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ABSTRACT
We propose a theory to characterize the information and information processing abilities of metasurfaces,
and demonstrate the relation between the information of the metasurface and its radiation pattern in the
far-field region. By incorporating a general aperture model with uncertainty relation in L2-space, we propose
a theory to predict the upper bound of information contained in the radiation pattern of a metasurface, and
reveal the theoretical upper limit of orthogonal radiation states.The proposed theory also provides guidance
for inverse design of the metasurface with respect to given functionalities.Through investigation of the
information of disordered-phase modulated metasurfaces, we find the information invariance (1−γ , where
γ is Euler’s constant) of chaotic radiation patterns.That is to say, the information of the disordered-phase
modulated radiation patterns is always equal to 1−γ , regardless of variations in size, the number of
elements and the phase pattern of metasurface.This value might be the lower bound of radiation-pattern
information of the metasurface, which can provide a theoretical limit for information modulation
applications, including computational imaging, stealth technologies and wireless communications.

Keywords:metasurfaces, differential entropy, radiation information bounds, maximum orthogonal
radiation patterns, information invariance

INTRODUCTION
Metamaterial has a pivotal role in regulating
photons, allowing manipulation of lights to re-
alize intriguing functionalities, such as negative
refraction, perfect imaging and invisibility cloaking
[1–4]. The latest development of metasurface, with
reduced dimensionality, has exceptional abilities for
controlling the flow of lights [5–7]. Subwavelength-
scale particles of metasurfaces can couple incident
waves to free space with controllable amplitudes
and phases, such that the transmitted waves can
be flexibly manipulated by designing the response
and distribution of meta-particles. Recently, in-
vestigations of metasurfaces have been extended
from material science to the digital and information
category [8–10], in which the metasurfaces can be
considered as information processors in physical
hardware layers and have useful applications such as
in computational imaging [11,12], wireless commu-
nications [13,14] and performance of mathematical
operations [15,16]. However, from an information
perspective, the study of metasurfaces needs a
general theory for guidance.

In this work, we propose a general information
theory of metasurfaces to characterize the infor-
mation processing ability. Based on the theory, we
aim to predict the upper bound of information con-
tained in the radiation pattern of metasurfaces, and
to reveal the theoretical upper limits of orthogonal
radiation states. In particular, we investigate the
information of disordered-phase modulated meta-
surfaces and find the information invariant property
of their chaotic radiation patterns, which may give
the lower bound of the radiation-pattern informa-
tion. The proposed theory will provide theoretical
limits for information modulation applications of
metasurfaces, including computational imaging,
stealth technology and wireless communications.

RESULTS AND DISCUSSION
To analyze the metasurface from an information
perspective, we introduce a general aperture model,
which is used to characterize the information and
information processing ability of metasurface.
The general aperture model suggests that each
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metasurface particle is considered to be a small
aperture with uniform amplitude and phase, such
that the metasurface is a general aperture consisting
of many small apertures. To illustrate this idea, the
functionϕij(r) is adopted to represent a rectangular-
shaped metasurface particle with the area s= a× b,
which can be expressed as:

ϕij(r) = Aije j θij · �

[
x − a(i − 1)

a

]
·

�

[
y − b( j − 1)

b

]
, (1)

where �(t) is the rectangular function, and Aij and
θij are the amplitude and phase responses of the ijth
particle, respectively. The aperture function of the
metasurface can be expressed by a combination of
these small apertures:
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whereNx andNy are the numbers of particles along
the x and y directions, and the denominator term
is introduced to normalize the square integral of
the aperture function. The aperture function is for-
mulated by the electromagnetic response of the
metasurface, which contains both amplitude and
phase distribution information for the metasurface.
It should be noted that coupling effects generally ex-
ist among neighborhood meta-particles, such that
the overall effective electric field distribution of the
metasurface is a combination of the single-particle
generated field and coupled field. As a result, Aij and
θij in Eqs 1 and 2 should be interpreted as the ef-
fective amplitude and phase responses of the meta-
particles, which have taken into account the cou-
pling effects [17].

The electric-field distribution on themetasurface
is a quasi-determined quantity, with negligible
uncertainty resulting from the zero-point energy
fluctuations [18]. To characterize the information
properties of the metasurface and its corresponding
radiation pattern, we first invoke the close anal-
ogy between the oscillating electric field and
Schrödinger’s wave function. It has been established
that both cases can be converted into generalized
eigenvalue problems with Hermitian operators
expressed as: H1 = ∇ × ∇× and H2 = − �

2

2m ∇2 +
V(r ), respectively. The two solutions (eigen-
functions) can be decomposed into harmonic
modes that oscillate with the phase factor e jwt [19].

Based on the similar algebraic structure of these
twoproblems,we propose consideration of the aper-

ture function of metasurface, ϕA(r), which is pro-
portional to the electric field distribution of meta-
surface, as an effective Schrödinger’s wave function,
such that the square of the normalizedwave function
ϕ2
A(r) = ϕ∗

A(r) × ϕA(r) = |ϕA(r)|2 can be con-
sidered as a density function describing the en-
ergy/photon distribution on the metasurface plane.
We note that the density function of the metasur-
face ϕ2

A(r) is pre-normalized, hence it can be further
interpreted as an effective probability density func-
tion (PDF). The close analogy between the oscillat-
ing electric field and quantum wave function allow
us to study the metasurface from the perspective of
information science.

Boltzmann-Shannon entropy
We adopt Boltzmann-Shannon entropy to charac-
terize distribution of energy on the metasurface
[20]. As discussed above, when a monochromatic
plane wave impinges on a metasurface, PDF of en-
ergy distribution in position space can be expressed
as P1(r) = ϕ2

A(r). Then, differential entropy can be
adopted to characterize the position uncertainties of
energy on the metasurface plane, expressed as:

H(r) = H(P1(r)) = H(ϕ2
A(r))

= −
∫ ∫

ϕ2
A(r)lnϕ

2
A(r)dr

2. (3)

Once the size of metasurface is determined, the
differential entropy of themetasurface aperture is re-
stricted by an upper bound value of lnS, where S is
the total size of the metasurface. Therefore, we de-
fine the information of the metasurface as reduction
of uncertainty from the maximum, which can be de-
rived from Eqs 2 and 3 as:

I1 = I(r) = −�H1(r) = H(r)max − H1(r)

= lnNxNy+
Nx∑
i=1

Ny∑
j=1

c2ij ln c
2
ij, (4)

where c ij = (A2
ij/

∑Nx
i=1

∑Ny
j=1 A

2
ij)

1
2 . The detailed

derivations are given in the supplementary data.One
of the advantages of the proposed definition, com-
pared with the differential entropy, is that the in-
formation term is strictly non-negative and scale-
invariant, such that different choices of unit would
not affect the final results of information.

Heisenberg’s uncertainty principle expresses the
indeterminacy of twoobservableswith the computa-
tion rule [α, β]�=0 in terms of the second moments
[21,22]. Later studies of L2-space [23,24] provide
another form of the uncertainty with respect to the
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non-commuting observables (α and β) in terms of
the differential entropy as:

�α + �β ≥ n(1 + lnπ), (5)

where �T = −∫ P(τ)lnP(τ)dτ n , and the term
P(τ) is the PDFof random variableT, and�T is the
differential entropy of T in n-dimensional space.

It has been established that the electric far-field
E(k) in the wave-vector space (k-space) is the
Fourier transformof electric field distribution on the
metasurface ϕA(r ) [9], thus r and k could be con-
sidered as two observables with the commutation
rule of [r̂m, k̂n] = iδmn (m, n = 1, 2), where r̂ and
k̂ are the corresponding operators [25]. Therefore,
the differential entropyof the far-field energydensity
function in the k-space can be expressed as:

H(k) = H(P2(k)) = H( f(k))

= −
∫ ∫

f(k)lnf(k)dk2, (6)

where f(k) = αE2(k) is the normalized far-field
energy density distribution function, and α is a con-
stant coefficient to normalize the function. Based on
inequality 5, the termH(k) would be constrained by
the uncertainty relation as:

H(k) = H(f(k)) ≥ ln(πe)2 − H(r)

= ln
π 2e 2

ab
+

Nx∑
i=1

Ny∑
j=1

c 2ij lnc
2
ij. (7)

Similarly, the information of radiation pattern
(I2) in the k-space is defined by reduction of the
wave-vector uncertainty from the maximum value
as I2 = H(k)max − H(k), satisfying the relation
that:

I2 = I(k) = H(k)max − H(k) ≤ ln
abk2

πe 2

−
Nx∑
i=1

Ny∑
j=1

c 2ij lnc
2
ij. (8)

Thus the information relation between the meta-
surface and its radiation pattern can be derived from
Eq. 4 and inequality 8 as:

I1+I2=I(r) + I(k) ≤ ln
(
4π · S
e 2λ2

)
, (9)

where S = Nx × Ny × a × b is the size of the
metasurface, and λ is the wavelength of the electro-
magnetic waves. This inequality implies an impor-
tant fact, that the total information of a metasur-
face and its radiation pattern has an upper bound.

Detailed derivations of inequalities 7 to 9 are given
in the supplementary data. The information of ra-
diation pattern is defined based on the concept of
normalized wave function and differential entropy,
which is quite different from the previously estab-
lished concept of image entropy [9], as discussed
in the supplementary data. It is noteworthy that in-
equality 9 is valid as long as the Fourier transform
relation holds between the aperture function ϕA(r)
and electric far-field E(k), otherwise the proposed
theory cannot be applied (e.g. when the incident
wave is converted to a surface wave by the metasur-
face [26]). In addition, inequality 9 is formulated for
a specified radiation statewith fixed state parameters
(e.g. fixed frequency and polarization). Therefore, if
multiple states (e.g. twoorthogonal polarized states)
are considered, inequality 9 should be modified by
labeling the state parameter(s) for clarification.

Based on the above analyses, a bridge has been
built to connect the information of the metasurface
and its radiation pattern, as sketched in Fig. 1. To
illustrate these results, we first analyze three simple
sets of metasurfaces containing 40 × 40 subwave-
length particles, in which each particle occupies an
area of λ/8 × λ/8. The phase distributions of the
metasurface samples are plotted in Fig. 2a, d and
g, respectively, and the amplitude distributions are
plotted in Fig. 2b, e and h, respectively, in which five
different cases are considered for each phase.

In the first set of metasurface samples, the phase
distribution is uniform across the aperture (Fig. 2a),
and the amplitude distributions are 1-dimensional
Gaussian functions with different standard deriva-
tions (Fig. 2b). The calculated radiation patterns
with respect to different amplitude distributions are
plotted in the k-space (kx, ky), as shown in Fig. 2c.
We notice that the radiation patterns become more
spread in the horizontal direction as the contrast
ratio of the aperture function increases in the same
direction.The phase distribution of the second set of
metasurfaces is set as a gradient function (Fig. 2d),
and the radiation patterns generated by different
staircase-amplitude functions (Fig. 2e) are plotted
in Fig. 2f. As the contrast ratio of the aperture
function increases in both directions, the radiation
pattern also becomes more spread over the k-space.
In the third set of samples, the phase distribution of
the metasurface is ‘0 −π/−π 0’ (Fig. 2g), and the
radiation patterns generated by different amplitude
distributions (Fig. 2h) are plotted in Fig. 2i. The
results show that the radiation pattern blurs in
the vertical direction as the contrast ratio of the
two rectangular regions increases, resulting in the
original four discernible bright spots to be gradually
fused to two elliptical shapes. When the contrast
ratio of the aperture function continues to increase
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Figure 1. Schematic of information relation between the metasurface and its radiation
pattern.

horizontally, the two horizontal bright spots finally
merged into one indiscernible spot (Fig. 2i). More
results with different amplitude and phase patterns
can be found in the supplementary data. The
relation between the information of metasurfaces
and radiation patterns is presented in Fig. 2j. We
note clearly that the calculated results of I1 and I2
satisfy the requirement determined by inequality 9,
showing that the total information of the three cases
is below the theoretical upper limit.

From the blue curve (Set 3), we also note that
the information of the radiation pattern does not
decreasemonotonically with increasing information
on the metasurface, because the phase distribution
plays a key role in generating radiation patterns with
different information (I2). According to inequality
9, the upper bound of I2 decreases linearly as I1 in-
creases, which would cause information on the radi-
ation pattern (I2) to tend to decline as information
on the metasurface (I1) increases in general.

Maximum number of orthogonal radiation
states and information modulation in
k-space
A large number of radiation patterns can be gener-
ated from a single digitally programmable metasur-
face by altering the states of the implemented active
devices with controlled circuits [8]. In these realiz-
able radiation patterns, orthogonal states (Fig. 3a)
are preferred for information modulation and pro-
cessing, for example in computational imaging [11]
and communications.Here, leveraging the proposed
information theory of the metasurface, an insight-
ful approach is presented to characterize the theo-

retical maximum of the orthogonal radiation states
without complicated calculations. First, suppose a
set of normalized orthogonal far-field radiation pat-
terns ( f i(k)) with number N already obtained, and
the set of radiation patterns satisfies the vector prod-
uct relation as:

(f i (k), f j(k)) =
∫

f i(k) · f j(k)dk=δij,

(10)

where δij is the Kronecker function. Suppose that
the radiationpatternwith information I2 occupies an
area ofC in the k-space, such that I2 can be expressed
as:

I2 = I(kx, ky) = lnπk2

+
∫∫

C
P(kx, ky)ln[P(kx, ky))]dkxdky .

(11)

Then we consider another radiation pattern with
information I C2 uniformly distributed in the same re-
gion ofC, which would carry theminimum informa-
tion as:

I C2 = ln(πk2
/
C ) ≤ I2. (12)

Therefore, the occupation area of each radia-
tion pattern in the k-space must satisfy the condi-
tion that: C i ≥ πk2e−I i2 . Additionally, summation
of C i should not outrange the total occupation area
in the k-space, which can be expressed as:

N∑
i=1

π · k2 · e−I i2 ≤
N∑
i=1

C i ≤ π · k2. (13)

On theother hand, the information I i2 on each ra-
diation pattern is restricted by inequality 9 as: I i2 ≤
I i1 + I i2 ≤ ln( 4π S

e 2λ2 ). Therefore, the maximum num-
ber (N) of the orthogonal radiation patterns can be
deduced as:

N ≤
[
4π · S
e 2λ2

]
, (14)

where [] denotes the rounding down symbol.
For a simple demonstration, we consider a

metasurface with size set as S = 3λ × 3λ, shown
in Fig. 3b, in which the maximum number of
the orthogonal patterns is restricted by inequal-
ity 14 as: N ≤ [ 4π×3λ×3λ

e 2λ2 ] = 15. Two sets of
quasi-orthogonal radiation patterns are presented in
Fig. 3c. We observe that the different radiation pat-
terns share negligible overlaps in the k-space, such
that each radiation pattern can be unambiguously
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Figure 2. Phase (a, d, g) and amplitude (b, e, h) distributions of the three sets of metasurface samples. (c, f, i) Normalized
radiation patterns generated by the three sets of metasurface samples. (j) Calculated results of the information relation
between the metasurface samples and their radiation patterns, and the upper bound.
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Figure 3. (a) A set of orthogonal radiation states in the k-space. (b) The size of metasurface. (c) Two examples of quasi-
orthogonal radiation patterns in the k-space. (d) The inverse design procedure of metasurface with respect to certain radiation
patterns.

distinguished. The phase distributions of the meta-
surfaces corresponding to these radiation patterns
are presented in Fig. 4. We notice that the numbers
of orthogonal radiation patterns realized in both ex-
amples meet the requirement set by inequality 14,
which are consistent with theoretical predictions.

Inverse design of metasurfaces
In designing the metasurface, it is vital to choose
a suitable size with respect to different functions.
The proposed theory can provide guidance to de-
termine the size of metasurface for required radia-
tion pattern(s). To begin, a mapping process should
be carried out to transform the required radiation
pattern(s) into the coordinates [kx, ky], as sketched
in Fig. 3d. Then, the obtained radiation pattern
F(kx, ky) should be further normalized to become a
probabilistic function, f(k, ky). In some cases, multi-

ple radiation patterns ( f 1, f 2, f 3 . . .) are required
to design programmable metasurfaces. Therefore,
the lower bound of metasurface size can be derived
from Eq. 11 and inequality 14 as:

S ≥ e 2λ2

4π
max[exp(lnπk2

+
∫ ∫

f i(kx, ky)lnf i(kx, ky)dkxdky)],

(15)

where f i is the ith radiation pattern. Detailed deriva-
tions are given in the supplementary data.The above
analysis implies that the size of metasurface must be
larger than the value predicted by inequality 15, oth-
erwise it would be impossible to realize the required
radiationpattern(s) nomatterwhat design strategies
were adopted.
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Figure 4. (a, b) Phase distribution and the corresponding radiation patterns of two sets of metasurface samples.

Information of disordered-phase
modulated metasurfaces
The metasurfaces that are modulated with
disordered-phase distributions can diffuse the
incoming electromagnetic wave into speckle-
shaped far-field patterns, which have been used
widely in stealth technologies [8,27] and compu-
tational imaging systems [11,12]. The information
on the radiation patterns (although chaotic) can be
distinctively described, leveraging the proposed the-
ory. To begin, we consider an isotropic metasurface
with the reflection coefficient expressed as:

t = α · ei·θ(x,y), (16)

where the amplitude response α is a constant,
while the phase response θ(x, y) is randomly dis-

tributed on the metasurface. With superposition
of the disorder-distributed complex near fields, the
electric far-field E(k) is approximated as a complex
Gaussian random variable with mean value of zero
from the central limit theorem [28,29], featuring a
radiation PDF for the far-field intensity that obeys
the exponential statistic as:

P(g) = 1
λ
e− 1

λ
·g , (17)

where g represents the far-field intensity, and λ is
an undetermined parameter. Next, we consider the
case with M points uniformly distributed in the
k-space (Fig. 5a), which gives the intensity distribu-
tion uncertainty of lnM. The obtained intensity data
from themeasurements in the far-field region should
satisfy the PDF of Eq. 17, with the parameter λ
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Figure 5. (a) A set of measurement locations in the [kx , k y ] space with M = 37.
(b) Theoretical intensity distributions of the measurement points. (c, d) A sample of
1-bit disordered-phase pattern of the metasurface and the generated far-field intensity
distribution. (e) Theoretical and calculated results of I2 with respect to different sizes
and phase patterns of metasurfaces. (f, g) A sample of 2-bit disordered-phase pattern
of metasurface and the generated far-field intensity distribution. (h) Theoretical and
calculated results of I2 with respect to different sizes and phase patterns of metasur-
faces. (i, j) A sample of continuous disordered-phase pattern of the metasurface and
the generated far-field intensity distribution. (k) Theoretical and calculated results of I2
with respect to different sizes and phase patterns of metasurfaces.

substituted with 1/M as:

P(M, g) = Me−M ·g . (18)

Tofind the far-field intensity distribution at these
M locations, we divide the obtained PDF into M
equally sized portions, in which each integral of the
probability function P(M, g)dg equals 1/M. Such
a partition process generates a set of points with
number M (i = 1, 2, 3. . .M), which approximates
the far-field energy distribution at the measurement

locations, obeying the relation that:

∫ i
M

0
M · e−M ·gM(i ) = i − 1

M
(i = 1, 2 . . . , M) ,

(19)

where gM (i ) is the intensity of the radiation pattern
at the i th measurement location. Thus, the far-field
intensity function can be solved by Eq. 19:

gM (i ) = − 1
M

ln
M − i + 1

M
(i = 1, 2 . . . , M) ,

(20)

as plotted in Fig. 5b. When the number of mea-
surement points M approaches infinity, Eq. 20 can
provide an accurate prediction of the radiated en-
ergy distribution of the disordered-phasemodulated
metasurface (DPMM), and its far-field information
can be derived from Eqs 11 and 20 as:

I2(DPMM) = H(k)max − H(k)

= lim
M→∞

lnM − lim
M→∞

M∑
i=1

−gM (i ) · ln[gM (i )]

= −
∫ 1

0
ln(1 − τ) ln(− ln(1−τ))dτ = 1 − γ,

(21)

where γ is Euler’s constant (γ≈0.5772). A detailed
derivation of Eq. 21 is given in the supplementary
data.The above results, surprisingly, lead to the con-
clusion that the information on the chaotic far-field
pattern of DPMM is a constant, regardless of the
metasurface size, the number of metasurface ele-
ments and the phase-distribution pattern.

To verify the above analysis, we calculate the
information of far-field patterns generated by three
sets of DPMM samples: 1-bit digital coding phases
[8] with each θ(x, y) taking on one of the values of
0 and π randomly, as shown in Fig. 5c; 2-bit digital
coding phases with each θ(x, y) taking on one of the
values of 0, π/2, π , and 3/2π randomly, as shown
in Fig. 5f; and continuous random phase variable
θ(x, y) described by a uniform probability distribu-
tion of Pθ = 1/2π , 0≤θ<2π , as shown in Fig. 5i. In
these figures, the total number of metasurface ele-
ments is set asNx ×Ny = 64× 64, and the number
of measurement locations isM = 1941. Each set of
these experiments involves 50 different phase pat-
terns, associatedwith the size ofmetasurface ranging
from S = 10λ2 to S = 1000λ2. The calculated in-
formation results of the disordered-phase radiation
patterns are illustrated in Fig. 5e, h, and k, respec-
tively, and the far-field information results with
respect to different parameters (Nx, Ny and M) are
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Figure 6. (a-d) Theoretical and calculated results of the disordered-phase modulated far-field information I2 with respect to
different numbers of metasurface elements (Nx and Ny) and measurement locations (M).

given in Fig. 6. It is evident that information on the
speckle-like radiation patterns matches the theo-
retical prediction of Eq. 21 perfectly, convincingly
demonstrating the information invariance of the
chaotic far-field patterns.

The information on radiation pattern (I2 =
H(k)max − H(k)) measures the entropic differ-
ence between the generated radiation pattern H(k)
and the omnidirectional radiation pattern H(k)max .
We remark that the far-field information of DPMMs
(1−γ ) is close to zero, which indicates that the gen-
erated radiation pattern is approximately omnidirec-
tional, with the reflected energy almost uniformly
spread in space. The low information property of
DPMMs is preferred for stealth applications [8,27].
However, the fixed far-field information (1−γ ) in-
evitably diminishes the flexibility of the radiation
patterns. Consequently, radiation patterns with in-
formation values other than 1−γ cannot be realized
by DPMMs, whereas these radiation patterns might
be useful for information processing such as com-
putational imaging. Additionally, it should be noted
that the information invariance of DPMMs is rather

intriguing, for which 1−γ might be the lower bound
of radiation-pattern information when the size of
metasurface is much greater than the wavelength
squared of electromagnetic waves. Therefore, a fur-
ther research to explore the information invariance
of the chaotic radiation pattern is recommended.

CONCLUSION
In summary, the presented theory establishes a
quantitative framework to characterize the informa-
tion processing capabilities of metasurfaces, which
provides deeper physical insights into understand-
ing metasurfaces from the information perspective,
and offers new approaches to facilitate analysis and
design of metasurfaces. The findings of this inves-
tigation are generally applicable in a wide range
of spectra, and could help to lay the groundwork
for future research into the regime of information
metasurfaces. The proposed theory may also be ap-
plied in exploring information on cloaking systems
[30] after making some deformations of the curved
metasurface.
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METHODS
Under the normal incidence of the plane waves, the
radiation function scattered by the metasurface can
be expressed as [8]:

R(θ, ϕ) =
∣∣∣∣∣

Nx∑
m=1

Ny∑
n=1

c ijexp{jk[a(m − 1)

× sinθcosϕ + b(n−1) sinθsinϕ]}
∣∣∣∣∣
2

,

(22)

where c ij = Aijejθij is the amplitude and phase re-
sponse of the ijth metasurface element. In addition,
the coordinate transformation and normalization
procedure (R(θ, ϕ) → F(kx , ky) → f(kx , ky))
should be adopted to obtain the normal-
ized radiation pattern in k-space, where
kx = ksinθcosϕ, ky = ksinθsinϕ and f(kx, ky) =
F(kx, ky)/

∫∫ F (kx, ky)dkxdky . In this work, the
intensity of the far-field radiation pattern is ex-
pressed as a discrete function gM (i), in which M
stands for the number of discrete points in k-space.
It should be noted that the radiation function is
pre-normalized (

∑M
i=1 gM (i) = 1), such that the

discrete version of the radiation-pattern information
can be expressed as:

I2 = H(k)max − H(k) = lim
M→∞

lnM

− lim
M→∞

M∑
i=1

−gM (i) · ln[gM (i)]. (23)

However, limited by the finite computational re-
sources, the number of measurement pointsM can-
not be chosen arbitrarily large. In this work, the term
M is set as 1941, which is sufficiently large to charac-
terize the information of the radiation patterns.
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