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Alzheimer’s disease has been one of the major concerns recently. Around 45 million people are suffering from this disease.
Alzheimer’s is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people.
(e main cause of Alzheimer’s disease is Dementia, which progressively damages the brain cells. People lost their thinking
ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the
disease. (e main aim is to recognize Dementia among various patients. (is paper represents the result and analysis regarding
detecting Dementia from various machine learning models. (e Open Access Series of Imaging Studies (OASIS) dataset has
been used for the development of the system. (e dataset is small, but it has some significant values. (e dataset has been
analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and
random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning.
Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best
accuracy in detecting Dementia among numerous patients. (e system is simple and can easily help people by detecting
Dementia among them.

1. Introduction

Machine learning (ML) is defined as the study of computer
programs that leverage algorithms and statistical models to
learn through inference and patterns without being explicitly
programmed [1]. ML algorithms learn over experience and
improve automatically. It finds techniques, trains models,
and uses the learned approach to determine the output
automatically [2]. Machine learning systems can also adjust
themselves to a changing environment.

A model is a machine learning system that has been
trained to identify specific types of patterns using an

algorithm in a machine learning system [3]. (at means it
processes the data and finds out the hidden structures in a
dataset [4]. (e feature extraction and the known answers of
a dataset determine the formula that relies upon the input
and output functions and applies it to new data to predict the
response [5]. Hence, the model’s algorithm uses a collection
of data for training and builds a way to predict the output
and saves that procedure for future purposes.

A support vector machine (SVM) is a supervised ma-
chine learning model that uses classification algorithms for
two-group classification problems. Support vector machine
is a fast and dependable classification algorithm that
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performs very well with a limited amount of data to analyze
[6]. SVMs are a group of similar supervised learning
techniques that are used for classification and regression
problems [7].

(e logistic regression model is the appropriate re-
gression analysis. Logistic regression is predictive regression
analysis [8]. To classify data and to illustrate the relationship
between one dependent binary variable and one or more
independent nominal, ordinal, interval, or ratio-level vari-
ables, logistic regression is used [9].

In a machine learning system, a decision tree algorithm
partitions the data into subsets. A decision tree’s purpose is
to sum up the training data in the smallest tree possible [10].
(e decision tree is a supervised classification method that
carries out a split test in its internal node and forecasts an
example target class in its leaf node [11]. Decision tree al-
gorithms are used to classify the characteristics to be eval-
uated at any node to specify the “best” splitting [12].
Decision trees are commonly used in classification problems
because of their versatility and consistency.

(e random forest is a supervised learning algorithm.
Random forest is a versatile, easy-to-use machine learning
algorithm that provides, most of the time, a fantastic result
even without hyperparameter tuning [13]. Its simple design
and variety are also some of the most used algorithms [14].

SVM can be applied to nonlinear problems, whereas lo-
gistic regression can only work with linear ones. SVM operates
outliers better, as it derives maximum margin solution. De-
cision trees are better at dealing with collinearity than logistic
regression. For categorical values, decision trees outperform
logistic regression. A random forest is a set of decision trees that
are randomly generated, and the expected output is chosen by
the forest’s majority vote. Decision trees are less reliable and
accurate than random forest. SVM solves nonlinear issues
using kernel methods, whereas decision trees apply hyper-
rectangles in input space to solve the problem. For a classifi-
cation problem, SVM performs better than random forest [15].

Machine learning models are now widely used in
medical diagnosis [16–19]. (is paper compares different
machine learning performances to diagnose Alzheimer’s
syndrome. Alzheimer’s syndrome is an inherited, irrevers-
ible brain condition that steadily affects the ability to per-
form the necessary things, memory, and reasoning skills
[20]. A massive proportion of neurons stop working in
Alzheimer’s disease, losing synaptic connections [21]. Alz-
heimer’s diseases are infrequent in people aged between
their 30s and mid-60s [22]. Symptoms can include a shift in
sleep habits, depression, anxiety, and difficulties doing basic
tasks such as reading or writing and aggressive actions, and
poor decision-making also happened in Alzheimer’s disease
[23]. Alzheimer’s disease and initial changes in the brain
begin 10–20 years before the onset of symptoms [24]. It
progressively leads to memory damage and decreases
thinking abilities [25]. (e leading cause of this disease is
Dementia. A report shows that around 40–50 million people
worldwide are suffering from Dementia, and this number
will be increased to around 131.5 million by 2050 [26].
Approximately 70% of people who have Dementia are from
low-income countries; see Figure 1.

Dementia is the failure of brain function, understanding,
recognizing, thinking, and behavioral skills to such a level
that an individual faces problems in everyday life and be-
haviors [28]. Few people with Dementia are unable to deal
with their emotions, and their personalities can be changed
[29]. From the mildest stage, Dementia varies in severity
[30]. It mainly affects older people. No cure is available other
than treatment [31].

(ere is little data available on Alzheimer’s patients in
Bangladesh. According to the WHO data published in 2017,
Alzheimer’s or Dementia deaths in Bangladesh reached
9,917 or 1.26% of the total deaths, which was the last data
found in this aspect that ranks Bangladesh number 152
globally [32]. In Bangladesh, the awareness about Alz-
heimer’s is now in the primary stage. (erefore, impacted
patients and families are regularly experiencing various is-
sues [33]. (e fund for researching Alzheimer’s is limited. A
lower-middle-income country like Bangladesh is not yet
prepared for the management of Alzheimer’s [34]. Besides
that, almost one-fifth of the Bangladeshi adult population is
overweight, according to a global study [35], which is the
leading risk factor for Alzheimer’s.(erefore, there are more
chances of occurrences of Alzheimer’s [36]. To give a
treatment for this disease, physicians tend to test individuals
for Alzheimer’s disease by obtaining a medical and family
history and psychiatric history from the point of view of
specialists such as neurologists, neuropsychologists, geria-
tricians, and geriatric psychiatrists [37].

Studies show that the situation may improve if people
can detect Alzheimer’s disease early by taking therapy at the
initial stage [38]. For this, they have to predict the progress of
the disease accurately from mild condition to Dementia.
Machine learning technology can help to predict accurately
early Alzheimer’s disease. (ere are many machine learning
systems, but they give inconsistent and inaccurate predic-
tions. (ey also have overfitting and underfitting issues.
(erefore, a model has been developed by us which can
indicate Alzheimer’s disease early, using machine learning to
support medical technicians. It will verify and show if
anyone has Alzheimer’s disease or not.

(e remainder of the paper is organized as follows:
Section 2 discusses methods andmethodology, and Section 3
provides the results and analysis. Finally, in Section 4, the
conclusion of the presented work is provided.

2. Methods and Methodology

In this section, all methods and materials, the dataset fea-
ture’s description, block diagram, flow diagram, and eval-
uation matrices of the system are discussed.

2.1. Dataset. (e main goal of the system is to predict De-
mentia in different patients based on various attributes. (e
longitudinal Magnetic Resonance Imaging (MRI) data from
OASIS [39] has been used for the development of the system.
(eOASIS dataset has a dimension of 373 rows x 15 columns,
which is relatively small in the field of machine learning.
Table 1 shows eight different attributes: gender (M/F),
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person’s age (age), years of education (EDUC), socioeco-
nomic status (SSE), mini-mental state examination (MMSE),
estimated total intracranial volume (eTIV), normalized whole
brain volume (nWBV), and Atlas scaling factor (ASF) have
been considered for the final outcome. For range values, a
standardization method has been applied for scaling the
dataset. A standard score is the number of standard deviations
by which the value of a raw score is above or below the mean
value of what is being observed ormeasured.(e formula is as
follows: z� (x− μ)/σ. Here, µ is the mean, and σ is the
standard deviation.

Table 2 shows the eight features of the dataset which have
been considered for the proposed model to predict Alz-
heimer’s disease and the description of the features. Most of
the features are numerical. Group, hand, and M/F are
categorical. All of these terms describe the patient’s con-
dition and aid in determining the stage of Dementia using
the ML system.

2.2. BlockDiagram. Figure 2 shows the block diagram of the
machine learning system. (e OASIS dataset has been used
in the system, which contains all the attributes and values.
First, the dataset has been analyzed by us for any categorical
values, and there are several categorical values present in the
dataset. Among them, gender and group attribute columns
are converted into numeric values 0 and 1. (e correlation
between attributes has been checked by us using the “cor-
relation matrix” function based on group attributes and
plotted to understand them better. Gender, SES, and ASF

showed a closer correlation with the group attribute. After
that, the dataset is checked for any null or missing values.
SES and MMSE columns have 19 and 2 missing values,
respectively. As mentioned earlier, the SES feature has a
close correlation with the target attribute. For that reason,
the missing values of those rows were not deleted. Instead,
the median value is used to fill in those missing values for
both features.

Next, the features have been assigned to make the
prediction, and the target value has been set so that the
model can predict. (en, the dataset was split for training-
validation and testing. Random sampling has been used for
the split, but this creates an imbalance between training and
testing split. So, stratified sampling has been applied with a
training-validation size of 80% and a testing size of 20%.
After that, standardization has been applied to do the scaling
of the features. Furthermore, some histograms and scat-
terplot visualization have been done on the training split to
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Figure 1: Number of people with Dementia in millions [27].

Table 1: OASIS dataset of proposed machine learning system.

Subject ID MRI ID Group Visit MR delay M/
F Hand Age EDUC SES MMSE CDR eTIV nWBV ASF

OSA2_0001 OSA2_0001_MR1 Nondemented 1 0 M R 87 14 2.0 27.0 0.0 1987 0.696 0.883
OSA2_0001 OSA2_0001_MR2 Nondemented 2 457 M R 88 14 2.0 30.0 0.0 2004 0.681 0.876
OSA2_0002 OSA2_0001_MR1 Demented 1 0 M R 75 12 NaN 23.0 0.5 1678 0.736 1.046
OSA2_0002 OSA2_0001_MR2 Demented 2 560 M R 76 12 NaN 28.0 0.5 1738 0.713 1.010
OSA2_0002 OSA2_0001_MR Demented 3 1895 M R 80 12 NaN 22.0 0.5 1698 0.701 1.034

Table 2: Dataset description of proposed machine learning system.

Features Description
M/F Gender
Age Person’s age
EDUC Years of education
SES Socioeconomic status
MMSE Mini-mental state examination
eTIV Estimated total intracranial volume
nWBV Normalized whole brain volume
ASF Atlas scaling factor
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understand the scenario better. (en the training of this
system began. All of the models have been implemented
using the scikit-learn library.

2.3. Flowchart Diagram

2.3.1. SVM Flowchart. Figure 3 shows the flow diagram of
the whole SVMmodel. First, the support vector machine has
been implemented without any fine-tuning. Without fine-
tuning, SVM takes regularization parameter C as 1, and, for
the kernel, it uses the radial basis function (RBF). After that,
the grid search has been applied to fine-tune the model.
(en, different regularization parameters have been taken
for the parameter combinations, such as values C, gamma
values, and four types of kernels: the RBF, linear, poly, and
sigmoid kernel. Also, 5-fold cross-validation has been ap-
plied to evaluate all possible combinations. (en, the model
was trained again, and there was a significant improvement.
(e confusion matrix has been calculated based on this
version.

2.3.2. Logistic Regression Flowchart. Figure 4 shows the flow
diagram of the whole logistic regression model. (e same
approach has been applied with the logistic regression
model, just like the SVM. It determines the independent and
dependent variables. It uses the sigmoid function for pre-
dicting probabilities and making decision boundaries. (e
only difference is that the l2 penalty and different regula-
rization parameter values C have been used for the fine-
tuning.

2.3.3. Decision Tree Flowchart. Figure 5 shows the flow
diagram of the whole decision tree model. In the decision
tree model, the same approach is followed. (e model has
been trained without fine-tuning and then used the grid
search to find the best parameter values to fine-tune the
model. Here, the Gini criterion has been considered a fixed

value to evaluate the tree’s quality and choose a range of 1 to
10 to evaluate the depth of the tree. It decides every node and
goes more in depth. After analyzing all the nodes’ choices, it
predicts the results for the best solution.

2.3.4. Random Forest Flowchart. Figure 6 shows the flow
diagram of the whole random forest model. It is a collection
of some decision trees. (e process is the same as the de-
cision tree. It preprocesses the data and selects some random
samples from the dataset for training. For every selected
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sample, it forms a decision tree. First, the random forest
model has been trained without fine-tuning. (en, just like
the SVM, grid search has been used with 5-fold cross-val-
idation and different parameter combinations such as the
number of trees in the random forest (n_estimators), what
function to use for the number of features to consider at
every split, levels in the tree, andmethod of selecting samples
for training each tree. To measure the quality of the tree, the
Gini criterion has been used. (e entropy criterion has also
been tried in the model, but Gini criterion provides better
accuracy.

2.4. EvaluationMatrices. Figure 7 shows the diagram of the
confusion matrix. (e confusion matrix is a performance
evaluator for the classification models of machine learning.
To evaluate the performance of all the developed models, the
confusion matrix has been used. (e confusion matrix
represents howmany times our models predict correctly and
how many times they predict incorrectly. It categorized the
correctly predicted values as true positives and true negatives

and also categorized the wrongly predicted values as false
positives and false negatives. After organizing all the pre-
dicted values in the matrix, the model’s performance has
been measured through accuracy, precision-recall trade-off,
and AUC.

3. Results and Analysis

(emodels’ functions, model predictions, analysis, and final
results are discussed in this section.

3.1. Data Visualization

3.1.1. Histogram. Figure 8 shows the histogram of the
training and validation set. Histogram portrays the ratios of
the dataset. From the M/F plot, it has been observed that the
male-female ratio in the dataset is 60% to 40%. All patients’
age in the dataset is 60+ years. (e majority of SES is 2, and
MMSE is 30. Most of the patients’ education years are 12.5.
Also, the eTIV, nWBV, and ASF are relatively high.
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3.1.2. Correlation Matrix. Figure 9 shows the correlation
matrix of the features in the dataset. (e correlation matrix
indicates how features are interrelated with each other. (e
group is the main target feature for detecting Dementia. If
the value of the group is greater than 0.5, the patients have
Dementia. From the correlation matrix, it has been observed
that the higher the value of ASF and SES, the more the
chances of getting Dementia. It is also observed that males
have more chance of getting Dementia than females.

3.2. Model

3.2.1. SVM Model. Figure 10 shows the SVM model’s
prediction before fine-tuning. (e predicted result is shown
in the confusion matrix, and the model’s calculated per-
formance has also been demonstrated. (e number of
correct predictions is 56, and the number of wrong pre-
dictions is 19. It has 85% training accuracy and 74% testing
accuracy. It also possesses 59% test recall and 74% test AUC.

3.2.2. SVM Model after Fine-Tuning. Figure 11 shows the
SVMmodel’s prediction after fine-tuning. After fine-tuning,
the obtained result has improved quite significantly. (e

SVM model gives 69 correct predictions and only 6 wrong
predictions with 92% accuracy. For classification problems,
SVM always provides the best accuracy among other models.
It gives the best true negative results in the system. It also
possesses 91% of both test recall and test AUC. No over-
fitting or underfitting issues have been observed from the
model.

3.2.3. Logistic Regression Model. Figure 12 shows the logistic
regression model’s prediction before fine-tuning. (e con-
fusion matrix shows the actual predicted values using this
model. (e model gives 56 correct predictions and 19 wrong
predictions with 74.7% accuracy. It has given the same
accuracy as before fine-tuning by the SVM model. It also
holds 70% test recall and 74% test AUC.

3.2.4. Logistic Regression Model after Fine-Tuning.
Figure 13 shows the logistic regression model’s prediction
after fine-tuning. After fine-tuning, the logistic regression
model remained the same. (e model’s results have not
changed. It gives the same correct and wrong predictions as
before with 74.7% accuracy. No overfitting issue has been
detected in the model.
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3.2.5. Decision Tree Model. Figure 14 shows the decision tree
model’s prediction before fine-tuning. (e decision tree
model gives 56 correct predictions and 19 wrong predic-
tions, the same as the logistic regression model. It offers
100% training accuracy and 72% testing accuracy. It also
provides 67% test recall and 71% test AUC.

3.2.6. Decision Tree Model after Fine-Tuning. Figure 15
shows the decision tree model’s prediction after fine-tun-
ing. After fine-tuning, the decision tree model has improved

quite a lot. It gives 60 correct predictions and 15 wrong
predictions with 80% accuracy. It also gives the best true
positive results in the system. (e least overfitting issue has
been experienced in the model.

3.2.7. Random Forest Model. Figure 16 shows the random
forestmodel’s prediction before fine-tuning.(e random forest
model gives 61 correct predictions and 14 wrong predictions. It
offers 100% accuracy in training and 81% accuracy in test
validation. It also gives 70% recall and 81% AUC on validation.
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3.2.8. Random Forest Model after Fine-Tuning. Figure 17
shows the random forest model’s prediction after fine-
tuning. After fine-tuning, the accuracy of the random forest
model decreases. It gives 60 correct predictions and 15
wrong predictions with 80% accuracy. Actually, it has quite
similar result to the previous one. Too many overfitting
issues have been found in the model.

3.3. Model Comparison

3.3.1. ROC and AUC. Figure 18 shows the plotting of
receiver operating characteristic (ROC) and comparison

of AUC. Since this is a classification problem, the eval-
uation metrics used in this system were as follows: ac-
curacy, recall, area under the curve (AUC), and confusion
matrix. After compiling the results from all the models, it
is evident that support vector machine (SVM), more
specifically support vector classifier, gave the best overall
result in all metrics. However, the decision tree classifier
gave the best true positive result. For fine-tuning, grid
search has been used in the models. So, the results ob-
tained are the best possible result for the particular
dataset. Some overfitting has been noticed in decision tree
and random forest models.
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3.3.2. Comparison Table. Table 3 shows the comparison
table of the models. (e table clearly indicates that SVM is
the best model among the other models in the system. It has
better accuracy, recall, area under the curve, and F1 score.

4. Conclusion

(e main aim of the system is to predict Alzheimer’s
disease. For predicting Alzheimer’s disease or Dementia in
adult patients, the “MRI and Alzheimer’s” dataset has been
used, which has been provided by the Open Access Series of
Imaging Studies (OASIS) project. (e dataset has been
visualized and filled in the missing values. Data has been
preprocessed by removing some unnecessary features. (e
values were standardized to make sure that they easily fit in
the ML models. (en the dataset has been used to train
SVM, logistic regression, decision tree, and random forest
models. For evaluation metrics, accuracy, recall, AUC, and
confusion matrix have been used. To improve the system
result, the grid search method has been used to fine-tune all
developed models. For this particular dataset, the system
got the best result using SVM. A more complex model like
the random forest classifier suffered from an overfitting
issue. For deployment, the SVM model has been used for
the best results among all the models. In the future, the

system models could be improved by using a larger dataset
and more ML models such as AdaBoost, KNN, Majority
Voting, and Bagging. (is will increase reliability and
enhance the performance of the system.(eML system can
help the general public get an idea about the possibility of
Dementia in adult patients by simply inputting MRI data.
Hopefully, it will help patients to get early treatment for
Dementia and improve their life.
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Figure 18: Plotting of ROC and comparison of AUC.

Table 3: Comparison table of models.

Model Accuracy (%) Recall (%) Precision (%) AUC (%) F1 score
SVM 92.0 91.9 91.9 91.9 91.9%
Logistic regression 74.7 70.3 76.5 74.6 73%.3
Decision tree 80.0 59.4 100 79.7 74.5%
Random forest 81.3 70.3 84.4 81.2 76.7%
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