represented with orange discs. All other trajectories are shown as purple discs. Disc sizes 

represent the time to dissociation or rebinding to the X-ray pose for cyan and orange discs, 

respectively. In the trajectories that rebind to the X-ray pose, the rebinding time is very short 

compared to all other processes, therefore the orange discs in (a) are rendered with an area 

that is magnified by a factor of 10. For purple discs, size corresponds to trajectory length. b) 

Same as panel (a) showing only the trapped trajectories but without color.
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Figure 7: 
Orientation of imatinib in the different binding poses. In (a) and (b) we visualize the 

azimuthal angle ϕ and the polar angle θ respectively of the vector through atoms C8 and N36 

that are located at opposite ends of imatinib (red spheres in c). The coordinate system is 

fixed with respect to the protein and is identical to the system used in Figures. 4, 6). The X-

ray like pose is characterized by ϕ ≈ 0 and θ ≈ π/2. The symbol + marks the location of 

imatinib’s COM in the crystallographic state (similar to pdb id 1HYY). The three main 

regions are indicated in panel (a).
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Figure 8: 
Kinetic network summarizing the unbiased MD simulation data of the Abl-imatinib system. 

Representative conformations are shown for 30 metastable states, that were identified with a 

VAMPnet. States that are connected by a transition in the unbiased simulations are 

connected with an arrow in this plot. Circled numbers below the conformations are the state 

labels. The color of the disc encodes the broad category of imatinib binding: in orange states 

imatinib is bound in the hydrophobic pocket; in blue states imatinib is bound under the P-

loop; in green states imatinib is bound in front of the cleft; yellow states are DFG-in; in gray 

states imatinib binds on the surface of Abl. The triple of integers below the state number 

consists of the number of salt bridges, hydrogen bonds and hydrophobic interactions (in that 

order) between imatinib and Abl as computed with PLIP51. Below that, lifetimes or lower 

bounds on the lifetimes are reported in microseconds. For states that have an outgoing arrow 

that number is an estimate of the lifetime, otherwise it is a lower bound. Some connections 

between states (arrows) might be artifacts of the analysis, where VAMP might have merged 

conformations that should have been separated into different states. See Details of VAMPnet 

analysis in Theory and Methods for additional information. Magnified versions of all 

structures are shown in Suppl. Figs. 12 and 13.
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Figure 9: 
Solvent accessible surface area (SASA) for each tryptophan residue. In (a) Trp-SASA is 

reported for the 30 metastable states of apo-Abl as defined in Paul et al.37. In (b) the Trp-

SASA is shown for each of the 30 metastable states of the Abl-imatinib complex that is 

studied in the current work. Distribution of the tryptophan SASA within each metastable 

state is show as a violin plot. Discs mark the means. The black line marks the mean Trp-

SASA in a long simulation (1.6 μs) of the Abl-imatinib system started from crystal structure 

2HYY. The gray shaded area marks the region between the 5th and 95th percentile of Trp-

SASA computed from the same simulation of the crystal structure. (c) shows imatinib-bound 

Abl with all tryptophan residues labeled.
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Figure 10: 
Trp-SASA depending on imatinib location computed from all unbiased trajectories. The 

coordinates are the same as in Figures 4,6 (imatinib COM in a coordinate system that is 

fixed w.r.t the protein. The plus (+) symbol marks the location of imatinib’s COM in the 

crystallographic state. (a) shows the SASA of Trp-235 that is located in the flexible N-

terminal liker of the kinase domain. (b) shows the total SASA of all tryptophan side chain in 

the simulated construct. In agreement with experiment, Trp-SASA does not vary much as 

the binding pose of imatinib changes.
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Table 1:

Order parameters used for the characterization of Abl kinase sub-domain states in this work and in Meng et 

al.36, Paul et al.37.

distance number atoms structural element

1 Cα-L248 and Cα-Y253 P-loop

2 Cα-G249 and Cα-Q252 P-loop

3 Cγ-D381 Cα-N368 DFG motif

4 Cγ-F382 Cα-I293 DFG motif

5 Cζ-R386 Cδ-E286 αC helix, salt bridge

6 Nζ-K271 Cδ-E286 αC helix, salt bridge
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