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Abstract

Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and 

presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, 

is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of 

other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung 

development and genetic conditions are an important contributor to pediatric pulmonary 

hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH 

have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung 

growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary 

vasodilators and strategies to restore lung growth. These strategies include optimal alveolar 

recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing 

contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants 

and children with PH is highly variable and largely dependent on the underlying cause. The best 

outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung 

diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal.

Introduction

Pediatric pulmonary hypertension (PPH) comprises a variety of etiologies spread across the 

entire age spectrum from newborn to late adolescence. PH is defined as the elevation of 

pulmonary arterial pressure (PAP) and is commonly diagnosed by echocardiography or 

cardiac catheterization after it becomes clinically apparent. Use of specific terminology is 

important to describe PH, which refers to elevated PAP from any cause. Pulmonary arterial 

hypertension (PAH) refers to precapillary PH with normal or low pulmonary capillary 

wedge pressure (see below for definition). The major types of PH that occur in the pediatric 

age group are persistent pulmonary hypertension of the newborn (PPHN), which is classified 

as 1.7 in current Nice classification, congenital heart disease (CHD) (1.4.4), developmental 

lung diseases (3.5), and idiopathic pulmonary arterial hypertension (IPAH) (1.1). PPHN has 

a different etiology, presentation, and clinical course compared to other causes of PPH; a 

vast majority of affected neonates recover without sequelae. PPH associated with 

developmental disorders of the lung such as bronchopulmonary dysplasia (BPD) and 

congenital diaphragmatic hernia (CDH) and PH associated with CHD are important causes 
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of long-term PH in children. It is increasingly being recognized that pediatric PH is different 

from adult PH, in etiology, clinical presentation, and outcomes. The 6th World Symposium 

on Pulmonary Hypertension (WSPH) published new definitions and classifications for PH in 

2018, which are reflected in this article. Mechanisms of PH usually involve an imbalance 

between the vasoconstrictor and vasodilator forces in the pulmonary vasculature, which 

leads to elevated pulmonary vascular resistance (PVR), which in turn leads to increased right 

ventricular afterload and eventual right ventricular failure. PPH, with or without temporal 

association with elevated PA pressure, is usually due to disruption of normal development. 

Therapies to treat PH aim to treat this imbalance and decrease RV afterload and increase 

cardiac output. PH can occur secondary to three distinct mechanisms: pulmonary 

vasoconstriction, which is responsive to vasodilator therapy, vascular remodeling with 

thickening of media and adventitia of affected vessels, and a decrease in angiogenesis with 

pruning of the vascular tree (Figure 2).

Definition

The PAP is equal to the systemic pressure in utero and decreases after birth due to a decline 

in the PVR, reaching adult levels by 2 to 3 months of age. PH has been traditionally defined 

as a mean pulmonary arterial pressure (mPAP) ≥25 mmHg, while the term PAH refers to 

elevated PAP with a pulmonary artery wedge pressure ≤15 mmHg in adults, children and 

term infants >3 months of age at sea level since the 1st WSPH in Geneva in 1973 (4, 38). 

The criteria for infants and children also include indexed pulmonary vascular resistance 

(PVRI) as certain classes of pediatric PH cannot be defined with mPAP alone. Children with 

left-to-right shunts (aortopulmonary or intracardiac shunts) with increased pulmonary blood 

flow may not have pulmonary hypertensive vascular disease (PHVD) early on, even though 

they have increased mPAP. Conversely, children without a subpulmonary ventricle might 

have PHVD even with an mPAP <25 mmHg. Therefore, it was recommended that a PVRI > 

3 Wood units (Wu)/M2 be used to define PHVD. The recent 6th WSPH in Nice, France, in 

2018 decreased the lower limit for mPAP for adult PH to >20 mmHg to include cases of 

precapillary PH, as long as PVRI > 3 Wood units (Wu)/M2 based on data showing even 

mildly elevated mPAP of 21 to 24 mmHg to be an independent predictor of worse outcomes 

in adult PH and right heart catheterization studies in healthy normal adults demonstrating 

mPAP of ~14 ± 3.3 mmHg at rest (192, 319, 375, 544). Following this recommendation, the 

Pediatric Task Force of the 6th WSPH also modified the criteria for diagnosis of pediatric 

PH to mPAP > 20 mmHg after three months of life, or PVRI ≥ 3 Wu/M2 (506). Table 1 is a 

comprehensive clinical definition of pediatric PH adapted from the European Pediatric 

Pulmonary Vascular Disease Network (EPPVDN) modeled on the 6th WSPH definitions.

Epidemiology

Comprehensive data on national incidences of PAH in the neonatal and pediatric population 

are lacking. A recent large-scale insurance claim-based study of pediatric PAH in the United 

States found an incidence of 4.8 to 8.1 per million children per year and a prevalence of 25.7 

to 32.6 per million children (349). The first multinational registry in pediatric pulmonary 

hypertension (PH) is the Tracking Outcomes and Practice in Pediatric Pulmonary 

Hypertension (TOPP) registry, which includes data from 31 centers in 19 countries, although 
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they do not report incidence or prevalence data (69). In the TOPP registry, a majority of 

patients (88%) had PAH, which was primarily IPAH, heritable pulmonary arterial 

hypertension (HPAH), or PAH associated with congenital heart disease (CHD-PAH); 12% of 

these patients had PH due to lung disease, with BPD being the most common cause. Another 

large-scale registry in the United States is the combined adult and pediatric observational 

cohort, Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease 

Management (REVEAL). In this cohort, 56% of the children had IPAH/HPAH and 36% had 

CHD-PAH (58). This is different from the adult data from the same registry where only 12% 

had CHD-PAH but 24% had PAH associated with connective tissue diseases (CTDs) such as 

scleroderma (68). 73% of the pediatric cohort had a World Health Organization Functional 

Class (WHO-FC) I or II at the time of enrolment, whereas 53.7% of the adults were already 

at WHO-FC III or IV at the same time. Five-year survival for children with PAH was ~75%, 

with older age being associated with decreased odds of survival. A Netherlands registry-

based study reported a yearly incidence of 63.7 cases per million children, with over 80% of 

these cases being transient PAH (604). The reported incidence and point prevalence of 

sustained PAH in this Dutch registry were 3 per million children per year and 20 per million 

children, respectively. A Spanish registry-based study reported an incidence of 4 per million 

children per year and a prevalence of 20 cases per million children, after excluding transient 

forms of PH (142).

This data is like the US data, which also excluded transient and early forms of PH such as 

PPHN and postoperative PH. Data from the UK Service for PH in Children for only IPAH 

revealed an incidence of 0.48 per million children per year and a prevalence of 2.1 per 

million children, which are similar to that of other registries (401). BPD, which is the most 

common morbidity in the preterm infant population, is associated with PH, which increases 

with increasing BPD severity with numbers of 6%, 12%, and 39% in mild, moderate, and 

severe BPD reported in a meta-analysis; single-center cohort studies reported the prevalence 

of BPD-PH to be between 15% and 64% in preterm infants with severe BPD (29, 419, 630). 

PPHN is the most common cause of transient PAH with an incidence of ~1.9 per 1000 births 

(613).

Classification of PH with the Most Recent Changes Approved at Nice 

Conference, 2018

Pulmonary hypertensive diseases were first classified in 1998 at the WSPH in Evian, France 

(542), and since then have been revised several times. The first Pediatric Task Force of the 

WSPH met at the 5th WSPH in Nice, France, in 2013 and concluded that a common 

classification for pediatric and adult PH is preferred as more children with PH are now 

surviving into adulthood and it is important to share a common language for the purpose of 

definition and classification (543). The Pediatric Task Force of the 6th WSPH in 2018 

proposed some changes that are reflected in the new classification (Table 2) and are more 

representative of the changing landscape of pediatric PH (506). The four major changes and 

rationale behind the changes are summarized below:

I. A new class was added to Group 1 PH called PAH long-term responders to 

calcium channel blockers (CCBs) (Group 1.5), which is similar to adults with 
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PAH who respond positively to an acute vasoreactivity test (AVT). Based on the 

criteria used (Sitbon vs modified Barst), the percentage of children with PAH 

who have a positive AVT ranges between 15% and 30% (157, 548).

II. Dutch registry-based data had shown that among children with nontransient PH, 

a significant proportion (34%) had PH associated with developmental lung 

diseases such as BPD, CDH, and congenital pulmonary vascular abnormalities 

(604). Hence, Group 3.5 was dedicated to developmental lung diseases, which 

also includes a growing list of genetic developmental lung disorders such as 

surfactant protein deficiency and alveolar capillary dysplasia (ACD).

III. Children with single-ventricle physiology may have increased or decreased 

pulmonary blood flow at various stages and hence do not always fit the classic 

definition of mPAP > 25mmHg, but they develop PHVD that markedly impairs 

survival and outcomes. Hence, the 6th WSPH Pediatric Task Force has grouped 

PHVD in the setting of single-ventricle physiology in Group 5.4.

IV. The Task Force also agreed that Down syndrome-associated PH is variable and 

does not fit into a single universal classification group and hence will be 

classified as Group 3 PH unless they have CHD (506).

The contribution of various classes of PH under Nice classification as they apply to pediatric 

PHVD is described in more detail below. Specific differences between adult and pediatric 

PH under these categories are discussed. Table 3 discusses the clinical features, 

hemodynamic findings, and treatment strategies of some of the most common forms of 

pediatric PHD.

Group 1 PH (pulmonary arterial hypertension)

1.1 Idiopathic PAH (IPAH):

IPAH is defined as PAH without any identifiable cause that leads to gradual pulmonary 

vascular remodeling, which includes adventitial thickening, medial hypertrophy, intimal 

proliferation, and formation of concentric laminar intimal fibrosis and plexiform lesions. 

This causes vascular wall thickening and occlusion of small pulmonary arteries, which 

combined with vasoconstriction, inflammation, and thrombosis increases PVR and pressure. 

This leads to increased right ventricular afterload and eventual right heart failure and death 

(262, 277). Estimated incidence rates for IPAH range from 0.47 to 1-2 cases per million 

children, with estimated prevalence rates varying from 2.1 to 4.4 cases per million children 

(4). Up to 25% of patients with IPAH have mutations in genes linked to HPAH; these genes 

are listed under that category. Based on these observations, evaluation of IPAH patients 

should include genetic screening for known mutations in common genes linked to PAH 

(233).

1.2 Hereditary PAH (HPAH):

Multiple genetic mutations have been identified in the pediatric PAH population and are 

implicated in 20% to 30% of sporadic PAH and almost 80% of familial PAH (4). Bone 

morphogenetic protein receptor type 2 (BMPR2) is the gene most implicated in HPAH, with 
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studies finding ~55% in familial PAH and ~10% in IPAH in both adult and pediatric PAH 

patients (470, 508, 659). Children and adults with BMPR2 mutations who present with PAH 

are more likely to have worse disease at diagnosis, present at a younger age, are less likely to 

respond to AVT, and are at an increased risk of death and/or transplantation (165, 508). 

Recently, TBX4 gene mutations that cause small-patella syndrome have been implicated in 

pediatric HPAH (295). Two cohort-based genetic studies found that TBX4 mutations were 

more enriched in the pediatric PAH population compared to adults (10/130 pediatric vs 

0/178 adult onset), and TBX4 gene variant carriers had younger age of disease onset 

compared to BMPR2 gene variant carriers (347, 659). ACVRL1 mutations have also been 

implicated in pediatric HPAH, with increased enrichment compared to the adult population 

(188, 347, 508). Current European Pediatric Pulmonary Vascular Disease Network 

(PPVDN) and the 6th WSPH Pediatric Task Force recommendations are to offer genetic 

counseling to all families with children diagnosed with IPAH/HPAH and to evaluate family 

members of known mutation carriers for PAH if they develop any new cardiorespiratory 

symptoms (235).

1.3 Drug- and toxin-mediated PAH:

Diazoxide, which is used for the treatment of hyperinsulinemic hypoglycemia in the 

neonatal population, has been linked to transient PAH that resolves after discontinuation of 

the drug (385). Neonates on diazoxide should be evaluated for PAH if they develop 

symptoms of respiratory distress or poor feeding. The illicit use of methamphetamine, a drug 

used to treat neuropsychiatric disorders, has been linked to PAH—methamphetamine-

associated PAH (meth-APAH). Meth-APAH presents with a more severe form of disease, 

poorer long-term outcomes, and prognosis compared to IPAH (652). Methamphetamine 

metabolites accumulate within the lung, leading to toxicity and vascular damage (612). PAH 

patients should be screened for a history of drug use, and, conversely, methamphetamine 

users should undergo screening for signs and symptoms of PAH (115, 489).

1.4 1.4.1 PAH-CTD:

PAH can be a rare complication of CTD and has mostly been described among patients with 

systemic sclerosis (SSc), with an estimated prevalence of 5% to 10% (574, 606). It is also a 

rare manifestation of systemic lupus erythematosus (SLE), mixed connective tissue disease 

(MCTD), dermatomyositis, polymyositis, Sjogren’s syndrome, and rheumatoid arthritis (89, 

236, 280, 323, 487). CTD-associated PAH usually carries a worse prognosis compared to 

IPAH (517). In general, PH associated with CTD, HIV, and portal hypertension is less 

common in pediatric compared to adult population (171).

1.4.2 HIV-associated PAH: As mortality from HIV has decreased, the incidence of 

cardiovascular diseases due to antiretroviral treatment-associated dyslipidemias and insulin 

effects as well as HIV-induced chronic endothelial dysfunction, impaired fibrinolysis and 

chronic inflammation have increased (287). HIV patients are seven times more likely to 

develop PAH than the rest of the population. The incidence of PAH varies anywhere between 

10% and 50% in adult patients with HIV (45, 259, 403), although less common in pediatric 

population.
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1.4.3 PAH associated with portal hypertension: This can be of two distinct 

subtypes—hepatopulmonary syndrome (HPS), which is characterized by low PVR and 

increased pulmonary blood flow, and porto-pulmonary hypertension (POPH), which is 

characterized by increased pulmonary vascular remodeling and elevated PVR.

1.4.4 PAH-CHD: This includes all forms of PAH associated with CHD, except complex 

CHDs (Group 5.4 described later) as well as PAH secondary to Eisenmenger’s syndrome in 

those with left-to-right shunts. Although adults with PAH and Eisenmenger’s syndrome have 

better mortality rates than IPAH/HPAH, for children the survival for PAH-CHD and IPAH/

HPAH are similar (29% vs 25%) (58). PAH-CHD is associated with a pre- or post-tricuspid 

shunt lesion with or without pulmonary vascular disease and distinct patterns of right 

ventricular hypertrophy (RVH). Post-tricuspid lesions are left-to-right shunts (ventricular 

septal defects for example) that expose pulmonary circulation to systemic pressure and cause 

LV volume overload, leading to both volume/pressure overload on the pulmonary 

circulation. Untreated, most of these patients will develop Eisenmenger’s syndrome with a 

reversal of the shunt direction to right-to-left due to gradual progression of pulmonary 

pressures to a supra-systemic level (454). Pre-tricuspid lesions like atrial septal defects can 

be left-to-right or sometimes bidirectional. They are usually slow to progress to florid PAH 

due to low atrial pressures and rarely develop Eisenmenger physiology. The prognosis of 

these lesions is excellent if repaired early in life. PAH-CHD not associated with shunt 

physiology is encountered after cardiac surgery of some cardiac defects such as transposition 

of great vessels (TGA, transposition of great arteries), truncus arteriosus (TA), Tetralogy of 

Fallot (TOF), double-outlet LV, pulmonary atresia/intact ventricular septum, and 

aortopulmonary septal defect. It should be noted that prognosis for PAH-CHD is 

significantly worse for children with CHD in resource-constrained areas of the world where 

surgical correction is delayed, perioperative management is variable, and PHD becomes 

established, leading to a higher mortality risk. PAH can also develop in the setting of single-

ventricle physiology. Bidirectional Glenn shunts and Fontan baffles are often used in 

children whose CHD precludes a direct repair due to hypoplastic ventricle. This leads to 

systemic venous blood draining directly into the pulmonary arteries, and there is no 

dedicated subpulmonary ventricle. This can lead to elevated PVR, which affects operability 

and outcomes of these patients with cavopulmonary anastomoses (200, 362, 397). Children 

can develop pulmonary arteriovenous fistulae after Glenn procedure, where only the superior 

vena cava blood flows into the lungs while the inferior vena cava blood bypasses the lungs to 

enter the systemic circulation directly. Although loss of hepatic venous blood drainage to the 

lungs has been suspected as being involved in the AV fistula development, cellular 

mechanism for AV fistula formation in this setting remains unknown. Both bosentan and 

sildenafil have been used in patients after Fontan repair to improve hemodynamics and 

oxygen consumption (212, 455).

1.4.5 Schistosomiasis: It is a rare entity in the developed world and found more 

commonly in countries with endemic schistosomiasis. Globally, this is one of the most 

common causes of PAH, with 5% of patients with hepatosplenic schistosomiasis developing 

PAH.
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1.5 PAH long-term responders to CCBs:

A subset of pediatric PAH patients have positive AVT to oxygen and/or inhaled nitric oxide 

(NO) based on Sitbon or modified Barst criteria and respond to oral calcium channel 

blockers (CCBs) with decreased pulmonary pressures. These children account for ~ 8% to 

15% of all pediatric IPAH patients when using Sitbon criteria (548).

1.6 PAH with overt features of venous/capillaries (PVOD/PCH) involvement:

Pulmonary venous obstructive disease (PVOD) or pulmonary capillary hemangiomatosis 

(PCH) is rare in children. Biallelic mutations in the EIF2AK4 gene have been implicated in 

heritable cases of both PVOD and PCH (7, 78, 166). Risk factors for nonidiopathic PVOD 

include chemotherapy, organic solvent or tobacco exposure, autoimmunity, and 

inflammatory conditions (233, 405). The incidence of PVOD/PCH is estimated to be ~0.7% 

to 2% of all PAH cases (506).

1.7 Persistent pulmonary hypertension of the newborn (PPHN):

Estimated at 30.1 cases per million children per year, this is the most common cause of 

transient PAH. The fetal lung circulation receives 13% to 21% of cardiac output as the 

placenta is the site for gas exchange (495). After birth there is an eightfold increase in the 

pulmonary blood flow due to a drop in the PVR mediated by increased oxygen tension, 

ventilation, shear stress, and increased vasodilatory molecules such as NO and prostacyclin 

(PGI2) (326). PPHN occurs when one or more of these mechanisms fail to lower the PVR, 

which leads to extrapulmonary shunting of deoxygenated blood from right-to-left through 

the patent ductus arteriosus (PDA) and/or patent foramen ovale (PFO) with profound 

systemic hypoxemia, differential oxygen saturation gradient between the pre- and postductal 

circulation and increased risk of death or neurodevelopmental impairment in survivors (190, 

312, 315). PPHN can be due to (i) increased pulmonary vasoconstriction in the setting of a 

structurally normal architecture, which is seen in lung parenchymal diseases like meconium 

aspiration syndrome, respiratory distress syndrome, sepsis, and pneumonia; (ii) pulmonary 

vascular remodeling and altered vasoreactivity and impaired angiogenesis seen in idiopathic 

PPHN; and (iii) pulmonary hypoplasia leading to hypoplastic pulmonary vasculature seen in 

CDH and maternal oligohydramnios (190). The prevalence of PPHN has been historically 

described as 1.9 per 1000 births; however, with growing recognition of the syndrome 

especially in preterm infants, the numbers have been rising (613). In addition to the 

conditions described, other risk factors for developing PPHN include maternal use of 

selective serotonin reuptake inhibitors (SSRIs) or nonsteroidal anti-inflammatory drugs 

(NSAIDs), prematurity, male gender, maternal diabetes, asthma, and obesity (143, 245, 423). 

Mortality for PPHN was >50% prior to extracorporeal membrane oxygenation (ECMO) and 

use of pulmonary vasodilators like inhaled nitric oxide (iNO). Although mortality rates have 

decreased to less than 10%, long-term adverse outcomes like cerebral palsy, deafness, and 

blindness remain high in survivors (317).

Group 2

PH due to left heart disease (LH disease): LH disease is gradually being recognized as an 

important contributor to pediatric PH. Repair of CHD like coarctation of aorta, VSD, mitral 
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valve replacement, hypoplastic left heart syndrome, and cardiac transplantation can 6lead to 

left ventricular dysfunction, thereby causing increased back pressure in the pulmonary 

venous circulation and ultimately postcapillary PH. LV dysfunction is also increasingly 

being recognized as a cause of BPD-PH (320). Valvular lesions like mitral or aortic stenosis 

(AS) can also lead to a similar feature of increased pressure in the pulmonary capillary bed. 

Critical AS or aortic atresia in fetuses and newborns is associated with increased pulmonary 

vascular muscularization, and pulmonary veins become arterialized in utero, leading to 

impaired postnatal pulmonary vascular adaptation (241). Outcome for these infants has 

improved and 5-year survival rates are between 77% and 85% at 5 years (199). Pulmonary 

vein stenosis (PVS) is associated with very high mortality rates and worse outcomes; 

medical or surgical therapies are mostly ineffective (609, 649). Like LV dysfunction, this is 

also becoming an increasing feature in BPD-PH and contributes to increased mortality in 

this population (320).

Group 3

PH due to lung diseases and/or hypoxemia: Interstitial or parenchymal lung diseases or 

systemic diseases that affect ventilation of the lung cause chronic hypoxia, which leads to 

pulmonary vasoconstriction, pulmonary vascular remodeling, and ultimately right heart 

failure to high afterload. This includes chronic hypoventilation and obstructive sleep apnea 

(OSA) as well hypobaric hypoxia resulting from high altitudes. OSA in otherwise normal 

children with enlarged tonsils and adenoids showed almost 20% incidence of RVH by 

echocardiography and 37% of children with OSA diagnosed on sleep study have decreased 

RV ejection fraction measured by radionuclide ventriculography (336, 582).

BPD-associated pulmonary hypertension (BPD-PH):

Altered lung development due to growth arrest of alveoli and pulmonary capillaries can lead 

to the vascular phenotype of BPD-PH (75). Pathogenesis of BPD-PH is multifactorial as 

shown in Figure 1. Maternal factors such as chorioamnionitis, smoking, preeclampsia, and 

intrauterine growth restriction, especially if accompanied with reversed or absent end-

diastolic flow in the umbilical arteries, are prominent risk factors for BPD-PH in a growing 

population of extremely preterm infants (75, 114, 387). Small-for-gestational age (SGA) is 

another risk factor for PH in preterm infants with and without BPD (29). Postnatal lung 

injury from ventilation and oxygen exposure, infections, inflammatory response, and poor 

postnatal growth together contribute to alveolar and vascular injury and growth arrest. Two 

other morbidities associated with prematurity—necrotizing enterocolitis (NEC) and 

retinopathy of prematurity (ROP)—were also strongly associated with the increased 

prevalence (29) of BPD-PH in a cohort study from the Children’s Hospital Neonatal 

Consortium. This study also reported the incidence of PH in preterm infants <32 weeks 

gestational age with severe BPD to be at 22% (325). During admission, PH was associated 

with increased mortality and duration of ventilation and after discharge with medical 

interventions, including tracheostomy, supplemental oxygen use, tube feeds, and increased 

frequency of readmission through 1 year of life. Presence of PH is strongly associated with 

increased mortality with reports ranging from 14% to 38% and a meta-analysis reporting 

16% mortality before discharge and 40% at two years of life (29, 75). The prevalence of PH 
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increases in step with BPD severity. A meta-analysis and single-center cohort studies 

reported numbers of 6%, 12%, and 39% in mild, moderate, and severe BPD and the 

prevalence of BPD-PH to be between 15% and 64% in preterm infants with severe BPD (29, 

419, 630). BPD is associated with dysmorphic growth of pulmonary vessels, reduced 

microcirculation, and altered distribution of vessels. This abnormal vasculature contributes 

to impaired alveolar-capillary gas exchange causing prolonged hypoxemia, requirement for 

positive pressure ventilation, and the risk of developing severe PH (2, 18, 139, 588). The 

pulmonary vasculature shows increased tone and vasoreactivity, decreased growth and 

increased hypertensive remodeling. This leads to high resting PVR even in the absence of 

hypoxia and an exaggerated pulmonary vasoconstrictor response to hypoxia. Decreased 

growth and pruning of vessels lead to severely compromised lung perfusion and right heart 

strain, especially if significant left-right shunts (8, 79, 416, 417, are, present). Development 

of pulmonary vascular disease early on in the course of life also strongly correlates with 

increased severity of BPD, which is an independent risk factor for the development of late 

BPD-PH (419). Three additional findings on echocardiogram for these preterm infants are 

being increasingly recognized as contributory and prognostic factors for the development 

and outcome of BPD-PH—PVS, left ventricular dysfunction, and presence of 

aortopulmonary collaterals. The prevalence of PVS in a cohort of infants with BPD-PH who 

underwent cardiac catheterization was 26%, and there have been reports of association with 

NEC (141, 243, 370, 575). Left ventricular diastolic dysfunction should be suspected in the 

setting of PH with worsening pulmonary edema or increasing diuretic requirements.

Congenital diaphragmatic hernia-associated pulmonary hypertension (CDH-PH):

CDH is a birth defect characterized by the herniation of intra-abdominal contents into the 

thoracic hernia through a diaphragmatic defect in utero. This is a life-threatening condition 

resulting in death if not medically managed and surgically corrected. With the advent of 

antenatal diagnosis, better surgical techniques, ventilatory management, and ECMO support, 

the mortality has decreased to 25% to 30% in the last few decades. The incidence of CDH is 

~1 in every 2500 births and PH occurs in nearly 60% to 70% of these infants (266, 556). PH 

persisting to 1 month of age in CDH is strongly associated with increased mortality (~45%). 

A multicenter cohort study reported only a 43.9% survival rate when the ratio of RV to 

systemic pressure at 1 month was greater than 0.67 and 98.6% survival when the ratio was 

<0.5 (635). The two-hit hypothesis for CDH-PH proposes an early embryonic alteration of 

the pulmonary vasculature and parenchymal development followed by a later mechanical 

compression by the herniated abdominal contents leading to pulmonary hypoplasia (292). 

This leads to a hypoplastic pulmonary vascular bed with decreased arborization and altered 

vasoreactivity along with increased remodeling with medial and adventitial thickening (239, 

400). Left ventricular hypoplasia and dysfunction due to altered mechanics of the thoracic 

cavity add to this by causing pulmonary venous hypertension (539). LV mass was 

significantly smaller in nonsurviving infants with CDH, which could be due to compression 

by the abdominal contents, redistribution of fetal cardiac output from LV to RV in CDH, or 

less pulmonary venous return to the left side of the heart from the hypoplastic CDH lung 

(302). This is an important factor contributing to the success or failure of pulmonary 

vasodilators in the treatment of acute or postoperative PH in the CDH, as they may 
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contribute to worsening wedge pressure and pulmonary edema in the presence of LV 

dysfunction (359).

ACD with misaligned pulmonary veins is a uniformly fatal disorder characterized by 

immature lobular development, abnormal air-blood barrier, and an underdeveloped 

pulmonary capillary bed (81). Mutations in FOXF1 gene are found in 40% to 60% of infants 

with ACD, particularly in the presence of coexisting anomalies such as anorectal 

malformations, skeletal defects, and congenital heart defects (576). Most cases of ACD 

develop severe PAH and die despite maximal PH therapy.

Group 4: PH due to pulmonary artery obstruction

4.1 Chronic thromboembolic PH (CTEPH) occurs in 0.5% to 3.8% of patients with acute or 

recurrent pulmonary thromboembolism (394). The embolus transforms into a fibrotic 

residue, resulting in proximal vessel obstruction and distal arteriopathy leading to PH and 

right ventricular failure (414). CTEPH should be considered in all symptomatic pediatric 

patients with known hypercoagulable state, history of thromboembolism, or venous catheter 

placement, especially as the rate of venous thromboembolism in the pediatric population has 

been rising (488). Pulmonary thromboendarterectomy (PTE), which involves removal of 

organized thromboembolic material from the vessel intima, is usually well tolerated in these 

patients with improved hemodynamic and functional status and low perioperative mortality 

(127, 368).

The illness caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), better known as COVID-19 (coronavirus disease-19), also leads to a coagulopathic 

state causing venous thromboembolic events. Autopsies of patients who died from 

COVID-19-induced acute lung injury (ALI) show damage to the pulmonary vascular 

endothelium and pulmonary capillaries filled with dense fibrin-rich microthrombi (10, 398). 

Although cases of CTEPH have not been reported in the pediatric population from 

COVID-19 sequelae, having a follow-up strategy for identifying residual clot burden and 

potential hemodynamic consequences is important in this group (150). An adult cohort study 

of right heart catheterization data in mechanically ventilated COVID-19 patients comparing 

it to patients with acute respiratory distress syndrome (ARDS) from non-COVID-19 causes 

found that although PVR was lower in COVID-19, there was a high incidence of PH in 

COVID-19, with a majority being postcapillary PH (101).

Table 4 discusses the key differences between precapillary, postcapillary, and a mixed type 

of PH in the pediatric population.

Another clinical classification described in this article is the 2011 Panama classification for 

pediatric PH (Table 5). This is different from the WSPH classification, which has often been 

critiqued as more adult PH-oriented. The Panama classification was proposed by the 

Pulmonary Vascular Research Institute (PVRI) Pediatric Taskforce, which was a group of 

North and South American pediatric PH experts (328).
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Functional classification

Functional classification (FC) of PH is difficult in infants and children due to the practical 

difficulty of performing exercise tests and the lack of reliable self-reporting of symptoms. 

The New York Heart Association (NYHA) FC is commonly used by cardiologists to assess 

clinical status in adults with heart failure. The WHO-FC is a FC for adults with PH, which is 

modeled on the NYHA FC (26).

WHO-FC:

Class I: Patients with PH but without limitation of physical activity. Ordinary physical 

activity does not cause undue dyspnea, fatigue, chest pain, or near syncope.

Class II: Patients with PH resulting in slight limitation of physical activity, comfortable at 

rest. Ordinary physical activity causes undue dyspnea, fatigue, chest pain, or near syncope.

Class III: Patients with PH resulting in marked limitation of physical activity, but 

comfortable at rest. Less than ordinary physical activity causes undue dyspnea, fatigue, chest 

pain, or near syncope.

Class IV: Patients with PH resulting in inability to carry out physical activity without 

symptoms. Symptoms of right heart failure are present, and dyspnea and fatigue are usually 

present at rest. Syncope or near-syncope may occur.

The Pediatric Task Force of the PVRI proposed a new FC for PH in children in 2011 (Table 

6), known as the Panama classification (328). This is stratified into five different classes 

based on the ages of 0 to 0.5 year, 0.5 to 1 year, 1 to 2 years, 2 to 5 years, and 5 to 16 years. 

After 16 years, adult FCs can be reliably used. These incorporate weight gain and 

developmental milestones into the assessment along with increased self-reporting of 

symptoms as the child grows older.

Cellular and Structural Changes

A variety of cellular and structural changes play a complex role in the pathogenesis of PH 

(see Figure 2). The primary imbalance between the vasoconstrictor and vasodilator pathways 

leads to persistent vasoconstriction and pulmonary vascular remodeling, eventually causing 

right ventricular failure secondary to increased afterload. Alterations in cell biology are 

presented below for each vascular cell; however, the cell-cell communications are integrated 

into a complex signaling network that affects the entire vascular wall.

Endothelial cells

The innermost layer of blood vessels is composed of a monolayer of endothelial cells 

supported by an internal elastic lamina. This endothelium forms a nonthrombogenic, 

semipermeable barrier between the bloodstream and the extravascular tissues. It regulates 

vascular tone, hemostasis, growth and differentiation of blood vessels as well as chemotaxis 

(466). Endothelial cells are the first cells to be exposed to the effects of low oxygen tension 

in the blood. Chronic hypoxia leads to endothelial cell hypertrophy, as evidenced by the 
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increased DNA synthesis and increased cell number, which are demonstrated by an 

approximately threefold increase in 3H-thymidine incorporation by endothelial cells early 

during hypoxia exposure. Endothelial cells undergo disorganized proliferation, which could 

lead to plexiform lesions or concentric obstructive lesions, both of which lead to obliteration 

of the pulmonary vascular lumen (596). Plexiform lesions are glomeruloid-like disorganized 

endothelial cells, which demonstrate markers of angiogenesis such as HIF-1α and VEGF 

(597). They are most commonly found in IPAH and Group 2 PH. Concentric lesions are 

onionskin-like proliferative growth of endothelial and/or smooth muscle cells. Rarely, 

paucicellular lesions can be found in the intima of the pulmonary hypertensive artery, which 

is characterized by increased extracellular matrix (ECM) and mucopolysaccharides and 

decreased endothelial cell number (596). The intimal fractional thickness, which is a 

measure of the contribution of the intima to the overall diameter, shows an almost threefold 

increase in patients with severe PAH (561). The subendothelial space, which is present 

between the endothelial cell and its basement membrane, contains increased amounts of 

collagen, elastin, and microfibrils in autopsy specimens of infants dying from PH. 

Endothelial cell elastin production, which is suppressed in late fetal and early neonatal life, 

is upregulated by reexpression of tropoelastin mRNA in endothelial cells in response to 

hypoxic injury (161, 566). Hypoxia leads to increased expression of neutrophil chemotactic 

factors on endothelial cells (391). Endothelial cells release mediators that regulate vascular 

tone and smooth muscle proliferation, and the balance between vasodilatory and 

vasoconstrictive mediators is lost in PH. The three principal mediators are NO, PGI2, and 

endothelin (ET-1), which are described in detail in Section 6 in this article.

Smooth muscle cells (SMCs)

SMCs play one of the most important roles in increased pulmonary vascular contractility, 

increased muscularization of the resistance arteries, medial thickening, abnormal 

muscularization of the distal nonmuscular pulmonary arteries, and increased ECM 

production leading to pulmonary vascular remodeling. Pulmonary artery smooth muscle 

cells (PASMCs), which are in a quiescent state of performing contractile function during the 

normal physiological state, possess a unique feature unlike other vascular SMCs—they are 

not terminally differentiated and hence can modulate their phenotype greatly in response to 

stress and changes in their environment (577). The key processes that change SMC 

phenotype in response to a PH-causing environment are hypertrophy, proliferation or 

hyperplasia, resistance to apoptosis, and migration. SMC hypertrophy occurs mainly from 

increased protein synthesis with decreased breakdown, along with the increased intracellular 

water content (73). There is increased expression of Na+ ion channels, which are key to the 

maintenance of increased cell volume. This hypertrophy is also mediated by G-protein-

coupled receptor-agonists such as angiotensin II (ANGII), ET-1, thromboxane-A2 (TXA2), 

and other receptor tyrosine kinases. SMC proliferation, which contributes to the medial 

thickness and the muscularization of nonmuscular arteries, is regulated by increased Ca2+ 

levels. There are conflicting reports as to whether hypoxia directly exerts a mitogenic effect 

on PASMCs, whether hypoxia stimulates the PASMCs to produce an autocrine growth 

factor, or whether hypoxic stimulation leads to the synthesis of paracrine signals from the 

neighboring PAECs, which result in PASMC proliferation. PH leads to upregulation of 

transient receptor potential channel (TRPC) genes and store operated Ca2+ entry (SOCE) 
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channels, which result in increased cytosolic Ca2+ concentration. Ca2+ binds to calmodulin, 

which activates Ca2+-calmodulin-dependent protein kinases, which in turn phosphorylate 

transcription factors such as Ca2+/cAMP-response element binding protein (CREB) and Ras, 

responsible for initiating and maintaining the cell cycle (331). PASMC proliferation has also 

been linked to the activation of the mTOR pathway, and rapamycin (mTOR inhibitor) 

normalizes the growth of PASMCs in the monocrotaline (MCT)-induced PH model (258). 

NO donors were found to inhibit hypoxic PASMC proliferation in vitro in a dose-dependent 

manner with associated cGMP increases (20). PASMC migration is a phenomenon that 

occurs during development, vascular injury, and vessel wall remodeling. Growth factors like 

platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth 

factor (FGF2), as well as cytokines like IL-6, have all been implicated in increased PASMC 

migration (202).

Role of fibroblasts and extracellular matrix

Monocytes, macrophages, T lymphocytes, and dendritic cells have all been found in the 

plexiform and other lesions of PAH-affected human lungs (600). Fibroblasts are the major 

cell type found in the adventitial layer of the pulmonary vasculature and produce ECM and 

matricellular proteins (569). They are often the first cells to become activated, proliferate, 

and differentiate in response to injury (372). In addition, PAH is characterized by 

endothelial-to-mesenchymal transformation (EndMT) where PAECs lose their cell-to-cell 

connections due to loss of cell surface markers, detach from the endothelial monolayer, 

migrate to the medial layer, and dedifferentiate into myofibroblast-like cells with increased 

expression of α-smooth muscle actin, vimentin, and collagen (567). Inflammation, chronic 

hypoxia, BMPR2 mutations, increased flow, and shear stress have all been implicated in 

EndMT (218, 257, 491, 567). Proliferation of the adventitial fibroblasts as well as EndMT 

leads to changes in the vascular ECM with increased proteolytic enzymes like matrix 

metalloproteinases (MMPs), metalloproteases, serine elastases, lysyl oxidases and a 

decrease in the tissue inhibitors of metalloproteinase (TIMPs). This imbalance results in 

increased collagen deposition, cross-linking of collagen (conversion of soluble to insoluble 

collagen), elastin deposition and breakdown, and deposition of fibronectin and tenascin. This 

change in the ECM milieu results in pulmonary vascular remodeling with increased PVR 

and decreased compliance (77, 253, 345, 589). Animal models with increased expression of 

MMPs have exaggerated pulmonary vascular remodeling in response to monocrotaline or 

chronic hypoxia, and, conversely, rats with overexpression of serine elastase inhibitors have 

an attenuated increase in PAP and pulmonary vascular remodeling when exposed to hypoxia 

(201, 651). Rodent models of PH (both monocrotaline and chronic hypoxia) have 

demonstrated that administration of serine elastase inhibitors decreases elastolytic activity, 

reduces muscularization of nonmuscular distal pulmonary arteries, and lowers PAPs (128, 

265, 589, 643).

Pulmonary vasculature

The changes in the pulmonary vasculature differ based on the etiology of PH. BPD is 

characterized by an arrest in the lung alveolar and vascular development, leading to 

decreased capillary density and alveolar-capillary area for gas exchange (79). The neonatal 

rodent hyperoxia model for BPD has demonstrated that the extent of alveolar simplification 
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(less complex interstitial structure with decreased alveolar number and septation) and 

decreased vessel density depends on the concentration of inspired oxygen and occurs in a 

dose-dependent manner (615). Angiogenesis, the development of sprouts from existing 

blood vessels, helps in branching of vascular networks in the developing fetal lung, which 

then coalesce to permit blood flow. Animal model studies have shown that angiogenic 

signaling is severely impaired in BPD with disrupted vascular endothelial growth factor 

(VEGF) signaling, decreased pro-angiogenic factors, and increased vasoconstrictor and 

inflammatory molecules (39, 40). Hyperoxia-induced damage to the pulmonary 

microvasculature also causes persistent irreversible pulmonary artery medial thickness and 

increased EC cytoplasm content (431). Impaired angiogenic signaling leading to decreased 

microvascular cross-sectional area, impaired vasoreactivity, and increased vascular tone 

together contribute to increased PVR in BPD-PH. Increased PVR and chronic hypoxic 

vasoconstriction further lead to pulmonary vascular remodeling with intimal hyperplasia and 

muscularization of small pulmonary arteries (18, 39, 40, 99, 220). This mechanism of 

impaired angiogenesis due to the arrest in lung development in BPD is different from that 

seen in IPAH or HPAH, for example, where the pulmonary vasculature and alveolar growth 

are usually complete before vascular remodeling happens. The pulmonary vascular 

remodeling in IPAH/HPAH involves intimal and medial hyperplasia of the muscular 

pulmonary arteries and distal muscularization of the nonmuscular arteries and precapillary 

arterioles (536). This is accompanied by proliferation and migration of PASMCs, 

endothelial-to-mesenchymal transition, and the development of vaso-occlusive lesions 

comprising PAECs, PASMCs, and migratory and inflammatory cells (596). This fixed 

obstruction seems to be more dominant in IPAH/HPAH, whereas the dynamic obstruction 

due to altered vasoreactivity and imbalance between vasodilatory and vasorelaxant 

mediators is more prominent in PH due to chronic hypoxia, even though pulmonary vascular 

remodeling is a prominent feature in both. Both conditions eventually reduce the pulmonary 

arterial cross-sectional area, leading to elevated PVR, which aggravates the remodeling 

process.

Right ventricular changes

Once PVR is elevated, the right ventricle (RV) must pump the blood against increased 

afterload, thereby causing increased RV strain. This leads to RV hypertrophy over time with 

increased protein synthesis and cardiac myocyte size without replication. This is at first a 

compensatory mechanism, but as the RV assumes a more rounded shape, it compresses the 

left ventricle (LV) and pushes the IVS leftward. The RV hypertrophy leads to progressive 

contractile dysfunction compounded by the impaired delivery of oxygen and substrates due 

to the decreased RV vessel density. This, in turn, leads to gradual decompensation with RV 

becoming dilated, hypokinetic, and fibrotic, causing RV failure (86, 221). Although 

increased RV afterload is the initiating event for RV failure, a variety of other mechanisms 

such as neurohormonal signaling, oxidative stress, inflammation, ischemia, and cell death all 

contribute to right heart failure (86). The key factors leading to RV failure are (i) limited 

contractile reserve and adaptability to an elevated transpulmonary gradient, (ii) ischemia due 

to reduced perfusion pressure of the right coronary artery (RCA) from reduced epicardial 

systolic flow and/or microvascular rarefaction in the RV, (iii) shift from mitochondrial 

oxidative phosphorylation to cytosolic aerobic glycolysis, and (iv) downregulation and 
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desensitization of adrenergic receptors in the RV (428, 472, 473, 518). RV failure is the 

primary cause of death in pediatric and adult PH, and three-dimensional echocardiography 

of RV function correlates with the severity of pediatric PH (283). In addition to RV systolic 

failure, PH is also characterized by RV diastolic dysfunction, which is related to RV muscle 

mass and afterload (196). Decreased RV output leads to impaired LV filling and cardiac 

output (CO), and decreased LV filling decreases the ability of the LV to assist the failing RV, 

setting up a feed-forward loop. RV diastolic dysfunction and leftward IVS deviation also 

impair LV filling and hence diastolic ventricular interaction is as important as systolic 

interaction in the pathogenesis of heart failure in PH (93, 195).

Molecular Mechanisms

Although many advances have been made in the field of pulmonary vascular biology and 

molecular mechanisms regulating PVR, much of it is still poorly understood.

NO-sGC-cGMP pathway

NO is synthesized inside endothelial cells by the enzyme endothelial NO synthase (eNOS, 

NOS3), which cleaves the terminal amino group from the NO precursor, L-arginine, and 

combines oxygen to generate NO and L-citrulline (461) (see Figure 3). NOS3 gene, which 

codes for eNOS transcript, is present on chromosome 7. There are two other NO synthases, 

neuronal and inducible NOS, neither of which are expressed normally in the endothelium. 

Decreased eNOS expression and function is an important factor in the development of 

PPHN (251). eNOS uses 5,6,7,8-tetrahydrobiopterin (BH4), nicotinamide adenine 

dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), and Ca2+ as cofactors. 

BH4 reduces molecular oxygen to form water, a process coupled to the oxidation of L-

arginine to generate NO and L-citrulline. Reductions in BH4 lead to uncoupling of NOS and 

the reduction of oxygen to superoxide anion instead of water. Superoxide can combine with 

NO to produce peroxynitrite, which is a potent vasoconstrictor (306). NO works in a 

paracrine fashion and diffuses out of the endothelial cell and into the smooth muscle cell 

present in the medial layer of the vessel wall. Here it stimulates soluble guanylate cyclase 

(sGC), which converts GTP into cyclic 3′,5′-guanosine monophosphate (cGMP), which 

then activates cGMP-dependent protein kinases, namely, protein kinase G (PKG1) (422). 

NO-cGMP signaling has been established as one of the key pathways in vascular smooth 

muscle cell relaxation (410, 451). PKGs, which are responsible for most of the intracellular 

actions of cGMP, are serine/threonine protein kinases with PKG-I being the predominant 

isoform in the vascular cells (105). PKG decreases intracellular Ca2+ concentrations by 

phosphorylation and inactivation of voltage- and receptor-gated Ca2+ channels, which 

reduce the influx and increase the efflux of Ca2+ (232). cGMP also activates myosin light 

chain phosphatase, which then decreases vascular tone (343). Acute hypoxia has been shown 

to decrease PKG activity in fetal pulmonary vascular smooth muscle in animal models of 

PH, hence indicating decreased NO responsiveness (433). Adult studies have shown 

decreased levels of eNOS expression in the pulmonary endothelium of the lungs of patients 

with plexiform PH (206). A dysfunctional NO-sGC-cGMP-PKG pathway is one of the key 

players in disrupted endothelial cell function and pathogenesis of PH. This results from 

abnormal eNOS expression, reduced NO production due to eNOS uncoupling, diminished 
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NO bioavailability due to oxidative stress, diminished activities of sGC and PKG, and 

increased activity of phosphodiesterase-5 (197). Phosphodiesterases (PDEs) are a 

superfamily of enzymes, from PDE-1 to 11, which can inactivate cAMP and cGMP. The 

major cGMP-degrading PDE is PDE-5, which is abundantly expressed in the lung tissue. 

PDE-5 is inhibited by the drugs sildenafil and tadalafil, which are currently used for the 

treatment of PH (471).

Prostacyclin (PGI2)

PGI2, which is produced by endothelial cells under shear stress, has a variety of functions 

including inhibition of smooth muscle cell proliferation, vasodilatation, and antiplatelet 

aggregation. Phospholipase A2 catalyzes the conversion of membrane-bound lipids in 

endothelial cells to form arachidonic acid (395). Cyclooxygenase-1 (COX2) converts 

arachidonic acid into intermediate prostaglandins, which serve as precursor molecules to a 

host of other mediators, including PGI2, which is formed from PGH2 by the action of 

prostacyclin synthase (PGIS) (396). Both COX-1 and PGIS are abundantly expressed in the 

endothelium. PGI2 acts via the IP receptor and adenylate cyclase to convert adenosine 

triphosphate (ATP) into cyclic adenosine monophosphate (cAMP). Increased levels of 

cAMP mediate increased protein kinase A activity and vascular smooth muscle cell 

relaxation (Figure 4) (16). Studies in neonatal lambs with PPHN demonstrated that PGIS, 

COX-1, and COX-2 activity are decreased, contributing to impaired angiogenesis (369).

In the monocrotaline model of rat PH, COX-2 knockout mice showed increased pulmonary 

oxidative stress and vasoconstriction. Similarly, the hypoxic mouse model for PH showed 

that hypoxia induced PH and vascular remodeling was exacerbated in COX-2-deficient 

pulmonary artery smooth muscle cells (186, 534). Adult lung specimens with severe PH 

showed a complete lack of PGIS expression in the large pulmonary arteries (598).

Endothelin

ET-1 is a potent endogenous vasoconstrictor and also causes vascular smooth muscle cell 

proliferation. ET-1 is produced by endothelial cells and acts on the neighboring SMCs in a 

paracrine fashion (640). Hypoxia, ischemia, and shear stress activate the prepro ET-1 gene 

promoter, which transcribes the preproET-1 peptide, the precursor molecule of ET-1 (191). 

NO and PGI2 have been shown to inhibit ET-1 release, resulting in pulmonary vasodilatation 

(480, 492). ET-1 binds to either ETA receptors found in SMCs and cardiac myocytes or to 

ETB receptors located in SMCs and endothelial cells. ET-1 binding to ETA on SMCs 

activates phospholipase C, which increases intracellular Ca2+ concentration through 

increased inositol triphosphate, leading to vasoconstriction (478). However, activation of 

endothelial ETB receptors leads to the release of NO and PGI2, increased pulmonary 

clearance of ET-1 and exerts a mild vasodilator effect (121, 248). ET-1 increases ECM 

proteins and fibronectin production. ET-1 was shown to enhance the effects of transforming 

growth factor-beta and platelet-derived growth factor, leading to fibrosis, vascular 

hypertrophy, and smooth muscle cell proliferation (364). Experimental animal models of 

hypoxic PH have shown increased ET-1 as well as both ETA and ETB receptors, and 

newborn models have shown that ETA blockade partly reverses the effects of hypoxic 

pulmonary vasoconstriction (19, 348, 553). ETA antagonism in a monocrotaline model of 
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PH decreased the RVH and pulmonary vascular thickening significantly, whereas ETB 

antagonism worsened both endpoints, thereby suggesting the divergent roles of ETA and 

ETB in PH (442).

Serotonin (5-HT)

5-HT is a potent pulmonary vasoconstrictor and angiogenic agent synthesized from the 

amino acid L-tryptophan by tryptophan hydroxylase (TPH) and metabolized by monoamine 

oxidase (MAO). In patients with PAH, TPH expression in PAEC is increased and 5-HT acts 

in a paracrine fashion on the PASMCs to induce proliferation and contraction and inhibition 

of voltage-gated K+ channels causing increased vascular tone (162, 339). Serotonin has also 

been implicated in the activation of mitogen-activated protein kinases through superoxide 

production and increasing the susceptibility of BMPR2-deficient mice to developing 

hypoxia-induced PH (344, 361). PAECs and PASMCs isolated from PPHN lambs show 

increased levels of 5-HT, which contributes to increased PVR through activation of the 5-

HT2A receptor, and selective serotonin reuptake inhibitor (SSRI) infusion also increases 

PVR in the lamb PPHN model (144, 145). 5HT2A and serotonin transporter expression is 

also increased in the nitrofen CDH model for pulmonary hypoplasia and PH (255). A recent 

meta-analysis also found that prenatal exposure to SSRIs or serotonin norepinephrine 

reuptake inhibitors significantly increased the risk of PPHN after birth (OR 1.82, 95% CI = 

1.31–2.54) (378).

Reactive oxygen species (ROS)

Multiple studies have shown that increased oxidative stress is a key contributory factor in the 

pathogenesis of PH as shown in Figure 5 (129, 148, 181, 267, 620). Oxidant stress can 

disrupt eNOS function by impairing the eNOS chaperone, heat shock protein 90 (Hsp90), 

depleting BH4, or its many other cofactors (625). In addition, reactive oxygen species (ROS) 

causes PASMC proliferation, which is attenuated by antioxidants (619, 621). In energy 

metabolism, oxygen acts as an electron acceptor in the mitochondrial respiratory chain and 

gets reduced to water eventually. Electron leak in the respiratory complex chain can lead to 

formation of several ROS such as superoxide anion (O2
•−) and hydrogen peroxide (H2O2). 

Exposure to hyperoxia, uncoupling of eNOS, increased activity of NADPH oxidase, and 

mitochondrial dysfunction contribute to increased concentrations of ROS (365). Superoxide 

can combine avidly with endogenous NO to form peroxynitrite (OONO•−), which is a potent 

vasoconstrictor and also reduces endogenous NO activity by nitration of Hsp90 to decrease 

its association with eNOS (230). eNOS uncoupling, which can happen due to increased 

OONO•− levels, itself promotes mitochondrial dysfunction and leads to increased levels of 

OONO•−, thus causing a feed-forward pathway (573). Superoxide is converted by 

superoxide dismutase (SOD) into H2O2 under normal conditions, which is further degraded 

by scavengers such as catalase and glutathione peroxidase. Both superoxide and H2O2 also 

stimulate PDE5, which degrades cGMP, thereby potentiating vasoconstriction (173, 175, 

424). H2O2 also produces hydroxyl free radicals in the presence of iron through the Fenton 

reaction, which can cause cell damage. PPHN lambs show increased levels of superoxide 

and H2O2 and NADPH oxidase activity along with decreased sGC activity and impaired 

angiogenesis (91, 587, 623, 626). PPHN lambs also show decreased levels of mitochondrial 

DNA copy number and electron transport chain complexes, which thereby lead to 
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accumulation of ROS. This decrease was shown to be dose dependent in relation to oxygen 

exposure after birth and partly improved by exposure to NO and by reduction in oxygen 

concentration (11). Other animal models of PH such as the mouse hyperoxia, piglet hypoxia, 

and the monocrotaline model have all shown increased levels of NADPH oxidase (74, 148, 

181, 608). ROS are removed by scavengers including superoxide dismutase (SOD), catalase, 

and glutathione peroxidase. Overexpression of extracellular SOD ameliorates PH in rats, 

protects lung development, and attenuates pulmonary vascular remodeling in hypoxic mice 

(14, 286, 443, 625). Catalase breaks down H2O2, and although mice deficient in catalase 

develop normally, intratracheal administration of catalase to ventilated PPHN lambs 

improves oxygenation, increases extracellular SOD activity, decreases superoxide levels, 

decreases PDE5 activity, and increases cGMP levels in the pulmonary arteries (176, 623).

Potassium (K) channels

Reduced K+ channel expression and activity contribute to depolarization of SMCs in 

hypoxic PH, and increasing K+ channel expression in PASMCs attenuates changes of PH 

(96, 647). Oxidative stress has been found to impair the vasodilatory voltage-gated Kv 

channels in PPHN models, which can be partly restored by superoxide scavengers (313). 

Depolarization is believed to mediate the increased Ca2+ influx via voltage-gated Ca2+ 

channels (VGCCs) (537). Administration of dichloroacetate, which inhibits glycolysis, 

increases the expression of K+ channels and attenuates pulmonary vascular remodeling in 

both hypoxic and MCT models of rat PH (383, 389).

Calcium (Ca) channels

Increased cytosolic Ca2+ is a major trigger for pulmonary vasoconstriction and PASMC 

proliferation and migration, leading to remodeling. Increased resting cytosolic levels of Ca2+ 

as well as increased Ca2+ influx have been noted in PASMCs isolated from PH models. Both 

VGCCs and TRPC ion channels have been implicated in the Ca2+-mediated pulmonary 

vascular remodeling and PH pathogenesis. Voltage-gated channels, which are of L and T 

types, open in response to membrane depolarization and result in Ca2+ influx. Hypoxic mice 

that developed PH have increased expression of both L-type and T-type Ca2+ channels on 

vascular SMCs (614). Chronic hypoxia has been shown to upregulate L-type Ca2+ channels 

in small pulmonary arteries of the neonatal models of PH, and the calcium channel blocker, 

nifedipine decreased pulmonary pressures in the same model by inhibiting voltage-gated 

Ca2+ influx (249). Similarly, Rodman et al found an abundance of T-type Ca2+ channels in 

the medial layer of pulmonary arteries, and siRNA-induced inhibition of these channels 

decreased PASMC proliferation in vitro (501). TRPCs, which are Ca2+-permeable 

nonselective cation channels, have been implicated in IPAH and are increasingly recognized 

as the primary contributors for a sustained increase in cytosolic Ca2+. These, unlike VGCCs, 

are modulated by phosphorylation, receptor activation, or store depletion. PASMCs from 

patients with IPAH have increased expression of TRPC3 and TRPC6, and similar increased 

expression has been found in hypoxic PH models (357, 617). Decreasing the activity of 

TRPC6 either pharmacologically or by RNA silencing decreased the expression of the 

TRPCs as well as decreased vascular tone in the pulmonary arteries (321, 357). Data about 

Ca2+ and PAECs are still conflicting as in vivo models have failed to show elevated 
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intracellular Ca2+ levels in PAEC isolated from hypoxic rats. However, cultured PAECs from 

these rats show increased Ca2+ levels and increased expression of TRPC4 (170, 459).

Vascular endothelial growth factor (VEGF)

Several different vascular endothelial growth factor (VEGF) splice variants have been 

identified, of which VEGFA is the most prominent and known for its functions of vascular 

permeability, angiogenesis, and vascular cell survival (307). VEGFA binds to two different 

receptor tyrosine kinases (RTKs), VEGFR1 or fms-related tyrosine kinase-1 (Flt1) and 

VEGFR2 or fetal liver kinase-1 (Flk1). VEGFR1 acts as a negative regulator of VEGF by 

preventing activation of VEGFR2, which is the functional receptor mediating the mitogenic, 

proangiogenic, and permeability-enhancing actions of VEGF (307, 463). Most animal 

studies, including both hypoxic and monocrotaline PH models, have shown increased 

VEGFA, VEGFR1, and VEGFR2 levels, which have been linked to increased endothelial 

cell proliferation in PH (118, 119, 599). In contrast, fetal lamb models of in utero generated 

PH have shown decreased VEGFA levels in endothelial cells, and VEGFA administration 

improved angiogenesis in vitro (208, 586). These studies highlight the developmental origin 

of fetal and neonatal PH. The causal relationship of VEGFA in pulmonary arterial 

remodeling needs further study. However, administration of VEGFA ameliorates the changes 

of PH in hypoxic animal models, which suggests that the relationship between VEGF, 

VEGFRs, and PH is complex and context dependent (172, 464). VEGFR inhibition causes 

apoptotic and emphysematous changes in rat lungs, but when exposed to chronic hypoxia, 

these rats develop pulmonary vascular angio-proliferative changes leading to severe PH 

(290, 341, 583). Cord blood levels of VEGFA are decreased in babies with maternal 

placental hypoperfusion and coexisting BPD-PH, thereby indicating that disrupted 

angiogenesis starts in utero and contributes to BPD-PH pathogenesis (387). Autopsy 

specimens have shown increased VEGF and VEGFR1 levels in both BPD-PH and PPHN, 

likely as a compensatory effect of disrupted endothelial function (332).

Other growth factors

Apart from VEGF, several other growth factors contribute to the pathogenesis of PH. Adult 

patients with PAH have shown increased expression of basic fibroblast growth factor (bFGF) 

in plasma and urine (66). Animal models of pediatric PH have shown elevated levels of 

FGF2 in PASMCs and PAECs (622). FGF-2 has also been shown to be an inducer of VEGF 

expression in vitro via its primary receptor FGFR-1, both of which are upregulated in PH 

(533). FGFR-1 knockout mice, when exposed to hypoxia, developed significantly less right 

ventricular remodeling and had lower RV systolic pressures, and pharmacological inhibition 

of FGFR-1 using SU5402 nearly reversed a rat model of PH (275). Current knowledge 

indicates that FGF-2 modulates pulmonary vascular remodeling and PH through the 

FGFR-1. Hepatocyte growth factor (HGF) levels have been shown to be decreased in 

hypoxic conditions and in the monocrotaline model (242, 453). HGF gene transfer has also 

been shown to ameliorate changes of MCT-PH (452).

Platelet-derived growth factor (PDGF) is a mitogen that contributes to vascular remodeling 

through smooth muscle hyperplasia in chronic PH. PDGF mostly consists of two 

polypeptide chains, A and B, although later studies have found that C and D chains exist as 
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well. These chains can form dimer isoforms (AA, BB, CC, DD, and AB) and are structurally 

and functionally analogous to other growth factors like VEGF. They act on two primary 

tyrosine kinase receptors, PDGF receptor α (PDGFR-α) and PDGF receptor β (PDGFR-β) 

(24, 187). PDGF-A binds to PDGFR-α, whereas PDGF-B can bind to both receptors. 

PDGF-A and C are expressed in epithelial cells, whereas PDGF-B is expressed in 

megakaryocytes and endothelial cells, and PDGF-C and D are expressed in fibroblasts and 

in vascular SMCs, respectively (22, 24). PDGFR-α is expressed on mesenchymal precursor 

cells in the lungs, whereas PDGFR-β is expressed in SMCs. Hypoxia is the most common 

trigger of the PDGF/PDGFR-β pathway leading to a switch in the phenotype of SMCs from 

the contractile to proliferative phenotype (24, 585, 655). Studies in the ductal ligation lamb 

model of neonatal PPHN have shown that selective inhibition of PDGF-B decreases RV 

hypertrophy and pulmonary arterial thickening and increases PDGFR-α and β expression 

(41). Monocrotaline-induced PH models have shown increased levels of PDGF-B early in 

the disease process, which decreased to below control levels as the disease progressed (27). 

Lung specimens from patients undergoing transplants for IPAH have shown increased levels 

of both PDGF-A and B, as well as PDGFR-α and β in the PASMCs (468). More recently, 

microRNA-30c, which inhibits PDGFR-β translation, has been implicated in hypoxic PH. 

Hypoxia leads to decreased levels of microRNA-30c, which causes PDGFR-β 
overexpression, leading to a switch from the contractile to synthetic type SMCs (637). Both 

hypoxic and monocrotaline models of PH showed increased expression of PDGF-B and 

PDGFR-β; inhibition of PDGFR-β has reversed PH in these models (526).

Transforming growth factor (TGF)-β superfamily includes several cytokine growth factors, 

which play a critical role in regulation of cell growth and differentiation. Bone 

morphogenetic protein receptor type 2 (BMPR2), ALK1, endoglin, and caveolin-1 are 

membrane-bound receptors of the TGF-β superfamily, which have been implicated in 

pediatric PH (188, 238, 648). Caveolin-1 has a cell-specific role in PAH with loss of Cav1 

from PAEC and high Cav1 levels in SMC being associated with vascular remodeling, 

including higher fibroblast proliferation, aberrant Ca2+, and high levels of oxidative stress 

(377). ALK1 mutation has been associated with younger age at diagnosis and death 

compared to patients with no mutations and a female predominance, with a female-to-male 

ratio of 3.5 (211).

Hypoxia inducible factors (HIFs)

HIF-1 and 2 are important transcriptional regulators of the physiological response to 

hypoxia. HIF-1 has two subunits, α and β, and is a highly conserved transcription factor that 

regulates the oxygen-dependent expression of hundreds of genes. The β subunit is 

constitutively expressed, whereas the α subunit only accumulates under hypoxic conditions 

due to decreased hydroxylation and stabilization from decreased proteasomal degradation 

(479). HIF-1α then dimerizes with HIF-1β, translocating to the nucleus and activating 

several genes. Mice heterozygous for HIF1-α null allele when exposed to chronic hypoxia 

showed significantly less RVH, less RV pressures, and decreased medial thickness compared 

to wild-type mice (646). At the same time, the heterozygous knockout mice showed an 

attenuated increase in TRPC expression, cytosolic Ca2+, and Na+/H+ exchanger-isoform 1 

and did not show reduced expression of plasma membrane K+ channels in response to 
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chronic hypoxia, demonstrating a protective effect from PH. The HIF-1α downstream 

targets, which have been implicated in PH, are ET-1, VEGF, and HEK-2. Hypoxia 

upregulates ET-1 as well as HIF-1α expression in the lungs, and both ET-1 and HIF-1α 
upregulate each other’s expression, thereby creating a feed-forward loop (350). This effect 

of ET-1 on HIF-1 expression is only seen in PASMCs and not in aortic SMCs. The fetal 

ductal ligation lamb model where decreased angiogenesis contributes to the development of 

PPHN has shown increased HIF-1 expression in PASMCs, and inhibiting HIF-1 expression 

increased VEGF expression and improved angiogenesis in the PPHN lambs (373, 624). 

HIF-2 has been shown to activate EPO gene expression, which increases erythropoietin 

production. Endothelial-specific HIF-2 knockout abolishes PH and right ventricular 

responses to chronic hypoxia (260).

Rho proteins

RhoA is a member of the Rho family of small GTPases and regulates a variety of cellular 

responses such as cell contraction, migration, growth, gene expression, and differentiation 

(164). Activation of RhoA occurs via stimulation of G-protein-coupled receptors by receptor 

and non-receptor tyrosine kinases; inactivation can occur via protein kinase G, which is 

activated by the NO-sGC-cGMP pathway. There is also evidence that hypoxia leads to RhoA 

activation in PAECs and PASMCs (581). RhoA activates its downstream target Rho-kinase 

(ROCK), which has been widely implicated in PH. In models of neonatal and adult PH, high 

ROCK levels cause elevated vascular tone, increased myogenic reactivity, and pulmonary 

vascular remodeling (209, 382, 429, 447). ROCK primarily phosphorylates the myosin-

binding subunit of myosin light chain phosphatase (MYPT-1), and thereby increases 

phosphorylation of myosin light chain and enhances the contraction at any given level of 

activity of myosin light chain kinase (MLCK) and cytosolic Ca2+ (168, 554). In addition to 

vascular smooth muscle cell contraction, ROCK affects endogenous NO action by reducing 

eNOS mRNA stability (335). ET-1, which is a potent vasoconstrictor, has been shown to 

activate ROCK to cause impaired angiogenesis in fetal lamb PPHN PAECs in vitro (209). 

ROCK inhibitors, Y-27632 and fasudil, have been shown to inhibit pulmonary artery 

myogenic responses in hypoxia-exposed adult rats and fetal sheep and to reverse sustained 

vasoconstriction in response to chronic hypoxia or ET-1 infusion (94, 168, 384, 594, 628). 

ROCK inhibitors, when systemically administered at the onset of injury in the chronic 

hypoxia or monocrotaline PH model, prevent changes of PH (1, 168).

Bone morphogenetic protein receptor type 2 (BMPR2)

Mutations of the BMPR2 gene, present on 2q33, have been identified in IPAH and HPAH, 

and children with BMPR2 mutations are less likely to respond to acute vasodilator testing 

(13% vs 44%) and are more likely to have severe disease at diagnosis (32, 147, 508). More 

than 140 distinct BMPR2 mutations have been found and together they are present in 10% to 

40% of families with PAH (631). A French cohort found 5 different BMPR2 mutations in 

children with IPAH/HPAH, along with other mutations in ACVRL1 and TBX4 (347). 

Presence of a BMPR2 mutation does not guarantee development of the clinical features of 

PAH, which suggests that there is decreased penetrance. The mechanisms and factors that 

lead to PAH in some individuals with BMPR2 mutations remain unclear; Figure 6 shows the 

pathways disrupted in BMPR2 mutations that might lead to PAH. The mechanistic role of 
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BMPR2 mutations in the pathophysiology of PAH is still not clear with most studies 

indicating upregulation of mitogen-activated protein kinase or reduced activation of 

transcription factor Smad 1 (515, 642). Several in vitro and in vivo studies have shown that 

BMPR2 mutations decrease endothelial cell viability and lead to PASMC proliferation, key 

features of PAH. Several biochemical alterations have been described in cells with decreased 

BMPR2 function, including decreased mitochondrial function, increased glycolysis, and 

excess proliferation of PASMCs. Downregulation of BMPR2 has been reported to contribute 

to pathophysiology of PAH in patients without specific mutations in this gene. BMPR2 has 

emerged as a major signaling pathway that is altered in a variety of PAH cases, and therapies 

to promote this signaling are actively being studied as the next frontier in PAH-specific 

therapies (485, 634).

Other genes that have been implicated in PAH include ALK1, endoglin, CAV1, and 

KCNK3, which are associated with autosomal dominant diseases, and EIF2AK4, which is 

associated with the autosomal recessive form of pulmonary veno-occlusive disease (35).

Notch pathway

Notch pathway is a highly conserved canonical pathway important for the determination of 

cell fate during embryonic development. It consists of the four mammalian Notch receptors

—Notch 1 to 4—and five ligands—Delta-like (Dll) 1, 3, 4 and Jagged (Jag) 1 and 2 (392). 

The interaction of the ligand with the membrane-bound Notch receptor leads to its 

proteolytic cleavage to release the Notch intracellular domain (NICD), which translocates to 

the nucleus to activate the C-promoter binding factor 1 (CBF-1). CBF-1 binds to the NICD 

to form an active transcription factor complex to target the downstream genes belonging to 

HEY/HES family (318, 638). Notch 1, 3, and 4 and Dll-4, Jag-1 and Jag-2 are present in the 

human arterial system and are critical to maintaining normal vascular structure, 

angiogenesis, and vascular remodeling (224, 256, 369). Both hypoxic and MCT models of 

PH have shown increased expression of Notch 3 and the Notch 3 intracellular domain, and 

Notch knockout mice do not develop hypoxic PH (352). Chronic hypoxia increases the 

expression of store-operated Ca2+ channels (SOCE) and activates Notch signaling, and 

blockade of the TRPC6, a key canonical SOCE, inhibits acute hypoxic pulmonary 

vasoconstriction and development of PH in chronic hypoxia (552). Notch 3 and its target 

HES-5 are expressed highly in PASMCs of patients with PAH, and knockdown of HES-5 

attenuates the vascular proliferative effects produced by increased expression of Notch 3 in 
vitro (352). Notch 3 inhibition by itself in hypoxic neonatal rat pups also prevents the 

changes of chronic PH and decreases PDGFR-β content in the PASMCs (269).

Peroxisome proliferator-activated receptor (PPAR)

PPAR is a member of the nuclear receptor hormone superfamily and is widely expressed in 

PAECs and PASMCs, where it regulates vascular SMC proliferation (578, 653). Animal 

models of PPHN have shown decreased levels of PPARγ with increased levels of SOCEs 

like TRPC1 and TRPC6 (159). PPARγ seems to have a protective effect against PH, as 

evidenced by the development of spontaneous PH in mice with selective deletion of PPARγ 
in PASMCs (234). PPAR-γ deletion in vitro also induces PASMC proliferation in cultured 

human cells, whereas overexpression reduces the same (80). In PPARγ-deficient pulmonary 
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microvascular endothelial cells, migration and angiogenic ability were significantly 

attenuated via E2F1-mediated gene regulation (607). MCT rat models of PH treated with 

PPARγ agonists, pioglitazone or troglitazone, were protected against pulmonary vascular 

remodeling (379, 636). In rats exposed to hypoxia for 3 weeks, rosiglitazone (a PPARγ 
agonist) attenuated hypoxia-induced RVH, vascular SMC proliferation, pulmonary vascular 

collagen and elastin deposition, and matrix metalloproteinase activity. Rosiglitazone, 

however, failed to attenuate hypoxia-induced increases in PAP, which was attributed to the 

inability of PPARγ ligands to modulate ROCK signaling, a critical mediator of pulmonary 

vasoconstriction (131, 223). PPARγ ligands decrease hypoxic Nox4 expression, oxidative 

stress, and PDGF signaling in the lung (441). PPARγ activation also decreases the levels of 

ET-1 and asymmetric dimethylarginine (an endogenous NO synthase inhibitor), both of 

which are involved in the pathogenesis of PH (289, 500).

MicroRNA

MicroRNAs (miRs) are short approximately 22 base pair long nucleotide sequences that are 

conserved across species and produced from transcription of noncoding DNA. miRs can 

bind to the 3’ untranslated region of mRNA and repress the translational mechanism and 

hence can modulate several disease processes. Each miR can bind to multiple mRNAs based 

on the degree of the complementarity between their sequences, and each mRNA has binding 

sites for multiple miRs. This leads to a complex interplay; hence several miRs have been 

implicated in PH disease processes. miR-21 is downregulated in the MCT model of rat PH 

and in human lung tissue and serum of patients with PAH (104). However, hypoxic PH 

models have shown contrasting results; miR-21 levels were elevated in distal small arteries 

and downregulating miR-21 expression both in vivo and in vitro decreased PASMC 

proliferation and pulmonary vascular remodeling (641). miR-21 has several targets, 

including BMPR2 and dimethylarginine dimethyl-aminohydrolase 1 (DDAH-1), which 

decreased with increasing levels of miR-21 (264, 484, 641). DDAH-1 is responsible for the 

metabolism of asymmetric dimethylarginine, which is an endogenous NOS inhibitor. PPAR-

γ, which attenuates the effects of hypoxic PH, also decreases miR-21 expression in the 

presence of hypoxia (222). These data indicate that miR-21 is a likely contributor to 

pulmonary vascular remodeling due to hypoxia and is therefore a potential therapeutic target 

for PH. Other miRs like the miR 17 to 92 cluster, miR-145 and miR-210 are also 

upregulated in experimental models and contribute to PASMC migration and proliferation 

and PAEC proliferation and resistance to apoptosis. miR-124 has been found to be 

downregulated in PH and contributes to fibroblast migration, proliferation, and activation in 

addition to effects on PASMCs (657).

Animal Models of PH

There are multiple preclinical animal models of PH, based on the different pathological 

states resulting in the final syndrome of elevated PAPs. Understanding the animal models is 

essential to understand the different molecular mechanisms and treatment strategies 

targeting PH.
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Rat and mouse models have been used to study PH extensively, the most common models 

being the chronic hypoxia (CH) and the monocrotaline (MCT) models. These models have 

different strengths and limitations. In general, rat models show more robust vascular 

remodeling and RVH compared to mouse models and are more widely used for the 

investigation of PAH pathogenesis. In contrast, mouse models offer a wide array of genetic 

knockouts and transgenic overexpression to investigate the role of specific signaling 

pathways in vivo. However, mouse models of hypoxia or monocrotaline fail to develop the 

full spectrum of vascular remodeling observed in human PH. One of the most commonly 

used rat models for PAH involves the injection of monocrotaline. Monocrotaline, which is a 

plant-based alkaloid, is activated in vivo by cytochrome P-450 enzymes to form 

monocrotaline pyrrole (MCTP), which causes endothelial injury (388). This leads to a 

cascade of pulmonary vasculitis, PAEC apoptosis, PASMC proliferation, and pulmonary 

vascular remodeling, leading to obstructive vasculopathy in the pulmonary vasculature. The 

TGFβ-Smad-BMPR2 signaling pathway is one of the key pathways implicated in the MCT 

model, along with inflammation and cytokine release playing contributory roles (366). 

Downregulation of BMPR signaling has been reported in this model in several studies. The 

MCT model has been criticized as experimental treatments targeting different pathways have 

shown striking improvements with almost a complete reversal of the PH changes. The rapid 

response to therapeutic agents with a reversal of PAH changes, which are not found in PAH 

patients, raised concerns that this model is not reflective of human disease and that the 

endpoints do not correlate with progression of PH in patients. Chronic hypoxia (CH) model 

for PH is closely representative of Group 3 PH; however, it has been used for neonatal 

PPHN studies as well (293). Once altitude and low oxygen tension were found to be causally 

involved in heart failure in cattle living at >8000 feet in Colorado, several animal CH models 

have emerged. Animals in these studies are placed in hypobaric or normobaric hypoxia, 

which induce chronic oxygen deprivation, hypoxic pulmonary vasoconstriction, and 

pulmonary vascular remodeling. The effects of hypoxia are varied across different species, 

but most models show extensive vascular remodeling. Rats exhibit consistent increases in 

mean PAPs, right ventricular mass as well as PASMC hypertrophy and hyperplasia and 

distal muscularization (486, 568). Mouse CH models, although useful for widely available 

genetic knockouts, have failed to demonstrate similar changes in PASMC. Mice consistently 

show less vascular remodeling compared to hypoxic rats or humans, which have less 

remodeling compared to neonatal calves (60, 458, 568). This might be attributed to differing 

genetic responses between the two species; CH rats show increased expression of genes 

involved in EC proliferation and decreased expression of pro-apoptotic genes, whereas CH 

mice demonstrate decreased expression of genes involved in vascular SMC proliferation 

(95). Hypoxia-induced inflammatory response also plays a role in the development of PH as 

evidenced by the presence of early and persistent inflammatory infiltrates (primarily 

mononuclear cells) along with adhesion molecules and cytokines within the vessel wall (97, 

568). One of the prominent issues with the rat CH model is that although pulmonary 

pressures and RV size are increased, RV failure does not usually occur. Of special note are 

fawn-hooded rats, which have an inherited deficiency in platelet serotonin uptake, and they 

develop PH ~4 weeks of life, and this is accentuated by exposure to hypoxia. They also 

demonstrate decreased alveolarization, lung hypoplasia, and immaturity, which make them 

suitable for studying BPD-PH (340). Hypoxic vasoconstriction is attenuated in newborns, 
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likely due to enhanced PGI2 release; hence the CH model is not ideal for studying PPHN or 

neonatal PH.

The combination of Sugen 5416 (SU5416), a VEGF receptor inhibitor and hypoxia, leads to 

the development of angio-obliterative lesions in rat lungs causing profound PH, more so than 

hypoxia alone. In mice, it has similar effects with the evolution of a severe PH phenotype 

compared to hypoxia alone, but it does not produce the same effects of angio-obliterative 

lesions (610). There have been some critiques of the model related to its almost irreversible 

and unresponsive PH phenotype, but proponents of the model argue that it more closely 

resembles the severe type of human PH.

Unique for neonatal and pediatric populations is PH associated with BPD. The alveolar and 

vascular simplification observed in these infants has been linked to and reproduced by 

neonatal exposure to hyperoxia. Mice exposed to hyperoxia from postnatal day 1 to 4 

showed decreased lung elastance, RVH, reduced distal microvasculature, and reduced 

expression of BMP receptors and downstream phospho-Smad-1/5/8 (644). Hyperoxia 

exposure has been shown to increase PDE5 expression in PASMCs and decrease cGMP 

signaling leading to PH and RVH, which are partly reversed by PDE5 inhibitor, sildenafil 

(173, 244, 342). Short-term exposure to hyperoxia has been shown to induce mitochondrial 

matrix ROS, which activate PDE5 in a cGMP-dependent protein kinase-dependent manner 

in the PASMCs (175). Riociguat, which stimulates sGC, responsible for production of 

cGMP from GTP, has been shown to prevent lung injury, decrease RV systolic pressure, 

RVH, and distal pulmonary arteriolar muscularization in hyperoxic neonatal mice (154). 

Mice with mutations in BMPR2, which itself can lead to PH, when exposed to hyperoxia 

demonstrated a significantly worse PAH phenotype with increased RV systolic pressure, 

increased pulmonary vascular occlusion, and decreased cardiac output (179).

PPHN, a unique disorder in which newborns have elevated PAPs at birth, is most closely 

reproduced by the fetal lamb ductal ligation model (314). The ductus arteriosus, which 

diverts the blood away from the lung in utero, is mechanically constricted in the fetus to 

elevate the PVR. Although the pulmonary blood flow increases as well initially, within 2 h it 

comes back to the baseline, whereas the PVR remains elevated. Fetuses usually survive to 

delivery and the newborn demonstrates clinical signs of PPHN with elevated PAPs and 

hypoxemia and morphologic changes of pulmonary vascular remodeling, fibrosis and 

muscularization of nonmuscular arteries (565). PPHN lambs have been shown to express 

decreased eNOS gene expression with increased production of ROS from uncoupled eNOS, 

which contributes to the PPHN phenotype (314, 535). Administration of glucocorticoids and 

ROS scavengers such as superoxide dismutase attenuate this adaptive response to ROS and 

restores eNOS function (108, 174). The ductal ligation model shows a clear dose-response 

relationship of pulmonary vasodilation to NO and was widely used for the preclinical 

studies, which led to the FDA approval of iNO in PPHN. There have been attempts to create 

other models of in utero PPHN, either by maternal hypobaric hypoxia or by chronic repeated 

placental embolization. The first model produced growth retardation but not structural or 

functional changes in the pulmonary vasculature, and the second was associated with high 

fetal mortality (565).
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Models for CDH: PH is a common feature of CDH and is due to prenatal pulmonary 

vascular hypoplasia and vascular remodeling. The pulmonary hypoplasia is due to the 

presence of herniated abdominal contents in the thoracic cavity, limiting lung growth in 
utero. The models that have been used so far to study CDH are the surgical models to create 

diaphragmatic defects in rabbit and sheep, the nitrofen exposure model in rats and mice, and 

the knockout model in mice. The surgical model is based on a surgical intervention creating 

a diaphragmatic defect in the fetus, which leads to herniation of intra-abdominal contents 

into the thorax, leading to impaired lung growth (446). Surgical CDH created in late 

gestation rabbit fetuses showed an increased medial thickness and a decreased internal 

diameter of the pulmonary arteries. Creation of in utero fetal tracheal occlusion reverses 

these changes to a certain extent (510, 511). The sheep surgical model has also shown a 

decreased number of highly proliferative PAECs, and this was hypothesized to be a 

contributor to the development of pulmonary hypoplasia and impaired angiogenesis, leading 

to postnatal PH (9). Although this model is valuable for studying in utero interventions for 

fetal repair of CDH like tracheal occlusion or in utero repair of defects in the diaphragm, the 

surgical defect is created relatively late in gestation. Creation of this defect late in gestation 

may miss certain stages of lung development, which are more affected in the human disease 

(603). This is also a single-hit lung hypoplasia model, whereas CDH is presumed to be a 

dual-hit model (292). One of the widely studied models is the nitrofen CDH model. Nitrofen 

when given by gastric lavage to pregnant rats just before fetal lung and diaphragm 

development begins induces CDH in 70% of the fetuses and pulmonary hypoplasia in 100% 

(603). Nitrofen model has led to a better understanding of the two-hit hypothesis of CDH, 

where nitrofen leads to early bilateral lung hypoplasia before the diaphragm is supposed to 

close (1st hit) and ipsilateral lung hypoplasia and PH from later herniation of bowel and 

abdominal viscera into the lung cavity from the diaphragmatic defect (2nd hit) (406, 603). 

The primary mechanism is believed to be via the retinoid signaling pathway as nitrofen is a 

retinal dehydrogenase 2 inhibitor, and serum levels of both retinol and retinol binding 

protein were 50% lower in infants with CDH (229). Various other pathways including 

VEGF, BMP, and Wnt pathways are also implicated in the dysregulated pulmonary 

endothelium, PAEC dysfunction, and impaired cross talk between PAECs and PASMCs in 

nitrofen-CDH. Nitrofen-CDH rats also have increased proliferation and resistance to 

apoptosis in PASMCs as well as increased secretion of ECM proteins and medial wall 

thickness of the pulmonary vasculature (404). The pulmonary arterioles show blunted 

oxygen-induced vasodilatation, which further contributes to decreased vasoreactivity and 

postnatal PH (125). Several genetic models including knockout models of genes like Wilms 

Tumor 1 (Wt1), Sonic Hedgehog (Shh), Slit 3, Fog 2, COUP-TFII, Gata 4, and Gata 6 have 

also been proposed, but a well-defined knockout model is still lacking. Knockouts of retinoic 

acid receptor genes have resulted in CDH, which is aligned with the altered vitamin A and 

retinoid signaling pathway hypothesis of CDH (117).

CHD and shunt lesions leading to PHVD is an unique entity that has been studied in lamb 

and piglet models. The lamb model is created by insertion of a polytetrafluoroethylene graft 

between the ascending aorta and the pulmonary artery in late gestation, which leads to the 

elevated pulmonary-systemic blood flow ratio and mPAP, although the PVR is not 

significantly increased. The model closely simulates infants with left-to-right shunts with 
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relatively normal Qp/Qs at birth but a progressive increase in Qp during first six weeks of 

life as the PVR declines postnatally. These lambs develop increased pulmonary 

vasoconstrictor response to hypoxia and thromboxane A2 (497). One piglet model of CHD-

PAH involves shunts between the left pulmonary artery and the subclavian artery, leading to 

flow-induced PAH and vascular remodeling. These piglets with shunts develop RV failure 

even with mild PAH, likely due to the decreased levels of VEGF and increased pro-

inflammatory cytokines such as interleukin-1a and TNF-β seen in this model (502, 503). 

Pigs with chronic systemic-to-pulmonary shunting also have increased expression of the 

pulmonary ET-1 system, which is prevented by the ET receptor antagonists bosentan and 

sitaxsentan (502, 504).

Diagnostic Evaluation

Pediatric PH has multiple etiologies and a wide spectrum in presentation. Hence, a 

comprehensive, systematic approach to the diagnosis will aid in the correct classification and 

choice of treatment. Recent studies have shown that most children do not undergo the full 

evaluation necessary for an accurate diagnosis of PH (61, 270). Several diagnostic 

algorithms have been suggested and were modified over the years with more available 

evidence about the full spectrum of pediatric PH and with changing classifications. The most 

recent algorithm from the Pediatric Task Force of the 6th WSPH in 2018 is shown in Figure 

7. Based on history, biomarkers, echocardiographic, cardiac catheterization, and MRI 

findings, children with PAH can be stratified into high-risk or low-risk categories (Table 7), 

which determines treatment arms. Table 8 discusses the recommendations for use of 

different diagnostic tools in the pediatric PHD.

Chest X-ray

PAH is clinically silent in early stages and not visible on X-ray imaging. Chest X-rays may 

show features of RA and RV enlargement in later stages. Dilation of central pulmonary 

arteries and diminished peripheral lung vasculature based on decreased distal pulmonary 

blood flow may also become apparent with disease progression. Increasing PVR is 

represented as worsening oligemia in lung fields, particularly in specific disorders, such as 

primary PPHN. Increasing pulmonary edema or signs of pulmonary venous congestion on 

X-ray should raise concern for other etiologies like PVS or left ventricular dysfunction 

leading to back pressure. In specific syndromes such as PPHN or BPD-PH, X-rays may be 

useful to track the parenchymal lung disease. PPHN due to meconium aspiration syndrome 

shows hyperexpanded lung fields mixed with scattered areas of atelectasis due to the 

obstructive nature of meconium in air passages (430). BPD will show signs of chronic lung 

disease such as increased lung texture and hypolucency (92, 351).

Electrocardiogram (ECG)

ECG changes in pediatric pulmonary hypertension include right atrial enlargement, right 

axis deviation (RAD), and RVH with secondary T-wave changes (507). A study of 

electrocardiogram-echocardiogram pairs for known cases of pediatric PH showed a 69% 

sensitivity and 67% positive predictive value of ECG in predicting PH when echocardiogram 

was used as the diagnostic gold standard (481). When ECG was compared to cardiac 
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catheterization for known pediatric PH, the sensitivity, specificity, positive and negative 

predictive values of RAD and RVH on baseline ECG for disease progression were 92%, 

48%, 33%, and 95%, respectively (334). ECG-based screening when applied to a school-

based population of children in Japan helped in early recognition and treatment of pediatric 

PH patients, associated with severe PH and preserved right heart function (525).

Echocardiography

Conventional 2-D transthoracic echocardiography remains one of the most widely used tools 

to diagnose pediatric PH. The advantages of echo are its noninvasive nature, wide 

availability, safety and feasibility in the pediatric population. A meta-analysis in adult PH 

found a pooled sensitivity of 74% and a pooled specificity of 85% in diagnosing PH for echo 

(437). PH leads to poor right ventricular compliance and RV diastolic dysfunction, leading 

to progressive right atrial dilatation. Imaging of the RA in the apical four-chamber view to 

measure the RA major and minor axes and planimetry of the RA area in end-systole will 

determine the presence of RA dilatation (282). Progression of PH might also lead to inferior 

vena cava (IVC) dilatation, and estimating the IVC diameter and the presence of inspiratory 

collapse can help in indirect estimation of the RA pressures. The usual RV:LV area ratio is 

less than 0.6, and both acute and chronic increases in PA pressures affect this number. Acute 

PH leading to RV distension and chronic PH leading to ventricular remodeling to maintain 

cardiac output will increase the RV:LV area ratio assessed by echocardiography.

Estimation of pulmonary arterial pressure (PAP)

The peak tricuspid regurgitation (TR) gradient is the most commonly used estimator of RV 

systolic pressures, which reflects the systolic PA pressure (sPAP), provided there is no 

obstruction of blood flow between the RV and PA. The TR gradient is measured as the 

continuous wave (CW) Doppler velocity across the tricuspid valve in line with the 

regurgitation flow and is then converted into a pressure gradient using the modified 

Bernoulli equation [4×(TR velocity)] (276). This is the pressure gradient across the tricuspid 

valve and hence is the difference between systolic pressures of RA and RV. Adding the RA 

pressure (usually 5-10 mmHg in pediatric patients) to this number will give the RV systolic 

pressure, which gives us the estimate of the sPAP. This is not always practical as the TR jet 

is not present in all patients (418). In the cases of RV outflow tract obstruction, PA stenosis, 

or ventricular septal defects, the accuracy of estimation of sPAP based on TR jet diminishes 

(310). Using CW Doppler to measure pulmonary regurgitation (PR), the mean PAP and the 

diastolic PAP can also be estimated from the early-diastolic and end-diastolic PR velocities, 

respectively, and then applying the modified Bernoulli’s equation. The mPAP can also be 

calculated from the sPAP as mPAP = 0.61 × sPAP + 2 mmHg (308). Other measures of RV 

and PA systolic pressures are the measurement of pressure gradient in the presence of a VSD 

or a PDA and subtracting this from the systemic pressures at that time. PA acceleration time 

(PAAT), which is the interval in milliseconds from the onset of ejection to the peak flow 

velocity, is another measure of PVR and a PAAT < 120 ms in children is indicative of PH 

(107). PVR can also be estimated in children from the echocardiographic estimation by a 

simple ratio of peak TR velocity to the velocity time integral of the right ventricular outflow 

tract (VTI-RVOT), with a value of >38 providing a 100% specificity for a PVR of >8 WU 
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(462, 611). Echocardiographic estimates of PVR are not always accurate, especially when 

the PVR is very high, and in such situations cardiac catheterization is the next preferred step.

Estimation of RV function

Assessing the RV longitudinal systolic function is an important part of the 

echocardiographic PH diagnosis, as this RV dysfunction places the patient at a higher risk of 

complications and mortality and thus potentially changing management strategies. The 

tricuspid annular plane systolic excursion (TAPSE) is the longitudinal excursion of the 

tricuspid annulus toward the apex as measured by M-mode, and varies based on gestational 

age and postnatal age, and there are studies establishing reference values for the same (311, 

322). TAPSE is a surrogate for RV function and a decreased TAPSE implies diminished RV 

function, with a strong correlation (R = 0.86) to RV function estimated by cardiac MRI, 

considered to be the gold standard (322, 524). The TR jet/TAPSE has also been found to 

correlate positively and strongly with the NYHA FC, thus implying future use in PH 

diagnosis and prognostication (309). TAPSE, however, does not document radial systolic RV 

function, which contributes to the RV ejection in the setting of RV hypertrophy.

RV strain and strain rate are also important measures of RV function, which determine 

regional wall motion abnormalities, which can be abnormal in PH. Strain is the measure of 

the myocardial length change from the baseline and strain rate is the velocity of this change 

(324). The severity of PH in adult patients has a strong correlation with the decreased peak 

systolic strain, which decreases with increasing RV afterload, and serial measurements of 

RV systolic strain have been found to be useful in predicting long-term prognosis in adult 

patients (237, 353). This has not been well studied in pediatric PH, although one study found 

RV strain to be an early predictor of RV dysfunction in children with IPAH (448). Recently, 

the RV-arterial coupling ratio using stroke volume to end-systolic volume has been found to 

be an independent predictor of adverse clinical outcomes in pediatric PH (284). Both TAPSE 

and RV global longitudinal peak strains have been found to be associated with progression 

to death or extracorporeal membrane oxygenation (ECMO) in infants with PPHN (374).

Estimation of LV function

Identifying whether there is any left heart disease is important as this can change the 

management approach of PH completely. LV dysfunction leads to increased LV filling 

pressures, which in turn can lead to increased back pressure in the pulmonary vascular bed. 

LV systolic function is measured by the shortening fraction and ejection fraction (EF), with a 

normal EF being 56% to 78% (254). LV diastolic function is measured by assessing the 

mitral inflow by Doppler, with biphasic waves that peak during early diastolic filling (E 

waves) and atrial contraction (A waves). E waves are greater in velocity than A waves, and a 

reversed relationship between these two implies impaired ventricular filling as a result of 

decreased relaxation (305). A recent consensus statement from the PPHNet mentioned the 

importance of measuring LV systolic and diastolic function in babies with BPD-PH as this 

contributes to worsening pulmonary edema in these patients and needs a different approach 

(320). A recent study also found some degree of LV diastolic dysfunction through 

echocardiographic indices in nearly all pediatric patients with PH, thus further stressing the 

point of assessing LV function during PH diagnosis and evaluation (98). Infants with PPHN 
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who have diminished LV size and function have increased mortality risk and are more likely 

to need advanced therapies (469, 570). Another specific patient population is infants with 

CDH as they have high rates of LV dysfunction even at birth, which impacts gas exchange 

and systemic perfusion in addition to the existing PH, and studies have shown that infants 

with CDH who have intact LV function might be more likely to respond to pulmonary 

vasodilators like iNO (207, 338).

RV-to-LV diameter ratio

While the RV is more compliant, the LV is better suited to handling a pressure overload. In 

PH, as RV pressures increase, the interventricular septum (IVS) starts flattening during 

systole, resulting in a “D-shaped” LV in the parasternal short-axis view (see Figure 8). In 

severe PH, where RV pressures are supra-systemic, the septum bulges out into the LV cavity 

at end-systole (308). This has been used to measure the RV/LV end-systolic diameter ratio, 

which has been shown to be significantly higher in children with PH compared to controls 

and correlates positively with adverse outcomes in pediatric PH (281). Flattening of the IVS 

offers indirect evidence of elevated pulmonary pressures in the absence of a TR jet, and end-

systolic flattening of the IVS is a sensitive marker of RV systolic hypertension in pediatric 

PH (297). Severe septal flattening or bulging can also impact LV diastolic filling and in 

some situations lead to decreased cardiac output.

Systolic-to-diastolic duration ratio

The Doppler derived ratio of systolic to diastolic duration (S/D ratio) has been shown to be 

an indicator of RV dysfunction and is independent of heart size, hence valuable in the 

assessment of pediatric PH. Children with significant PH have marked decreases in their 

diastolic duration resulting in an increased S/D ratio, which progressively worsens with 

increasing heart rate. S/D ratio greater than 1.4 inversely correlated with survival in pediatric 

PH in one study (17).

Tissue Doppler velocities and three-dimensional (3-D) echocardiography

Tissue Doppler imaging (TDI) measures myocardial velocities, which is an estimator of RV 

systolic function. RV TDI correlates well with cardiac catheterization measurements in 

pediatric CHD patients with PH and has been used for follow-up of children with IPAH 

(281). TDI has been shown to accurately document reduced systolic and early diastolic RV 

velocities in infants with CDH and PH (465). TDI varies with age and heart rate, and hence 

normal values for adults cannot be applied to children. Also, adult studies have shown poor 

sensitivity of 33% but a 100% specificity in identifying precapillary PH (231). 3-D echo 

eliminates the need for geometric assessments and hence gives more accurate estimates of 

RV function and volume, which correlate with cardiac MRI estimated volumes in the 

pediatric population (363).

Evaluation of cardiac anatomy

During diagnosis and follow-up for PH, a careful evaluation of the entire cardiac anatomy 

and extracardiac structures including shunts, aortic coarctation, and pulmonary veins (PV) is 

important. Pulmonary vein stenosis (PVS) has been recently identified to be a risk factor for 
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developing severe PH in infants with BPD and is associated with a significant increase in 

mortality in these patients (141, 370, 575). What complicates this picture further is that PVS 

might develop over time or even after discharge from the NICU and is not evident often 

during the first imaging; one study showed that infants with BPD-PH received a median of 

five echocardiograms before they were diagnosed with PVS (370). Pulsed Doppler imaging 

of all pulmonary veins to look for PVS and either continuous, nonphasic flow, or absence of 

late diastolic flow reversal in the presence of nonphasic flow suggests PVS.

When echocardiograms of premature neonates were analyzed by blinded pediatric 

cardiologists who followed a standardized reading protocol, there was greater than 80% 

concordance on the diagnosis of PH, suggesting that the presence of a standardized protocol 

leads to a more consistent and accurate diagnosis of PH (381).

Cardiac catheterization

Cardiac catheterization remains the gold standard for diagnosis and monitoring of treatment 

response of pediatric PH. Catheterization helps to accurately confirm the diagnosis and 

severity of PH and to assess the response to pulmonary vasodilators (AVT). Catheterization 

is also needed to evaluate the response to vasodilator therapy, evaluate other diagnoses, and 

identify intra- or extracardiac conditions that affect prognosis such as left ventricular 

dysfunction or PVS, and to determine suitability for transplant. Ideally, every patient with an 

echocardiographic diagnosis of PH would be evaluated by cardiac catheterization at least 

once before starting therapy. However, this is not always feasible since infants and children 

undergoing catheterization require conscious sedation or general anesthesia, which increases 

the risk of adverse effects significantly. General anesthesia, which is preferred in infants and 

children younger than 12 years, provides a secure airway, a steady level of sedation, and 

control over gas exchange. However, it predisposes children to increased episodes of 

systemic hypotension, alters the pulmonary vascular hemodynamics, which might not be a 

representative of the true values during the awake state, and uses positive pressure 

ventilation, which might impair RV function (102). Although conscious sedation might 

avoid these side effects, it poses risks of developing hypoxia or hypercarbia, especially in the 

setting of lung disease or airway obstruction. Both induction and emergence from anesthesia 

have been identified as time points of increased risk, as well as any episodes of systemic 

hypotension or acute hypoxia as the RV is exposed to supra-systemic pressures. The risk of 

adverse events associated with catheterization range from 1.4% to 3.5% in pediatric PH, and 

mortality ranges from 0% to 1.4% (84,444, 445). This risk increases almost threefold in 

infants and children under the age of 2 (140). Risk factors for adverse events after 

catheterization include patient characteristics like prematurity, lower systemic arterial 

saturations or inotrope or systemic vasodilator treatment prior to catheterization, 

hemodialysis, and higher pulmonary vascular resistance and PAPs (444, 445). Centers with 

high volume of pediatric PH patients and catheterization numbers have lower rates of 

adverse events (445). Cardiac catheterization should be avoided in classic PPHN and should 

be postponed or even omitted in infants and children <2 to 5 kg who are at a higher risk of 

complications. It should also be avoided in acute presentation of PH or critically ill patients 

requiring immediate initiation of therapy (235). Having a pediatric pulmonary hypertension 

expert and a pediatric anesthesiologist and performing the procedure in a center capable of 
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postprocedural care of this vulnerable population in an intensive care setting are important 

for having better outcomes during and after the procedure.

The measurements obtained during cardiac catheterization include oxygen saturations, 

pressures in different chambers and vessels, systemic and pulmonary vascular blood flow, 

and AVT.

Oximetry—Blood sampling to determine oxygen saturation for calculation of flow should 

be performed both proximal and distal to the presence of shunts, if there are any. 

Occasionally, there are multiple sources of pulmonary blood flow (post-Fontan operation, 

for example); the true mixed PA saturation can be difficult to estimate and using cardiac 

MRI to quantify pulmonary and systemic blood flow is a better option in such cases (225). 

Obtaining the hemoglobin concentration during the time of the procedure is also important, 

as it affects the pulmonary vascular resistance and it is integral to the Fick equation (252).

Calculation of pressure, flow, and resistance—Systolic, mean and diastolic systemic 

arterial, RA, RV systolic and end-diastolic, systolic, mean and diastolic pulmonary arterial 

and bilateral pulmonary arterial wedge pressures are usually measured (25). Pulmonary 

arterial wedge pressure (PAWP) is indicative of LA pressures and LV dysfunction. Inability 

to obtain PAWP should prompt measurement of LA pressure and LV end-diastolic pressure. 

Ideal time point for obtaining measurements is end expiration in a spontaneously breathing 

patient and end inspiration in a mechanically ventilated patient. The Fick principle states 

that blood flow is proportional to the oxygen consumption (Vo2) divided by the extraction of 

oxygen across the same vascular bed (169). Calculation of Vo2 in real time and in real-life 

clinical settings is hard, especially in intubated patients. The breath-by-breath method for 

measuring Vo2 correlated well with mass spectrometry measurements in pediatric cardiac 

catheterization but has not been validated in infants less than 3.5 kg (228). Systemic and 

pulmonary blood flows can be estimated using the Fick principle, and they can be used to 

calculate the vascular resistances. Both flood flow and resistance are usually then indexed to 

the body surface area. The Fick principle decreases in accuracy at high blood flows as the 

arteriovenous differences decrease. The thermodilution catheter method can also be used to 

estimate pulmonary blood flow if there are no intra or extracardiac shunts present.

Acute vasoreactivity testing (AVT)—AVT evaluates the response of the pulmonary 

vasculature to pulmonary vasodilators. It has two goals—(i) to assess prognosis and 

indication of PH-specific therapy and (ii) to assess the operability for PAH-CHD (4, 25, 

355). True PAH acute responders (IPAH), when treated with calcium channel blockers, have 

an excellent prognosis with a 95% five-year survival rate (650). However, the long-term 

impact of defect closure in patients with CHD in the setting of PAH is unknown. Neonates 

with BPD-PH who underwent AVT with either 100% O2 alone or in combination with iNO 

and had a positive response had better long-term outcomes compared to nonresponders 

(185). Hemodynamic and oxygen transport mechanisms are measured at the patient’s 

baseline and then AVT is performed using iNO (20–80 ppm). In addition to iNO, 100% 

oxygen alone or in combination with iNO, aerosolized or intravenous PGI2 analogs, 

intravenous adenosine, and intravenous sildenafil have also been used (33, 49, 354, 531). 

The use of intravenous epoprostenol or adenosine is not recommended in the pediatric 

Mukherjee and Konduri Page 32

Compr Physiol. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population as data regarding optimal dosing are not well defined. In children with PH and 

elevated PVR, more acute responders were identified with iNO/O2 combination than with 

O2 alone, and although there was no difference in the responder rate between iNO alone and 

iNO/O2 group, the latter showed improved pulmonary hemodynamics, which may warrant 

some caution during interpretation of results (49). Use of 100% O2 alone should be avoided 

in patients with PAH-CHD, as this would lead to increased oxygen in the pulmonary venous 

blood and, consequently, the fraction bound to hemoglobin. This would lead to 

overestimation of pulmonary blood flow and hence an underestimation of the pulmonary 

resistance (25).

There are considerable differences between centers in identifying responders to AVT and 

selecting patients for treatment (157). The European Pediatric Pulmonary Vascular Disease 

Network suggests the use of the modified Barst criteria for AVT, whereas the recent 6th 

WSPH Pediatric Task Force recommends the use of the Sitbon criteria (4, 25, 235, 506).

Modified Barst criteria for AVT:

In patients with IPAH/HPAH: For patients without a shunt, a positive response to AVT is 

considered as a 20% decrease in mPAP and indexed PVR(PVRi)/indexed SVR(SVRi) ratio 

without a decrease in cardiac output.

In patients with PAH-CHD and shunts: The hemodynamic response defined as a positive 

response and operability in shunt defects (Qp:Qs > 1.5:1) is a >2% fall in the PVRi and 

PVRi/SVRi with respective final values <6 indexed WU (iWU) and <0.3.

Sitbon criteria: This is defined as the decrease in mPAP by at least 10 mmHg to a value of 

<40 mmHg with sustained cardiac output. If the mPAP is less than 40 mmHg to begin with, 

a drop by at least 10 mmHg without decrease in the cardiac output is defined as a positive 

AVT.

The Sitbon criteria were found to identify AVT responders who had better outcomes when 

treated with long-term CCBs (157, 548) and has been recommended by the latest WSPH 

Pediatric Task Force. It should be noted, however, that no fall in PAP does not necessarily 

mean no fall in PVR. Response to pulmonary vasodilators with a decrease in PVR and 

increase in Qp is possible without changes in the PAP, and hence hemodynamic indicators 

such as PVR/SVR and PVRi are considered better markers of AVT response.

Computed tomography (CT) scan

High-resolution computed tomography (HRCT) scan of the lung parenchyma along with 

computed tomography angiography (CTA) to evaluate the pulmonary, bronchial, and 

systemic thoracic vasculature is a commonly used tool in the diagnosis of neonatal and 

pediatric PH. Chest CT has significant utility in staging of pulmonary interstitial disease and 

in Group 3 PH due to lung hypoxia. CT with contrast and CTA can be used to rule out 

chronic thromboembolic pulmonary hypertensive disease. CT-measured ratio of main PA to 

ascending aorta of ≥1.3 raises the index of suspicion of PAH in children (235). Chest CT 

with CTA is also useful in identifying obstructive pulmonary vascular disease like peripheral 

pulmonary stenosis or pulmonary venous stenosis, which worsens mortality and morbidity in 
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BPD-PH. Lymph node enlargement, centrilobular ground-glass opacities, and septal 

thickening with pulmonary artery enlargement all point toward venous obstructive disease, 

whereas smooth interlobular septal thickening, diffuse multifocal ground-glass 

opacifications, and enlarged central pulmonary arteries are more indicative of pulmonary 

capillary hemangiomatosis (4). CTA can also identify systemic pulmonary collaterals that 

are present in up to 30% of infants with BPD-associated PH (141). These collaterals 

contribute to increased PAP, and closure of the collateral by interventional cardiologists may 

be needed to alleviate PH in select cases. It is also recommended that every patient 

undergoing evaluation for lung transplantation should receive a chest CT (329, 595).

Cardiac magnetic resonance imaging (CMRI)

Cardiac magnetic resonance imaging (CMRI) is recommended both as a part of the initial 

diagnostic workup and as a part of follow-up to assess ventricular function (333). CMRI is 

the gold standard to which all echocardiographic measures for evaluation of RV volume and 

function are compared (524, 616). CMRI is usually performed in infants and children with 

either some degree of sedation or under general anesthesia, which again pose similar risks as 

stated above during cardiac catheterization (584). CMRI helps in reliable assessment of the 

RV and LV size and volume indices as well as the RV ejection fraction (RVEF). RVEF and 

LV stroke volume were found to be most strong predictors of death or need for heart 

transplant in pediatric PH (2.6- and 2.5-fold increase in mortality for every 1-SD decrease, 

respectively) out of all variables measured by CMRI (402). It is recommended that all 

pediatric CMRI should include cine CMRI, which is the gold standard for assessment of 

biventricular volumes, muscle mass, and global pump function (226, 291). In addition, 

selective blood flow measurements in pulmonary and systemic circulation and quantification 

of shunt flow can be performed with increased accuracy. CMRI when performed in preterm 

neonates found that when controlled for BPD severity, birthweight and gestational age, MRI 

LV eccentricity index and PA/aorta ratio correlated positively with the need for PH therapy 

either during hospitalization or after discharge (130). Other parameters for which CMRI is 

used are visualization of myocardial fibrosis using late gadolinium enhancement, strain and 

strain rate, septal curvature, pulmonary artery stiffness, and RV-PA coupling (67, 90, 333). 

MR angiography is also useful for evaluation of any pulmonary venous thromboembolism.

Ventilation/perfusion scan (VP scan)

Ventilation perfusion mismatch in a patient with known or suspected PH raises concern for 

thromboembolic disease of the pulmonary vasculature. This is especially important in IPAH 

as well as in known Eisenmenger’s syndrome due to the increased incidence of 

thromboembolic disease in these patients (76). Chronic thromboembolic PH shows areas of 

ventilation-perfusion mismatch in VP scans, usually one area, sometimes two or more (177, 

415).

Biomarkers

Brain natriuretic peptide (BNP) and its precursor, NT-proBNP, are the most studied 

biomarkers in both adult and pediatric PH (83). A recent meta-analysis of pediatric PH 

biomarkers found that low levels of NT-proBNP are strong predictors of survival and 

children who stay at NT-proBNP levels below 1200 ng/L during treatment have significantly 
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better survival rates, a statistic that has been shown to be true in adult PH as well (438, 475, 

477). BNP has a shorter half-life than NT-pro-BNP; hence the latter is more commonly used, 

although it is more susceptible to changes in renal function. Reference values of NT-proBNP 

have been established for the pediatric population and increase in the first few days after life 

and then fall drastically after the first week, and then gradually throughout childhood (440). 

Recently, urinary NT-pro-BNP has also been studied as a screening tool for PH in preterm 

infants (425). A proteomic analysis of early serum angiogenic proteins showed that early 

increases in bone morphogenetic protein 10 (BMP10) are strongly associated with late 

increases in BPD and PH (28). A decrease in cord blood angiogenic factors associated with 

placental maternal vascular under-perfusion has been also associated with an increased risk 

of BPD-PH in preterm neonates (387). MicroRNAs, which have recently acquired a great 

deal of attention as biomarkers for diseases in which angiogenesis is impaired, have shown 

some promise in predicting pediatric PH (296). Circulating endothelial cells (CECs) and 

endothelial cell progenitors (ECPs) have been shown to be present in blood of PH patients 

(124, 360, 549). Measurement of CECs in children with IPAH and CHD-PAH before and 

after treatment showed that rising levels of CECs preceded clinical deterioration (346). 

Furthermore, elevated CEC levels were associated with irreversibility in CHD-PAH (550). 

Several other biomarkers such as uric acid, atrial natriuretic peptide, and Troponin T have 

also been shown to be associated with worse outcomes in both adult and pediatric PH (4).

Genetic testing

Genetic mutations are increasingly being identified in children with IPAH/HPAH, with 

BMPR2 being the most common (almost 70% of HPAH and 10%–40% of IPAH cases) (15, 

347). With the emerging recognition of the need for genetic testing, other genes have been 

found to be involved in pediatric PAH, including, but not limited to, ALK1, ABCC8, ENG, 

CAV1, KCKN3, EIF2AK4, and TBX4 (7, 35, 188, 347, 367, 411). Genetic testing for these 

commonly found genes is currently recommended for families of all children diagnosed with 

IPAH/HPAH. Gene testing for less implicated genes in PAH such as NOTCH3, SMAD9, 

GDF2, AQP1, SMAD8, SOX17, and ATP13A3 can be performed as a second-tier test in 

children with PAH of unknown cause with a negative test for the previously mentioned 

genes (235). Next-generation sequencing should be preferably performed to maximize the 

depth of coverage for the affected genes. Most PAH-associated mutations are inherited in an 

autosomal dominant fashion with incomplete penetrance. Hence, first-degree relatives of all 

PAH patients with a genetic mutation known to be implicated in PAH should at least 

undergo genetic counseling. Children who are found to have PAH-associated mutations and 

are asymptomatic should undergo screening echocardiograms every 1 to 3 years to detect 

elevated RV pressure, and asymptomatic first-degree relatives of patients with PAH-

associated mutations should undergo PH screening if they develop new cardiorespiratory 

symptoms (4, 235, 506).

Six-minute walk test (6MWT)

The six-minute walking distance (6MWD) is considered a useful tool for follow-up and as a 

therapeutic endpoint for treatment goals in pediatric PH. In adult PH, the 6MWD correlates 

well with other parameters of disease severity like the WHO-FC, and the magnitude of 

oxygen desaturations during the test and the heart rate recovery after it have been used for 
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prognostication of adult PH (393, 456, 490). Studies have shown that it is feasible to 

perform the 6MWT in children and that it reflects disease severity and clinically relevant 

exercise tolerance (156, 198, 330). The 6MWD is higher in children than in adults, and 

reference values have been established for the pediatric population (330). Shorter 6MWD 

combined with lower transcutaneous oxygen saturations during the 6MWT correlated with 

higher WHO-FC and NT-proBNP levels and worse transplant-free outcomes in pediatric PH 

patients in one study (156).

Cardiopulmonary exercise testing (CPET)

CPET is performed to both evaluate and follow up patients with PH. Adult studies have 

shown that low peak oxygen uptake and low systolic blood pressure at peak of exercise in 

patients with PH undergoing CPET correlate with impaired survival (632). CPET has been 

shown to be feasible and safe to perform in children with decreased peak oxygen uptake and 

decreased baseline oxygen saturation at peak exercise compared to healthy controls (8, 551). 

The peak oxygen uptake has also been shown to strongly correlate with invasive measures of 

disease severity, including the pulmonary vascular resistance index. The type of exercise, 

treadmill versus cycle ergometer, or the specific exercise protocol is not important to the 

success of the test if the protocol has been standardized and is performed in a controlled 

environment. Changes in oxygen consumption, CO2 production, minute ventilation, heart 

rate, and blood pressure should be obtained at rest, during exercise and during recovery. 

Subtle changes in exercise tolerance may suggest deterioration prior to clinical 

manifestations, which might prompt earlier reevaluation including cardiac catheterization 

(198).

Treatment

The 6th WSPH Pediatric Task Force has proposed a treatment algorithm based on expert 

consensus opinion and is mostly relevant for the treatment of pediatric IPAH/HPAH (Figure 

9). Similar algorithms exist for the treatment of BPD-PH (Figure 10), which are based on 

expert consensus opinion. There is a lack of randomized clinical trials evaluating therapies 

in the pediatric PH population, and most data are based off extrapolation from adult trials or 

case series from off-label use.

Oxygen therapy

Maintaining adequate oxygenation is key to preventing the vicious cycle of hypoxic 

pulmonary vasoconstriction and the VP mismatch and hypoxemia that ensues (629). The 

effect of oxygen on pulmonary vasodilatation increases with increasing gestational age (110, 

494). Extremely preterm neonates have diminished pulmonary blood flow with a poor 

vasodilatory response to oxygen. During resuscitation of these infants, 100% oxygen 

decreases the PVR rapidly; however, this effect is not sustained and might lead to blunted 

responsiveness to iNO later and increased oxygen toxicity from free radicals (109, 110). To 

answer the question of the optimal target oxygen saturation for extremely premature infants, 

several randomized clinical trials were conducted, and these were recently studied in a meta-

analysis called the Neonatal Oxygenation Prospective Meta-analysis (NeoPROM) (36, 134, 

436, 528, 529). These studies did not measure PH as an outcome measure but did document 
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a higher mortality risk when preterm infants were randomized to lower oxygen saturations 

(30). Observational cohort studies have shown that changing the oxygen saturation 

parameters for preterm neonates from lower (tolerating a lower limit of up to 85%) to higher 

(at least above 90%) targets decreased the incidence of elevated PVR and PH at 36 weeks 

postmenstrual age in these infants (288, 327). This comes as a trade-off since the incidence 

of BPD was found to be higher in the Neonatal Research Network units after the saturation 

target parameters were changed to higher levels (182). In preterm infants with BPD-PH, 

minor episodes of desaturations increase pulmonary pressures and should be avoided (3, 6, 

417). A recent consensus from the PPHNet recommends maintaining oxygen saturations 

between 92% and 95% in these infants and use of chronic supplemental oxygen before 

starting pharmacological vasodilators (320). The European PPVDN recommends target 

oxygen saturations of >93% in preterm neonates and >95% for neonates with an 

echocardiographic diagnosis of BPD-PH (246). In PPHN, although increased oxygen is 

usually required to reverse the pulmonary vasoconstriction and hypoxemia, acute hyperoxia 

should also be avoided as it increases oxidant stress, alters pulmonary vasoreactivity, and 

augments pulmonary vascular dysfunction associated with lung disease (564). Exposure to 

prolonged hyperoxia and high oxygenation indices prior to start of iNO was associated with 

a higher incidence of ECMO and/or death in several clinical trials (109). Therefore, 

maintaining a strategy to minimize oxygen exposure with lung recruitment, surfactant 

administration and iNO are essential to reduce the toxic effects of free radical damage in 

PPHN (564).

For the treatment of PAH in the intensive care unit as well as at home in PAH or CHD-PAH 

population, it is advisable to use continuous supplemental oxygen to keep oxygen 

saturations >95% or the arterial pO2 above 60 mmHg (227). These parameters change 

during shunt physiology. For patients with CHD-PAH and significant left-to-right shunt, 

oxygen therapy might lead to pulmonary overcirculation, which may worsen the right heart 

function without lowering the mPAP in the long term. For patients with right-to-left shunts, 

maintaining the shunt flow may be critical in maintaining adequate systemic oxygen 

delivery. Hence, oxygen is not indicated unless there is parenchymal lung disease or there is 

profound cyanosis (75%-85% are acceptable saturation parameters in these children) (285).

Diuretics and fluid balance

Fluid and volume status need delicate balancing in PH. In neonates and children with severe 

PH, the RV is preload dependent and volume depletion can lead to acute worsening and PH 

crises. However, severe PH by itself leads to RV failure, volume overload, increased central 

venous pressure, hepatic congestion, ascites, and peripheral edema. There have been no 

randomized trials to study the effect of diuretic use on PH outcomes, either in adults or in 

children. Hence, current recommendations are to limit the use of diuretics to loop diuretics 

and aldosterone antagonists in patients with the signs of systemic venous congestion or 

severe left-to-right shunting causing pulmonary overcirculation (439). Aldosterone 

antagonists such as spironolactone and eplerenone block mineralocorticoid receptor action 

and have been shown to improve RV and LV function in adults, but pediatric data are lacking 

(85, 138). It is important to monitor electrolyte levels while on diuretics, and to carefully 

monitor fluid status as the RV is preload dependent in such situations. Infants with BPD-PH 
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are often on chronic diuretics to reduce pulmonary vascular congestion from the sequelae of 

BPD. This, however, leads to a chronic low-volume state and might mask left ventricular 

dysfunction, which can be a cause of PH in these patients. These patients might be given a 

small fluid bolus during cardiac catheterization to evaluate the left ventricular function when 

subjected to an increased afterload (320).

Digoxin

Digoxin or digitalis has been shown to acutely improve cardiac output in adult IPAH patients 

and slow the ventricular rate down in PAH patients with tachyarrhythmias (499). There are 

no studies on the long-term effects of digoxin on the right ventricular function, and as such it 

is not a drug commonly recommended in pediatric PH.

Acid-base balance

Acidosis increases PVR and causes pulmonary vasoconstriction and may impede the action 

of inotropes (111). Therefore, acidosis should be avoided, and attempts should be made to 

normalize the arterial pH. Alkalization is effective for the treatment of acute PH crises in the 

intensive care unit (111, 285, 412). In the era before the use of iNO, alkalization was 

induced in newborns with PPHN with serum bicarbonate infusions. Although alkalization 

brings about a transient decrease in PVR and improvement in oxygenation, animal models 

have shown an exaggerated pulmonary vasoconstrictive response to hypoxia after prolonged 

alkalosis (516). Alkalosis also causes cerebral vasoconstriction and diminished cerebral 

blood flow and has been shown to worsen neurodevelopmental outcomes and hearing 

deficits in newborns and thus should be strongly avoided (376).

Anticoagulation

Children with PH are often on anticoagulants or antiplatelet agents. There are no long-term 

data on the benefit of children on chronic anticoagulation, but the current consensus is that it 

may benefit certain classes of pediatric PH such as progressive IPAH/HPAH, chronic 

thromboembolic PH, hypercoagulable states, and patients in low cardiac output states, which 

predispose to blood stasis and increased coagulability (235). The target international 

normalized ratio in IPAH/HPAH is between 1.5 and 2.0; however, this is an empirical target 

(4). Anticoagulant and antiplatelet therapy should be avoided in patients with hereditary 

hemorrhagic telangiectasia (HHT) and porto-pulmonary hypertension and should be 

critically reviewed in smaller children who are at a higher risk for hemorrhagic 

complications and congenital or acquired von Willebrand disease. A class of pediatric PH 

that is at a higher risk for pulmonary vascular thromboses are children with Eisenmenger’s 

syndrome, but they are also at a higher risk of severe pulmonary hemorrhage and hence the 

use of anticoagulation in them warrants caution. A retrospective study of adults with 

Eisenmenger’s syndrome on anticoagulants showed no impact of anticoagulant use on long-

term survival (523).

Inhaled nitric oxide (iNO)

iNO is one of the most used therapies to treat PH in the acute setting of PPHN, PH in CDH, 

acute postoperative PH or PH crises. It has been approved by the FDA since 1999 as a 
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pulmonary vasodilator therapy for the treatment of PPHN in term and near-term infants, 

based on two landmark multicenter placebo-controlled randomized controlled trials that 

showed a significant decrease in the need for extracorporeal membrane oxygenation 

(ECMO) in the iNO group (120, 435). It is delivered as an inhaled gas blended with air or 

oxygen and simulates the action of endogenous NO to activate sGC in the pulmonary arterial 

smooth muscle cells, leading to increased cGMP levels and SMC relaxation. NO can cross 

the alveolar-capillary membrane to enter the smooth muscles of the precapillary pulmonary 

arterioles, causing selective vasodilation and attenuation of vascular remodeling (306). iNO 

has a relatively short half-life of 15 to 30 s and is rapidly metabolized by Hb in the RBC in 

the pulmonary circulation, preventing its systemic effects (51). Chronic use of iNO is 

associated with methemoglobinemia, and hence methemoglobin levels should be monitored 

in these patients (496, 590). iNO is usually started at a dose of 20 parts per million (ppm) 

regardless of the etiology. Higher doses do not improve oxygenation and contribute to 

increased risks of methemoglobinemia and NO2 exposure. Once oxygenation improves, iNO 

dose can be rapidly weaned off in steps to 5ppm and then gradually weaned in 1 ppm 

decrements to 1 ppm before discontinuation. There are reports of life-threatening rebound 

PH after discontinuation, and this can usually be prevented by slow weaning from 5 to 1 

ppm and waiting for a few hours for clinical stability before turning it off (136).

The use of iNO in term and near-term infants for the treatment of PPHN is well studied and 

documented through several double-blinded placebo-controlled trials (44, 135, 137, 180, 

303, 358, 435, 520, 633). There have also been several trials in term and near-term infants 

with PPHN who have been randomized to either iNO or placebo and compared infants based 

on their severity of respiratory failure as determined by the increased oxygenation index or 

alveolar-arterial oxygen gradient (44, 126, 217, 316). A randomized trial also found that 

starting iNO at an earlier oxygenation index (15–25 vs >25) does not decrease mortality or 

the need for ECMO (316). A 2016 Cochrane review for the use of iNO in term and near-

term infants with hypoxic respiratory failure studied 17 randomized controlled trials and 

found that iNO improved outcomes in hypoxic term and near-term infants by reducing the 

combined endpoint of death or need for ECMO, which was primarily due to the reduction in 

the use of ECMO (47). iNO also showed an improved oxygenation index within 30 to 60 

min of start of the drug and improved arterial oxygen saturation, and these improvements are 

not limited to those who show echocardiographic signs of decrease in PAPs (47).

A unique population with PPHN is the CDH population, where in addition to altered 

pulmonary vasoreactivity, pulmonary hypoplasia and associated left ventricular dysfunction 

often complicate the presentation and management. The only two randomized trials studying 

the effects of iNO in infants with hypoxic respiratory failure due to CDH and PH were the 

NINOS 1997 trial and the diaphragmatic hernia subpopulation of the Clark 2000 trial (120, 

467). Both these trials found that death or need for ECMO did not change either separately 

or as a composite outcome in infants with CDH who were randomized to either placebo or 

iNO. Two other large-scale database studies from the Pediatric Health Information System 

(PHIS) and from the CDH Study Group (CDHSG) were conducted to evaluate the use of 

iNO in CDH (100, 483). The PHIS data showed that out of 1713 neonates with CDH in the 

United States, 57% of the infants received iNO and that only half of these infants showed an 

improvement in oxygenation. However, there was no change in mortality or need for ECMO 
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for these infants (100). The CDHSG data, which included over 3300 infants from 13 

different countries, showed that 74% of the infants who received an echocardiographic 

diagnosis of PH in the first week of life were started on iNO. The infants who were 

diagnosed with PH were also more likely to need ECMO, but iNO did not change the need 

for ECMO or the mortality for this cohort (483). A recent single-center retrospective review 

of infants with CDH who were started on iNO either due to clinical hypoxemia or an 

echocardiographic diagnosis of PH found a subset of patients who responded to iNO (338). 

Responders were less likely to have left ventricular systolic dysfunction and were less likely 

to need ECMO. Current recommendations from the AHA allow the use of iNO in infants 

with CDH and normal left ventricular function but advise against continuation for more than 

24 h if no clinical benefit is seen (4).

iNO has also been studied for preterm infants with hypoxemic respiratory failure as an initial 

rescue therapy, as a routine adjunct to conventional ventilatory support, or as a later 

treatment in infants at risk for BPD (4, 42, 133, 240, 298, 304, 386, 530, 560, 571, 572, 605, 

627). These studies were heterogeneous for the birthweight and gestational age of infants 

recruited as well as the eligibility criteria. There was no effect of iNO on death before 36 

weeks postmenstrual age or death before discharge or on BPD at 36 weeks postmenstrual 

age (46). However, there is a subpopulation of infants with oligohydramnios and/or preterm 

premature prolonged rupture of membranes who have shown improved oxygenation and 

pulmonary hemodynamics, and a recent expert panel recommended use of iNO in this cohort 

(298, 299 301).

iNO is also used in acute postoperative PH and in PH crises in acute care settings as well as 

during cardiopulmonary bypass for congenital heart surgery (63, 113). Currently, a 

multicenter randomized trial to evaluate the benefits of iNO during the entire duration of 

cardiopulmonary bypass in CHD surgery is underway and results are awaited (527).

Phosphodiesterase-5 (PDE-5) inhibitors

Sildenafil and tadalafil are the PDE-5 inhibitors that have been used in the pediatric 

population. PDE-5 degrades cGMP, which is responsible for pulmonary vascular smooth 

muscle relaxation. Sildenafil was initially studied as a candidate drug for the treatment of 

angina pectoris in the 1980s. Urologic studies at the same time showed that cGMP was also 

responsible for smooth muscle relaxation and vasodilatation leading to penile erection; 

hence use of sildenafil started in the treatment of erectile dysfunction (ED) and was 

approved by the FDA for ED in 1998 (205, 215, 408). As the role of PDE-5 in the lung 

vasculature became more evident in the 1990s, sildenafil was studied for adult PH and the 

first intravenous placebo control study was performed in late 1990s, which showed that 

sildenafil selectively reduced pulmonary pressure and pulmonary vascular resistance in 

patients with PAH, pulmonary venous hypertension, and hypoxic pulmonary hypertension 

(205). This led to the approval for the use of oral sildenafil in adult Group 1 PH in 2005 by 

the US-FDA, and later in 2009 the intravenous formulation was also approved.

Sildenafil is a water-soluble compound that has a similar half-life in the pediatric population 

compared to adults, although the volume of distribution and the peak concentration reached 

are higher in children (449). An open-label trial of intravenous sildenafil in term neonates 
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with PPHN found similar results with fourfold higher volume of distribution; however, this 

population also had significantly longer plasma half-life. This decreased with increasing 

clearance and reached adult values by one week of life, attributed to the postnatal maturation 

of N-demethylation mechanism in neonates (420). Oral bioavailability of sildenafil is ~40% 

and it undergoes first-pass metabolism in the liver by the hepatic cytochrome P450 pathway 

(261). For children weighing above 20 kg, the recommended dose is 20 mg three times daily 

(TID) and for 8–20 kg it is 10 mg TID as per European guidelines (149). The common 

practice for infants and children weighing below 8 kg is to start at 0.5 mg/kg every 8 h and 

escalate to 1 mg/kg every 8 h, which is continued as the maintenance dosing for oral 

sildenafil at most PH centers (123). There have been multiple case series and small studies 

on the use of both oral and intravenous sildenafil in pediatric PH, which included CHD-

PAH, PPHN, postoperative PH, BPD, and CDH (43, 183, 210, 212, 247, 263, 407, 434, 460, 

546, 563, 601, 602). Sildenafil has been shown to be useful in prevention and treatment of 

postoperative PH in children after CHD surgery, either as an adjunct to iNO or to help 

weaning from it (34, 432). A recent meta-analysis of perioperative PH in children with CHD 

found that sildenafil decreased ICU stay significantly, although it did not decrease total 

length of stay or mortality before discharge (278). For PPHN, intravenous sildenafil was 

associated with immediate and sustained improvements in oxygenation in those infants who 

received higher infusion doses (563). A recent Cochrane review that analyzed 5 trials where 

sildenafil was used for the treatment of PPHN found a significant decrease in mortality when 

sildenafil was compared to placebo; however, the differences ceased to exist when compared 

to iNO or when iNO was used in both groups (294). Recently, a multicenter international 

trial has started recruiting patients with CDH and PH to be randomized to intravenous 

sildenafil infusion or iNO; the outcomes are absence of PH by day of life 14 or death at day 

of life 28 (122). The first randomized, double-blinded, placebo-controlled trial of oral 

sildenafil monotherapy in children with PAH was the STARTS-1 trial (Sildenafil in 

Treatment-Naïve Children, Aged 1 to 17 years, with PAH), which randomized children >8 

kg to either low-, medium-, or high-dose sildenafil or placebo for 16 weeks and peak oxygen 

consumption (PVO2) was measured during CPET. Although this study found that PVO2 was 

only marginally changed in the sildenafil groups combined together, when medium- and 

high-dose groups were combined, they showed efficacy in PVO2, WHO-FC, and 

hemodynamic parameters (55). When these groups were followed in the long term as a part 

of STARTS-2 trial, they showed increased mortality with higher doses of sildenafil for 

unexplained reasons (50). This led to the issuance of a US-FDA warning in 2012 against the 

use of sildenafil in the treatment of pediatric PH, which requires closer monitoring and 

surveillance of patients on sildenafil (5, 380). A multivariate analysis of the STARTS-2 trial 

data had shown that the increased mortality was primarily associated with HPAH, high 

PVRI, and high RA pressures, and adjusting for these factors decreased the hazard ratio for 

high-dose versus low-dose sildenafil. The latest FDA recommendations for sildenafil use in 

pediatric PH issued in 2014 do not recommend against the routine use of sildenafil and 

recommend closer monitoring of children on long-term sildenafil, especially on higher doses 

(149).

Tadalafil is another selective PDE-5 inhibitor that has once daily dosing and a longer half-

life than sildenafil and has been shown to improve exercise capacity and quality of life 
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measures in adults with PH. It was studied in children with PH either as an initial drug or as 

a transition from sildenafil and was shown to improve mPAP and PVRI in both cases (579). 

An Iranian pediatric PH cohort also reported similar findings after transitioning to tadalafil 

from sildenafil with no worsening in the NYHA FC or pulmonary hemodynamics (519). 

Postmarketing surveillance in Japan has shown that tadalafil is safe and effective as 

monotherapy in pediatric PH (639).

Udenafil is a newer selective PDE-5 inhibitor having a longer duration of action and was 

found to improve myocardial performance in pediatric patients with Fontan physiology in a 

phase I/II clinical trial conducted by the Pediatric Heart Network (213). Patients with Fontan 

physiology have a circulation that is dependent on low pulmonary vascular resistance to 

maintain adequate cardiac output; hence the patients enrolled in this trial did not have 

traditional parameters of PAH. This study was subsequently extended to a multicenter 

international trial (Fontan Udenafil Exercise Longitudinal trial) and found no difference in 

the myocardial performance index. Udenafil use was not associated with improvements in 

peak oxygen consumption during exercise, but it was associated with improvements in 

several measures of exercise performance at the ventilatory anaerobic threshold (214).

Calcium channel blockers (CCBs)

CCBs are used infrequently in children with PAH as first-line therapy; however, it is 

efficacious in children who are AVT responders (592). Based on the Sitbon criteria, those 

children with IPAH or HPAH who respond to NO or 100% oxygen during AVT (around 

8%-15% of children with IPAH), it is prudent to offer CCBs as first-line monotherapy (593). 

AVT establishes a relative contribution of reversible vasoconstriction versus fixed stenosis in 

children with PAH (593). Those who have a negative AVT are unlikely to benefit from 

CCBs, and additionally may have deleterious adverse reactions (498, 547). CCBs are not 

meant to be used in pediatric PAH without a prior documented positive response to AVT as 

they can cause systemic hypotension, worsen right heart failure, and potentially lead to death 

(53, 194). The reasons for such effects range from depression in the myocardial contractility 

and negative inotropic effects to the activation of renin-angiotensin system and hypotension, 

leading to decreased coronary perfusion and myocardial dysfunction from ischemia (457, 

593). Those children who respond to CCBs as initial monotherapy can be continued on them 

with close follow-up, keeping in mind that they can become unresponsive and deteriorate 

later, necessitating further evaluation and addition of other drugs (235, 650). It should also 

be kept in mind that children with PAH and a significant intracardiac left-to-right shunt or 

those with Eisenmenger’s syndrome most likely will not benefit from CCB therapy 

regardless of the AVT and hence CCBs should not be used in this setting (235). CCBs are 

also not indicated in infants less than 1 year of age as the negative inotropic effects are 

pronounced in this age group. The CCBs used in pediatric PAH are nifedipine (2-5 mg/kg/

day), diltiazem (3-5 mg/kg/day), and amlodipine (2.5-10 mg/day) (37). Diltiazem lowers 

heart rates more prominently than the other ones affecting cardiac output and systemic blood 

pressure; hence it is preferred in children who have higher resting heart rates. Verapamil is 

also contraindicated in PAH due to its tendency to cause bradycardia without significant 

pulmonary vasodilatory properties (4).
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Prostacyclin analogs

PGI2 analogs, which fall in the larger group of prostanoids, mimic endogenous PGI2 and 

stimulate G-protein-coupled receptors on the surface of endothelial and smooth muscle cells 

to increase intracellular cAMP levels, which result in pulmonary vasodilatation and decrease 

in PVR. There is an imbalance in the favor of vasoconstrictive thromboxane A2 instead of 

vasodilatory PGI2 in PAH. PGI2s are FDA-approved in adults with PAH and are used off-

label in the pediatric PH population as monotherapy in those who are in high-risk PH group 

and fail AVT or those who do not show any improvement on CCBs after a positive AVT. 

They are also used as combined therapy in pediatric PH patients who are in low-risk PH 

group but fail to improve on monotherapy of PDE-5 inhibitor or ERAs (235). The three 

PGI2s used in the pediatric population are epoprostenol, iloprost, and treprostinil.

Epoprostenol is the first prostanoid to be FDA approved and is still the gold standard of 

treatment for severe PH. It has a very rapid onset of action and a short half-life; hence it is 

preferably given as a continuous intravenous infusion. In acute postoperative PH as well as 

in neonates with severe PH from BPD, CDH, or PPHN, intravenous epoprostenol can be 

used as an alternative if iNO is unavailable. Multiple small studies and retrospective data 

have shown improved survival and quality of life in adult and pediatric PAH treated with 

intravenous epoprostenol (56, 272, 540, 650, 660). A cohort of 77 children with IPAH on 

epoprostenol who were followed through the 1990s to early 2000s showed survival of 94%, 

81% and 61% at 1, 5, and 10 years, respectively (650). In neonates with PPHN refractory to 

iNO, a subpopulation responds to intravenous epoprostenol with a decrease in the 

oxygenation index and need for ECMO (13). There is a need to study the use of prostanoids 

in the treatment of PPHN using randomized trials as was pointed out by a recent meta-

analysis (538). The side effects of epoprostenol include headache, gastrointestinal 

disturbances, jaw pain, bradycardia, hypotension, and thrombocytopenia. Epoprostenol 

when given to patients with parenchymal lung disease such as BPD and interstitial lung 

disease may lead to worsening of ventilation perfusion matching. In patients with veno-

occlusive disease and PVS, epoprostenol can lead to worsening of pulmonary edema. It can 

also affect platelet counts and lead to an increased risk of bleeding (167). Inhaled 

epoprostenol has been used recently in acute care settings for PPHN where iNO might be 

unavailable or infants are unresponsive to iNO and has been shown to improve oxygenation 

and echocardiographic parameters of PH significantly (72).

Iloprost is a synthetic PGI2 analogue approved by the FDA for adult PAH in 2004. It has a 

short half-life of 20 to 25 min, longer than epoprostenol. The benefit of aerosolized iloprost 

over other prostanoids is that it lowers PVR but does not affect systemic blood pressure. 

Like epoprostenol, iloprost has also been used as an adjunct or in place of iNO in acute 

postoperative PH and in PPHN, where it lowers mean pulmonary pressure and improves 

oxygenation (356). A retrospective study of the use of inhaled iloprost in IPAH and CHD-

PAH in the pediatric population showed that it was effective and well tolerated in this 

population (409). Similarly, another retrospective study of inhaled iloprost in preterm 

neonates with severe respiratory distress syndrome and PPHN showed benefits with 

improved oxygenation and with no systemic hypotension (645). There are other smaller 

studies where iloprost has been used in conjunction with oral sildenafil or bosentan for the 
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treatment of pediatric PH (132, 421, 545). In both IPAH and CHD-PAH, inhaled iloprost has 

been shown to improve the functional status when studied in the long term (273). One major 

drawback of the use of inhaled iloprost in the pediatric population is that it needs to be 

administered using nebulization every 6 to 8 h and requires patient compliance, which might 

be difficult in a population already facing a lot of quality of life challenges (273, 450). There 

have also been reports of worsening reactive airway disease on inhaled iloprost (273).

Treprostinil is another PGI2 analogue approved for use as oral, inhaled, intravenous, and 

subcutaneous forms. This has a longer half-life (steady state in 10 h) compared to other 

prostanoids and is stable at neutral pH at room temperature and hence can be given as 

continuous infusion. Subcutaneous mode of delivery avoids problems associated with central 

lines; however, it causes pain and reactions at the infusion site. Adults with PAH on long-

term intravenous or subcutaneous treprostinil have displayed good long-term results (52, 

216). There have been reports of pediatric patients on intravenous epoprostenol who were 

transitioned over to intravenous treprostinil due to the longer half-life of the latter, and these 

patients had no change in exercise capacity, WHO-FC, hemodynamics, and 

echocardiographic determination of right ventricular systolic pressure. The side effects 

associated with epoprostenol of headache, rash, diarrhea, and jaw pain have decreased on 

treprostinil (271). Intravenous treprostinil is also associated with catheter-associated 

infections, but these can be decreased by protecting catheter connections, avoiding water on 

any connection and a more basic buffer (155, 184). Subcutaneous treprostinil has also been 

used in pediatric and neonatal PH and has been well tolerated and efficacious (178). Inhaled 

treprostinil is available as well; however, it achieves lower plasma concentrations than the 

subcutaneous or intravenous forms and hence should not be used in patients who are not 

responding to the maximal doses of parenteral treprostinil (167). Inhaled treprostinil reaches 

peak levels in 5 to 10 min and needs to be administered every 4 to 6 h. Oral treprostinil, 

although approved in adults, has not been studied in the pediatric population much, 

primarily since the tablet cannot be crushed and there is no oral suspension available (167). 

Treprostinil clearance is decreased in patients with liver disease, and coadministration with 

anticoagulants or other vasodilators may increase the risk of bleeding and systemic 

hypotension.

Beraprost is an oral PGI2 analog that has not been approved in the United States or Europe 

and has not been well studied in children. A double-blinded, placebo-controlled, randomized 

trial of beraprost in adult PAH showed improved hemodynamics initially; however, this was 

not sustained over a long period (57).

Endothelin antagonists

Endothelin receptor antagonists (ERAs) are now considered first-line oral pharmacotherapy 

in pediatric IPAH/HPAH patients who either have a negative AVT and are low risk based on 

risk stratification or those who did not show sustained and improved reactivity on oral CCBs 

after a positive AVT (4). As described in a separate section, ET-1 acts on both ETA and 

ETB, which are G-protein-coupled receptors present on smooth muscle cells and endothelial 

cells. ETA binding leads to increased intracellular Ca2+ causing vasoconstriction, whereas 

ETB stimulation leads to the release of NO and PGI2, increased ET-1 clearance and a minor 
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effect on pulmonary vasodilatation, and reduced pulmonary vascular remodeling (65, 160). 

The ERAs used in clinical medicine for PH include bosentan, ambrisentan, and macitentan.

Bosentan is a nonselective ERA and inhibits binding of ET-1 to both ETA and ETB 

receptors and has been shown to improve exercise capacity and pulmonary vascular 

hemodynamics in adults with PAH (112). Pharmacokinetics of bosentan in pediatric PAH 

and adult patients are similar with a ~50% oral bioavailability and half-life of 5.4 h (54). It is 

metabolized by the liver isoenzymes, CYP3A4 and 2C9, and is a potent CYP3A4 inducer. 

Thus, other drugs that are metabolized by CYP3A4 like sildenafil need to be dose adjusted 

when bosentan is coadministered (618). Bosentan also elevated liver enzymes and has been 

shown to cause cirrhosis with chronic use. Hence, monthly monitoring of liver enzymes is 

important while on bosentan (618). It has been listed by the FDA as an indication for 

children aged three years and older with IPAH/HPAH at a dose of 2 mg/kg twice a day 

(618). Small prospective cohort studies and retrospective reviews have found bosentan to 

improve the 6MWD, decrease mPAP and PVR in pediatric patients with IPAH (250, 371, 

401, 493). Bosentan, in conjunction with or independent of other PAH-specific therapies, 

showed improved survival in children with IPAH at 1, 2, 3, and 4 years of 98%, 88%, 82%, 

and 82%, respectively (274). FUTURE-1 (pediatric formulation of bosentan in PAH), which 

enrolled 36 patients and followed 33 of them to the FUTURE-2 trial, showed that the 

pediatric bosentan formulation was well tolerated and its safety profile was comparable to 

that of the adult formulation when used in children (70). The FUTURE-1 trial had shown 

that dosing of 2 mg/kg twice a day versus 4 mg/kg twice a day yielded similar 

concentrations of bosentan in the plasma (64). A third pharmacokinetic study looked at 2 

mg/kg three times daily versus twice daily dosing of bosentan in pediatric PAH and found no 

clinically relevant difference in exposure to bosentan or safety profile between the two, and 

hence current recommendations are to use 2 mg/kg twice daily (71). For older children, the 

dosing recommendations for bosentan are based on the BREATHE-3 trial: 31.25, 62.5, and 

125 twice daily for 10 to 20, 20 to 40, and >40 kg, respectively (37, 54, 103). Bosentan was 

found to significantly improve the oxygenation index and decrease PAPs in newborns with 

PPHN compared to placebo without noticeable side effects in a single-center study done in a 

setting where iNO was not available (399). However, when bosentan was used as an adjunct 

in newborns with PPHN on iNO (FUTURE-4 trial), it did not improve oxygenation or other 

outcomes compared to placebo, and there was no difference in time to weaning from iNO or 

mechanical ventilation from both groups (562).

Ambrisentan is a selective ETA receptor antagonist, requires once-daily dosing, and has a 

half-life of around 9 h. Ambrisentan also does not affect liver enzymes; hence they do not 

need to be monitored as in bosentan therapy. Ambrisentan has been approved by the FDA 

for the treatment of adult PAH and in two multicenter adult trials (ARIES-1 and ARIES-2) 

was found to improve the 6MWD and delay clinical worsening (193). A retrospective study 

of ambrisentan use in children with PAH as an add-on therapy to or as a transition from 

bosentan found improved mPAP and WHO-FC in the cohort, with 13% of patients 

discontinuing ambrisentan due to severe headache, lack of efficacy, or near-syncopal events 

(580).
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Macitentan is another nonselective ERA; however, it has greater affinity for ETA receptors. 

Long-term macitentan therapy in adult patients with PAH was associated with significant 

reductions in morbidity and mortality compared to placebo (SERAPHIN trial) (482, 555). A 

current multicenter, open-label, phase III trial to study the pharmacokinetics and long-term 

effects of macitentan in pediatric PAH is underway (167).

Soluble guanylate cyclase stimulators

This class of drugs acts along the NO-cGMP pathway and increases the intracellular 

concentration of cGMP in the smooth muscle cells, leading to the downstream cascade of 

smooth muscle relaxation. Adult patients with chronic thromboembolic PH when treated 

with riociguat showed improvements in exercise capacity and PVR (203, 541). Adults with 

PAH who were either treatment-naïve or were pretreated with ERAs or prostanoids when 

started on riociguat showed improvements in several clinically relevant endpoints, including 

WHO-FC and exercise capacity (204, 514). When a subpopulation of these adult PAH 

patients with CHD were analyzed, they were also found to display similar improvements in 

exercise capacity and WHO-FC, which were sustained at the two-year follow-up (505). A 

case report of a child with severe PAH with supra-systemic PVR who had failed treatment 

with amlodipine, bosentan, and sildenafil showed sustained improvement in PVR and RV 

function when switched to a bosentan/riociguat combination for off-label use (559). There 

are no other reports or human studies of the use of riociguat in the pediatric PH population.

Novel therapies

FK506—Germline mutations causing loss of BMPR2 function are present in >80% of 

HPAH and ~20% of IPAH patients (adult data), and the presence of BMPR2 mutations is 

associated with worse pulmonary vascular remodeling (147, 413, 591). In addition, patients 

with IPAH without a BMPR2 mutation or with PAH associated with other conditions have 

reduced expression of BMPR2 in pulmonary arteries (558). Low-dose FK506 (tacrolimus) 

has been identified as a potent activator of BMPR2 and was shown to reverse pulmonary 

arterial occlusive changes in animal models. In PAECs isolated from patients with IPAH, 

low-dose tacrolimus reversed dysfunctional BMPR2 signaling (558). A randomized, 

placebo-controlled trial of tacrolimus showed improvements in WHO-FC, hemodynamics, 

and increased BMPR2 expression in peripheral mononuclear cells (557). The improvements 

noted in this trial were not significant and were only observed in a subset of patients with 

PAH (558).

Fasudil—Rho-kinase (ROCK) activity has been associated with several animal models of 

PAH and was found to be increased in expression in lung and pulmonary arteries from 

patients with severe PH (153, 532). Fasudil is an intravenous ROCK inhibitor that competes 

with ATP for the ATP-binding site on ROCK, thereby blocking ROCK activity and myosin 

light chain phosphorylation, which leads to ultimate vasodilation (268, 512). It has been 

studied in China and Japan for the treatment of PAH, PAH-CHD as well as PAH due to left 

ventricular dysfunction in adult patients and has been shown to improve hemodynamics 

(189, 279, 513, 654). There have been no studies of fasudil in the pediatric PH population.
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Endothelial progenitor cells—Bone-marrow-derived endothelial progenitor cells 

(EPCs) have been shown to regenerate pulmonary vascular endothelium and reverse the 

changes of PAH in animal models (656). A recent meta-analysis concluded that stem cells 

are useful in the treatment of PAH in preclinical models and further human studies need to 

be performed (152). A small pilot study performed in China demonstrated that autologous 

EPCs transfused into children with PAH led to significant improvements in PVR, mPAP, 

6MWD, and cardiac output with no adverse events (658). Intrapulmonary artery injection of 

stem cells has also been shown to improve persistent PAH after surgical correction of 

cardiac defects in three patients (21). Larger studies are needed to delineate the potential 

benefit of this therapy in patients refractory to established treatment protocols.

Surgical interventions

Pediatric PAH patients with supra-systemic PVR, multiple syncopal episodes, poor WHO-

FC who are on maximal combined pharmacological therapy are candidates for surgical 

interventions either as a therapeutic intervention or as a palliative bridge to lung 

transplantation. The two procedures performed are balloon atrial septostomy (BAS) and 

reversed Potts shunt, both of which convert the physiology from that of PAH with supra-

systemic PVR and increased RV afterload to the one in Eisenmenger’s syndrome. 

Eisenmenger’s syndrome is seen in longstanding left-to-right shunting lesions in congenital 

or acquired cardiac disease, where there is gradual development of PAH and ultimately the 

shunt reverses to a right-to-left one (521). The long-term outcomes for children with severe 

PAH are very poor with five-year survival rates ranging between 57% and 75%, with lung 

transplantation being the only option for severe PAH refractory to combined 

pharmacological treatment. In comparison, patients with Eisenmenger’s syndrome have 

been reported to have superior long-term survival and transplant-free survival outcomes, and 

thus provided the concept of BAS and Potts shunt (151).

Atrial septostomy (AS)

AS is a percutaneous procedure by which an atrial communication is created via balloon 

dilation of the atrial septum and has been shown to improve symptoms and hemodynamics 

in patients refractory to vasodilator therapy (48, 337, 390). The atrial communication creates 

a right-to-left shunt to allow for decompression of the right heart with increased left 

ventricular preload and cardiac output with increased cyanosis, thus simulating Eisenmenger 

physiology (48). AS is considered either a palliative bridge to lung transplant in IPAH to 

increase survival while waiting for a donor organ or in patients with severe PH, WHO-FC III 

or IV and with recurrent syncope on combined medical therapy (235, 509). In resource-poor 

countries with limited access to PH drugs, it might be considered a therapeutic intervention 

but the long-term benefit of AS in the absence of an end-goal of lung transplant is unclear 

and should be weighed against the significant risks the procedure poses in pediatric patients 

with severe PAH. Data for outcomes of BAS mainly come from retrospective single-center 

studies with no randomized trials performed. One US center reported lung-transplantation 

free and repeat BAS-free survival at 30 days, 1 year, and 5 years to be 87%, 61%, and 32%, 

respectively (116). This data included both pediatric and adult patients (1-56 years) with a 

median age of 23 years and did not find any difference in serum biomarkers or 

hemodynamic findings pre-BAS and at 1 year or later follow-up. This finding was different 
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from another group that reported improvements in hemodynamic parameters after BAS, but 

a majority of the patients in the second study were not on pharmacological PH treatment 

(522). Another US center reported their data on event-free survival at 1, 2, and 3 years of 

84%, 77%, and 69%, respectively, with significant improvements in symptoms and 

hemodynamic parameters, in patients who survived beyond 30 days post intervention (337). 

One reason for such high survival rates from this study is because they did not include 

patients who died within the first 30 days, which was 22% of their initial cohort. The 

increased postprocedural mortality from BAS stems from the sudden severe right-to-left 

shunting, which might lead to life-threating hypoxemia and subsequent hypoxic pulmonary 

vasoconstriction and impaired cardiac output. The sizing of the defect in BAS is critical 

since too much right-to-left shunt at the atrial level could be immediately life threatening 

because of insufficient pulmonary blood flow as well as severe desaturation in the brain and 

in the coronary circulation, and too small of a shunt may require repeated procedures 

because of spontaneous closure of the defect (390). The current recommendations from the 

European PPVDN and the 6th WSPH Pediatric Task Force are to avoid BAS in the 

following group of patients: (i) mean right atrial pressure >20 mmHg, (ii) resting arterial 

oxygen saturation <90%, (iii) severe RV failure, and (iv) patients with impending death 

(235, 506).

Reversed Potts shunt

Reversed Potts shunt is like BAS in that it creates a right-to-left shunt pathway in patients 

with severe PH and thus converting them into Eisenmenger physiology. This is performed by 

a direct side-by-side anastomosis from the left pulmonary artery (LPA) to the descending 

aorta and was first described in the pediatric population by Blanc et al (59, 82). This helps to 

decrease the RV afterload and act as a palliative bridge to lung transplant in severe PH 

patients who are on maximal combined pharmacological therapy with poor WHO-FC class, 

similar to BAS. Data about effectiveness of the Potts shunt in improving pulmonary 

hemodynamics and transplant-free survival are limited and mostly from case series. In one 

series of pediatric PAH patients who underwent elective Potts shunt placement, 8 out of 12 

patients survived for a median of 27 months post shunt with significant improvements in 

pulmonary hemodynamics and WHO-FC at follow-up (12). Another similar small series 

with a median age of 13.5 months at the time of shunt placement were followed for a median 

of 17 months post shunt. Among those who survived the initial period after the shunt, there 

was improvement in their WHO-FC as well as the clinical symptomatology of RV failure 

(219). The largest case series of pediatric PH patients who received a Potts shunt included 

24 patients with a median age of 7.7 years. They all had drug-refractory PAH with supra-

systemic PVR, except for one patient who was operated on due to multiple central-line 

associated infections while on intravenous epoprostenol. After a median follow-up of 2.1 

years, this cohort showed significant improvements in their WHO-FC, 6MWD, serum 

BNP/NT-proBNP levels, syncopal events, and ability to wean pulmonary vasodilator 

therapy. One child in this series progressed to lung transplantation (59). There have also 

been reports on transcatheter creation of Potts shunt by stenting the patent ductus arteriosus 

(PDA) in pediatric IPAH patients, with similar outcomes as the surgical procedure (87, 88, 

163). The major benefit of the Potts shunt over BAS is that the right-to-left shunt is created 

after the coronary and cerebral circulation are supplied by the oxygenated left ventricular 
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output, thus avoiding myocardial and cerebral ischemia, with only the lower part of the body 

being cyanotic. The other benefit is that this directly offloads the RV both in systole and 

diastole, hence shifting the interventricular septum toward the RV and improving LV filling 

and cardiac output (12, 59, 163). This data is mostly anecdotal and has been challenged in 

the recent times using the CircAdapt model, which showed that the Potts shunt successfully 

transferred the supra-systemic PAH to an Eisenmenger physiology, but failed to decompress 

and offload the RV (146). There are no clinical trials comparing BAS to Potts shunt, and 

whether one is superior over the other is still unknown. Centers with higher volume and 

experience performing the Potts shunt and with extracorporeal life support backup for 

handling severe postoperative hypoxemia and low cardiac output states have better 

outcomes, especially as the initial postoperative period is associated with higher mortality.

Treatment Goals and Prognostic Tools for Monitoring and Follow Up

The identification of treatment goals is important as the US-FDA requires inclusion of a 

clinical endpoint for determining treatment efficacy of any drug or combination therapy. 

Important goals include death, transplantation and hospitalization, and the quality of the 

child’s life. Other goals like weight gain, serum biomarkers, echocardiographic signs, 

invasive hemodynamics, CMRI, and exercise testing can also be studied. Exercise tests and 

6MWTs are difficult to perform in the pediatric population, and invasive hemodynamic data 

from cardiac catheterization solely for the purpose of follow-up are not pursued due to the 

risks associated with the procedure in the pediatric population (62). A small cohort study of 

pediatric IPAH/HPAH and PAH-CHD patients found pulmonary stroke volume, mean 

systemic arterial pressure, and heart rate were the strongest predictors of survival (158). 

Observational studies have shown that echocardiographic parameters correlate with 

meaningful outcomes in the pediatric PH population. Right and left ventricular dimensions, 

TAPSE, and right-to-left ventricular dimension ratios correlate with WHO-FC, 

hemodynamics, and survival (476). A meta-analysis in 2015 reported that WHO-FC, NT-

proBNP, mean RA pressure, PVRi, cardiac index, and AVT have been consistently reported 

as prognostic factors for outcomes in pediatric PH (477). Composite clinical worsening has 

been used as an endpoint for adult PAH and was recently studied in a Dutch national cohort 

as well as by the TOPP registry. Two-year outcomes from the REVEAL registry showed that 

the soft clinical worsening endpoints were highly predictive of subsequent mortality (474). 

The Dutch cohort reported occurrences of hospitalization, initiation of intravenous 

prostanoids, or functional deterioration (defined as WHO-FC deterioration, >15% decrease 

in 6MWD or both) were individually predictive of death or lung transplantation, and a 

composite outcome of the three components was suggested as an endpoint for further study 

(474). Another Dutch cohort study for pediatric PAH reported WHO-FC, TAPSE, and NT-

proBNP were predictors of transplant-free survival, and improvements in these variables 

were associated with improved survival. The TOPP registry investigators reported composite 

clinical worsening (cCW) outcomes comprising PAH-related hospitalization, atrial 

septostomy, WHO-FC deterioration, intravenous/subcutaneous prostanoid initiation, 

syncope and occurrence/worsening of ≥PAH symptoms were associated with a higher risk of 

transplantation/death (62). They created three different cCW models, all of which were 

associated with an increased risk of death or lung transplant for all PAH subtypes combined. 
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However, when patients were separated based on etiology, for the PAH-CHD category none 

of the models or the individual components were associated with death and/or transplant.

Conclusion and Future Directions

In the last two decades, pediatric PH has been increasingly recognized as a separate entity 

with a different etiology and pathophysiology from adult PH. With the development of the 

Pediatric Task Force of the WSPH, TOPP registry, and PPH-Net, there has been increasing 

attention drawn to the pediatric-specific etiologies such as BPD-PH, PPHN, CDH-PH, and 

CHD-PAH. There are also an increasing number of off-label studies of drug regimens for 

pediatric PH. However, iNO is still the only drug approved by FDA for pediatric PH use. 

This is primarily due to the lack of randomized trials in the pediatric population and a lack 

of long-term safety data. The future goals of pediatric PH research should be focused on 

novel therapies for conditions unique to this age group and the conduct of well-designed, 

multicenter pediatric clinical trials of the drugs already being used in the adult patients. 

Identifying and validating composite clinical outcomes that can be reproduced across centers 

and different ages is key to developing clinical trials for monitoring treatment outcomes and 

defining goals and endpoints.
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Didactic Synopsis

Major Teaching Points

• Pulmonary hypertension (PH) is often a hidden component, occurring by 

itself or in association with lung diseases, and requires echocardiography 

and/or cardiac catheterization for diagnosis.

• Epidemiology and classification of pediatric pulmonary hypertension (PPH) 

has changed over time. Premature birth and bronchopulmonary dysplasia 

(BPD) are emerging as important causes of PPH; the risk is influenced by 

both prenatal and postnatal factors that adversely affect pulmonary vascular 

development.

• Several developmental disorders of the lung contribute to pediatric PH and are 

unique to this age group. They include lung hypoplasia secondary to 

congenital diaphragmatic hernia and genetic conditions such as alveolar 

capillary dysplasia.

• Congenital heart disease (CHD) is a major contributor to PPH; its 

presentation and clinical course are highly variable based on the type of CHD.

• Understanding the molecular mechanisms and changes at cellular and 

structural level in PH is the key to developing future drug targets for PPH.

• Developing diagnostic and treatment algorithms specific to PPH will help in 

identifying and properly classifying this component of PH.

• Inhaled nitric oxide is the only approved drug for the treatment of neonatal 

PPHN, and bosentan is the only approved drug for the treatment of pediatric 

PAH in the United States. Other drugs that target nitric oxide-cyclic GMP 

pathway, endothelin receptors, and prostacyclin pathways are also effective in 

PPH and are currently being used off-label.

• Future direction of PPH research needs to focus on developing novel drugs, 

other approaches besides vasodilation and on designing randomized clinical 

trials specifically in the pediatric population.
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Figure 1. 
Pathogenesis of bronchopulmonary dysplasia (BPD) associated pulmonary hypertension. 

The figure highlights the contribution of both prenatal and postnatal factors to the evolution 

of BPD. ECM, extracellular matrix; SMC, smooth muscle cell.
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Figure 2. 
Molecular and structural mechanisms of pulmonary vascular disease. PGI2, prostacyclin; 

NO, nitric oxide; sGC, soluble guanylate cyclase; cAMP, cyclic adenosine monophosphate; 

cGMP, cyclic guanosine monophosphate; PDE, phosphodiesterase; Kv channel, voltage-

gated potassium channel; ET-1, endothelin-1; 5HT, 5-hydroxytryptamine; TRPC, transient 

receptor potential cation channel; VDCC, voltage-dependent calcium channel; BMPR2, 

bone morphogenetic protein receptor-2; PPAR-γ, peroxisome proliferator-activated receptor-

γ; PDGF, platelet-derived growth factor; FGF, fibroblast growth factor; MMP, matrix 

metalloproteinase; HIF-1α, hypoxia inducible factor-1α VEGF, vascular endothelial growth 

factor.
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Figure 3. 
NO-cGMP pathway showing paracrine effect of endothelial NO on vascular smooth muscle 

cell. NO, nitric oxide; NOS, nitric oxide synthase; BH4, tetrahydrobiopterin; sGC, soluble 

guanylate cyclase; GTP, guanosine triphosphate; cGMP, cyclic guanosine monophsphate; 

PDE, phosphodiesterase; PDE5i, PDE5 inhibitor; PKG, protein kinase G; MYTP, myosin 

phsophatase targeting subunit; MLCK, myosin light chain kinase; ROCK, Rho kinase.
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Figure 4. 
Prostacyclin pathway role in pulmonary hypertension. AA, arachidonic acid; COX, 

cyclooxygenase; PGE2, prostaglandin E2; PGI2, prostacyclin; IP, inositol phosphate; PDE, 

phosphodiesterase; ATP, adenosine triphosphate; AMP, adenosine monophosphate; cAMP, 

cyclic AMP; SMC, smooth muscle cell; PKA, protein kinase A.

Mukherjee and Konduri Page 95

Compr Physiol. Author manuscript; available in PMC 2022 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Role of reactive oxygen species in pulmonary hypertension. O2

•−, superoxide anion; H2O2, 

hydrogen peroxide; PDE5, phosphodiesterase-5; GMP, guanosine monophosphate; cGMP, 

cyclic GMP; GTP, guanosine triphosphate; H2O, water; NO, nitric oxide; OONO•−, 

peroxynitrite; SOD, superoxide dismutase; BH4, tetrahydrobiopterin; BH2, dihydrobiopterin; 

NOS, nitric oxide synthase; eNOS, endothelial NOS; NADPH, nicotinamide adenine 

dinucleotide phosphate dehydrogenase. Reused, with permission, from Apitz C, et al., 2016 

(25); Reused, with permission, from Dennis KE, et al., 2009 (148); Reused, with permission, 

from Fike CD, et al., 2008 (181); Reused, with permission, from Irodova NL, et al., 2002 

(267); Reused, with permission, from Wedgwood S and Black SM, 2003 (620).
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Figure 6. 
A schematic representation of the BMPR2 signaling pathway. ActR, activin Receptor; Akt, 

protein kinase b; ALK, activin-like receptor; BMP, bone morphogenetic protein; BMPR, 

bone morphogenetic protein receptor; BRE, BMP response element; c-Src, proto-oncogene 

tyrosine-protein kinase Src; CLIC4, chloride intracellular channel 4; Dvl, disheveled; Erk, 

extracellular signal-regulated kinase; FKBP1A, FK binding protein 1A; GSK3-β, glycogen 

synthase kinase 3-β; ID, inhibitor of differentiation; JNK, c-Jun N-terminal kinase; LIMK, 

Lin11, Isl-1, and Mec-3 domain kinase; MAPK, mitogen-activated protein kinase; PI3K, 

phosphoinositide 3-kinase; PPARγ, peroxisome proliferator-activated receptor gamma; 

Rac1, Ras-related C3 botulinum toxin substrate 1; RAGE, receptor for advanced glycation 

end products; RhoA, Ras homolog gene family, member A; SMAD, mothers against 

decapentaplegic; SMURF, SMAD-specific E3 ubiquitin protein ligase; Tak1, transforming 
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growth factor-β activated kinase 1; VEGFR3, vascular endothelial growth factor receptor 3. 

Modified, with permission, from Andruska, A et al., 2018 (23). Licensed under CC-BY-4.0.
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Figure 7. 
Diagnostic algorithm for a child or young adult with suspected pulmonary hypertension. PH, 

pulmonary hypertension; ECG, electrocardiogram; CHD, congenital heart disease; PFT, 

pulmonary function test; CT, computed tomography; DLCO, diffusing capacity for carbon 

monoxide; RV, right ventricle; CTEPH, chronic thromboembolic pulmonary hypertension; 

CTA, CT angiogram; PA, pulmonary artery; PEA, pulmonary endarterectomy; AVT, acute 

vasoreactivity testing; mPAP, mean pulmonary artery pressure; PAWP, pulmonary artery 

wedge pressure; PVRI, pulmonary vascular resistance index; WU, Wood units; 6MWT, 6-

minute walk test; MRI, magnetic resonance imaging; CPET, cardiopulmonary exercise 

testing; CTD, connective tissue disease; HIV, human immunodeficiency virus; PVOD, 

pulmonary veno-occlusive disease; PCH, pulmonary capillary hemangiomatosis; IPAH, 

idiopathic pulmonary arterial hypertension; FPAH, familial pulmonary arterial hypertension. 

Adapted, with permission, from Rosenzweig EB, et al., 2019 (506). © 2019, The European 

Respiratory Society.
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Figure 8. 
Two-dimensional echocardiogram of a patient with severe PAH in the parasternal short-axis 

view showing D-shaped left ventricle (yellow line) and severe right ventricular dilatation 

(red line), along with biventricular remodelling.
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Figure 9. 
Treatment algorithm for pediatric IPAH/HPAH as recommended by the 6th WSPH Pediatric 

Task Force. ERA, endothelin receptor antagonist; PDE5, phosphodiesterase 5; i.v., 

intravenous; s.c, subcutaneous. Adapted, with permission, from Rosenzweig EB, et al., 2019 

(506). © 2019, The European Respiratory Society.
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Figure 10. 
Algorithm for the diagnosis and treatment of pulmonary hypertension in infants with 

bronchopulmonary dysplasia based on recommendations from PPHNet. PPHNet, pediatric 

pulmonary hypertension network; BPD, bronchopulmonary dysplasia; PH, pulmonary 

hypertension; ECHO, echocardiogram; PAP, pulmonary arterial pressure; SAP, systemic 

arterial pressure; BNP, brain-type natriuretic peptide; NT-proBNP, N-terminal proBNP; 

PVS, pulmonary vein stenosis; LVDD, left ventricular diastolic dysfunction; APC, 

aortopulmonary collateral. Modified, with permission, from Krishnan U, et al., 2017 (320).
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Table 1

Definition of Pulmonary Hypertension Adapted from the European Pediatric Pulmonary Vascular Disease 

Network (EPPVDN) modeled on the 6th WSPH definitions (233–235)

1. Pulmonary hypertension

 a. mPAP > 20 mmHg in children > 3 months at sea level

2. Precapillary PH (e.g., pulmonary arterial hypertension)

 a. mPAP > 20 mmHg

 b. PAWP or LVEDP < 15 mmHg

 c. PVRI ≥ 3 Wu×m2

 d. Diastolic TPG ≥ 7 mmHg

3. Isolated postcapillary PH in adults (predominantly LV diastolic dysfunction)

 a. mPAP > 20 mmHg

 b. PAWP or LVEDP > 15 mmHg

 c. PVRI < 3 Wu×m2

 d. Diastolic TPG < 7 mmHg

4. Combination of precapillary and postcapillary PH in adults

 a. mPAP > 20 mmHg

 b. PAWP or LVEDP > 15 mmHg

 c. PVRI ≥ 3 Wu×m2

5. Pulmonary arterial hypertension

 a. mPAP > 20 mmHg

 b. PAWP or LVEDP ≤ 15 mmHg

 c. PVRI ≥ 3 Wu×m2 plus criteria for Group 1 PH

6. Idiopathic PAH (IPAH)–PAH with no underlying disease known to be associated with PAH

7. Heritable PAH (HPAH)–PAH with no known underlying disease but with positive family history or positive genetic testing of the index 
patient

8. Eisenmenger syndrome–Patient with longstanding pulmonary hypertension, supra-systemic PVR and PAP, and accordingly, right-to-left 
cardiovascular shunting with systemic hypoxemia (e.g., unrepaired VSD or PDA)

9. Pulmonary hypertensive vascular disease For biventricular circulations: mPAP > 20 mmHg and PVR index ≥ 3 WU×m2 For circulations with 
cavopulmonary anastomosis (e.g., Fontan physiology): Mean TPG > 6 mmHg (calculate mPAP minus mLAP or PAWP) or PVR index > 3 
WU×m2

PH, pulmonary hypertension; mPAP, mean pulmonary artery pressure; PAWP, pulmonary arterial wedge pressure; LVEDP, left ventricular end-
diastolic pressure; PVRI, pulmonary vascular resistance index; TPG, transpulmonary gradient; PAH, pulmonary arterial hypertension; PVR, 
pulmonary vascular resistance; VSD, ventricular septal defect; PDA, patent ductus arteriosus; WU, Wood units mLAP, mean left atrial pressure.

Adapted, with permission, from Rosenzweig EB, et al., 2019 (506).
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Table 5

Panama Classification for Pediatric Pulmonary Vascular Disease as Proposed by the Pulmonary Vascular 

Research Institute (PVRI) Pediatric Task Force in 2011

Category Description

1 Prenatal or developmental pulmonary hypertensive vascular disease

2 Perinatal pulmonary vascular maladaptation

3 Pediatric cardiovascular disease

4 Bronchopulmonary dysplasia

5 Isolated pediatric pulmonary hypertensive vascular disease (isolated pediatric PAH)

6 Multifactorial pulmonary hypertensive vascular disease in congenital malformation syndromes

7 Pediatric lung disease

8 Pediatric thromboembolic disease

9 Pediatric hypobaric hypoxic exposure

10 Pediatric pulmonary vascular disease associated with other system disorders

Modified, with permission, Cerro MJ, et al., 2011 (106). © 2011, SAGE Publications.
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