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Abstract

Summary: scATAC-seq is a powerful approach for characterizing cell-type-specific regulatory landscapes. However,
it is difficult to benchmark the performance of various scATAC-seq analysis techniques (such as clustering and de-
convolution) without having a priori a known set of gold-standard cell types. To simulate scATAC-seq experiments
with known cell-type labels, we introduce an efficient and scalable scATAC-seq simulation method (SCAN-ATAC-
Sim) that down-samples bulk ATAC-seq data (e.g. from representative cell lines or tissues). Our protocol uses a con-
sistent but tunable signal-to-noise ratio across cell types in a scATAC-seq simulation for integrating bulk experi-
ments with different levels of background noise, and it independently samples twice without replacement to account
for the diploid genome. Because it uses an efficient weighted reservoir sampling algorithm and is highly paralleliz-
able with OpenMP, our implementation in Cþþ allows millions of cells to be simulated in less than an hour on a lap-
top computer.

Availability and implementation: SCAN-ATAC-Sim is available at scan-atac-sim.gersteinlab.org.

Contact: zhang.jing@uci.edu. or mark@gersteinlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-resolution single-cell assay for transposase-accessible chroma-
tin using sequencing (scATAC-seq) techniques reveal transcriptional
landscapes in a cell-type-specific manner (Buenrostro et al., 2015).
Numerous scATAC-seq data analysis approaches, such as those
used for calling and defining active regions in various cell types,
clustering and deconvolution, have been published (Bravo
Gonzalez-Blas et al., 2019; Fang et al., 2019; Liu et al., 2019; Schep
et al., 2017; Xiong et al., 2019; Zamanighomi et al., 2018).
However, it has been difficult to evaluate the efficacy of these tech-
niques because we do not have a priori knowledge of gold-standard
cell types. One way to evaluate these analysis methods is to simulate
scATAC-seq with ground-truth labels. With this approach, the ana-
lysis methods can be benchmarked against one another with quanti-
fiable parameters that affect the separability of different cell types.

There are three major challenges in simulating realistic scATAC-
seq data. First, each open chromatin region can only be captured
zero, one or two times in a diploid genome, resulting in at most two
reads at one locus in scATAC-seq. Second, similar to bulk ATAC-
seq data, many reads in scATAC-seq come from non-peak, back-
ground regions. Third, it is computationally expensive to simulate a
dataset with millions of cells in order to evaluate the performance of
an analysis method on large datasets. Currently, there are two exist-
ing approaches for simulating scATAC-seq data, and both
approaches are limited (Table 1).

The first approach randomly samples reads from a curated set of
bulk ATAC-seq data (Fang et al., 2019). Bulk ATAC-seq has dra-
matic variations in the signal-to-noise ratio between experiments.
However, cells in scATAC-seq experiments undergo similar proce-
dures, resulting in less background variation. Directly sampling the
bulk ATAC-seq can introduce cell-type-specific backgrounds such as
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bias from batch effects, confounding downstream analyses.

Moreover, it may extract more than two reads for a single genomic
locus, thus violating the diploid nature of scATAC-seq experiments.

Lastly, direct down-sampling is inefficient. We replicated the
method, and it used 26.6 h to simulate one million cells.

The second method simulates individual cells by selecting fore-
ground peaks with a strictly fixed signal-to-noise ratio (Xiong et al.,
2019; Zhang et al., 2020). In reality, over half of the reads in

scATAC-seq come from background regions. Even though it utilizes
drop-out ratios and adheres to the diploid constraint, peak region

sampling ignores the background; thus, it is limited in representing
real data. Further, this method does not simulate reads. Rather, each
cell is represented by simulated foreground peaks. Analysis methods

that construct a cell-by-bin read coverage matrix cannot be eval-
uated using a dataset simulated from this method due to the lack of
read-level information. Lastly, repeated sampling from a binomial

distribution for all peak regions also limits the efficiency when
scaled to millions of cells.

We aim to address these challenges. The lack of a standard, rep-
resentational synthetic scATAC-seq dataset motivated SCAN-

ATAC-Sim, which offers an improvement in simulation quality and
reduction in runtime compared to both previous approaches. Our
command line software, implemented in Cþþ with OpenMP paral-

lelization, takes BAM files from bulk ATAC-seq experiments as in-
put and outputs sampled reads for each cell based on user-provided

parameters such as the number of reads per cell, total cell number
and signal-to-noise ratio (Table 1).

2 Materials and methods

SCAN-ATAC Sim consists of two main steps: data preprocessing
and single-cell simulation. Briefly, the process starts with BAM files

of bulk ATAC-seq experiments for desired cell types (Fig. 1a). The
data preprocessing step defines a cell-type-specific foreground from

the merged peaks and a unified background (Fig. 1b). For each cell,
the single-cell simulation step samples the foreground and back-
ground regions twice without replacement with the probability pro-

portional to the read coverage (Fig. 1c) and randomly selects one
read for each sampled region (Fig. 1d). Then, reads from both the

foreground and background are combined to form reads in one cell
(Fig. 1e). This single-cell simulation step is then repeated for a large
number of cells as specified by the user-provided parameter.

2.1 Data preprocessing
The foreground regions are defined by merging peaks from various

cell types. Then, the background regions are defined as the comple-
ment of the 1 kb-extended foreground divided into bins of fixed sizes
(Fig. 1a). The paired and de-duplicated reads from each cell type are

intersected with the foreground region to obtain cell-type-specific
foreground reads, and unified background weights are created by

combining background reads from all cell types (Fig. 1b).

Table 1. Comparison between SCAN-ATAC Sim and previous methods and a brief list of parameters that control the simulation

Features Direct down sampling Peak region sampling SCAN-ATAC Sim

Read-level simulation Yes No Yes

Flexible signal-to-noise No No Yes

Diploid genomic constraint No Yes Yes

Short runtime No No Yes

Long flag Default value Long flag Default value

–cell_number 10 000 –min_frag 1000

–signal_to_noise 0.7 –max_frag 20 000

–frag_num 3000 –extend_peak_size 1000

–variance 0.5 –bin_size 1000

Fig. 1. (a) Bulk-tissue ATAC-seq reads are partitioned into foreground and back-

ground based on overlap with merged peaks. The number in each region indicates

the read coverage. (b) The cell-type-specific foreground reads are separated, and a

unified background is created by combining background reads across all cell lines.

(c) The regions are sampled without replacement, with the read coverage as weights

for the foreground and background, for paternal and maternal alleles. (d) Reads are

sampled from the selected regions using a uniform distribution. (e) All sampled

reads are combined to form reads covering a cell. (f) chr1 visualization of bulk and

simulated (q ¼ 0:4; f ¼ 1k; c ¼ 100k) CLP cells is shown in the Integrative

Genome Browser. (g) Performance for region number Nc versus cell number is

shown for four cores. (h) Percentage of peaks from simulated CLP cells that overlap

with CLP bulk peaks is shown, demonstrating the relationship between the signal-

to-noise ratio and the cell-type specificity of the simulation
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2.2 Single-cell simulation
First, for a cell of cell type c, the parameter Nc determines the total
number of reads (or regions, since we only sample one read from
each region) in an individual cell. Nc can vary with a log-normal dis-
tribution so that every cell has a slightly different number of reads.
We also designate a user parameter for the signal-to-noise ratio q.
We use Nc and q to calculate the allocation of foreground and back-
ground reads in a cell so that Nc ¼ NF

c þNB
c (1).

NF
c ¼ q � Nc NB

c ¼ ð1 � qÞ � Nc (1)

A high signal-to-noise ratio will allocate more reads for fore-
ground regions, thereby making the cell types more separable. Once
an allocation between foreground and background is made, the allo-
cations are further halved to mimic reads coming from maternal
(NF

c;M, NB
c;M) and paternal (NF

c;P, NB
c;P) alleles. Next, SCAN-ATAC

Sim performs an efficient two-step sampling to generate representa-
tive regions. First, for each cell, NF

c;M and NF
c;P regions are separately

sampled in two independent trials. Each trial samples without re-
placement and uses read coverage from the corresponding cell type
as weights (Fig. 1c). Representative background regions are gener-
ated in a similar manner, with averaged weights from all cell types.
Second, one read is randomly sampled from each selected region
with equal probability (Fig. 1d). Hence, for any given region in the
genome, we can guarantee that no more than two reads are sampled
from the maternal and paternal trials because each trial samples
without replacement. Lastly, the foreground and background reads
are merged for a total of NF

c þ NB
c ¼ Nc reads in one cell (Fig. 1e).

This process is repeated many times to simulate a massive number of
cells.

Specifically, if rF
i;c represents the total number of reads in the ith

foreground region for cell type c, then the probability of sampling
region i can be calculated as pF

i;c ¼ rF
i;c=
P

i rF
i;c. In contrast, we calcu-

late a uniform background sampling probability for the background
region. For instance, if rB

i;c represents the read count in the ith back-
ground region for cell type c, then the uniform background sampling
rate for the ith background region is pB

i ¼
P

cr
B
i;c=
P

i

P
cr

B
i;c.

3 Results

3.1 Comparing simulated scATAC-seq with bulk

ATAC-seq
We analyzed how the simulation mimics cell-type specificity. We
simulated and aggregated common lymphoid progenitor (CLP) cells
under various signal-to-noise ratios. The pileup signal distribution
of simulated scATAC-seq was similar to bulk ATAC-seq (Fig. 1f).
We also called peaks from the bulk and simulated data. The amount
of overlap between simulated and bulk peaks increased as the
signal-to-noise ratio increased (Fig. 1h), indicating that the signal-
to-noise ratio contributed to the cell-type specificity of chromatin
accessibility, which can be used to vary the difficulty of the bench-
marking task. Furthermore, the simulation retained cell-type specifi-
city across different cell types (Supplementary Fig. S2).

3.2 Analyzing simulated scATAC-seq data
Next, we analyzed the simulated scATAC-seq data using
SnapATAC (Fang et al., 2019). Under high signal-to-noise ratios,
SnapATAC clustered and labeled cells with high accuracy
(Supplementary Fig. S3). As the signal-to-noise ratio decreased, the
separability between certain cell types decreased in the cell cluster-
ing. The read coverage also influenced the analysis outcome, with
more reads per cell increasing the foreground signal and separability
(Supplementary Fig. S4).

3.3 Complexity and runtime
There are two major computational challenges to simulating
scATAC-seq data. First, up to millions of representative foreground

and background regions can be selected with varying probabilities
without replacement for one cell. Second, one experiment can con-
tain tens of thousands to millions of cells. To address these chal-

lenges, we used two techniques to implement a highly efficient and
scalable software for the sampling procedures mentioned in Section

2.3.
First, to improve the efficiency of single-cell sampling, we imple-

mented a reservoir-sampling algorithm to select the representative
regions. If n represents the number of regions and m represents the
number of regions to be selected, weighted reservoir sampling with-

out replacement can be performed with OðnÞ þ
Oðm � logðn=mÞÞOðlogmÞ, as compared to Oðn �mÞ for traditional

weighted sampling methods (Efraimidis and Spirakis, 2006).
Especially in our case where n� m, weighted reservoir sampling
approaches OðnÞ.

Second, we further parallelized our method in a cell-wise fashion
with multicore parallelism using OpenMP, which offers a scalable

improvement in runtime. By utilizing both approaches, we enabled
the sampling of millions of cells in less than an hour. We demon-
strate that SCAN-ATAC-Sim achieves a scalable speed-up for a cell

group of four cell types. The runtime does not change with signal-
to-noise ratio q but varies linearly with both cell and region number

Nc (Fig. 1g).

4 Discussion

We introduce a new software tool for constructing a labeled
scATAC-seq dataset from bulk ATAC-seq data via guided down-
sampling. This tool is useful for evaluating the efficacy of single-cell

data analysis techniques by simulating scATAC-seq data while
adhering to various biological constraints. The acceleration obtained
via multicore parallelism permits the simulation of millions of cells

in less than an hour. Moreover, this tool is highly scalable and offers
a space-time tradeoff to match the rate of growth in the number of

cells sequenced for scATAC-seq.
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