
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Journal of Clinical Neuroscience 91 (2021) 283–287
Contents lists available at ScienceDirect

Journal of Clinical Neuroscience

journal homepage: www.elsevier .com/ locate/ jocn
Review article
Investigating the potential mechanisms of depression induced-by
COVID-19 infection in patients
https://doi.org/10.1016/j.jocn.2021.07.023
0967-5868/� 2021 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors.
E-mail addresses: Ali_mohamadkhany@yahoo.com (A. Mohammadkhanizadeh),

farnazinikbakht@yahoo.com (F. Nikbakht).
1 ORCID ID: 0000-0002-1816-1932.
Ali Mohammadkhanizadeh 1,⇑, Farnaz Nikbakht ⇑
Cellular and Molecular Research Center and Department of Physiology, School of Medicine Iran University of Medical Sciences, Tehran, Iran

a r t i c l e i n f o
Article history:
Received 29 January 2021
Accepted 16 July 2021

Keywords:
COVID-19
Depression
Stress
a b s t r a c t

The new coronavirus (COVID-19) has emerged now in the world as a pandemic. The SARS-CoV-2 infection
causes variant common symptoms, such as dry cough, tiredness, dyspnea, fever, myalgia, chills, head-
ache, chest pain, and conjunctivitis. Different organs may be affected by COVID-19, such as the respira-
tory system, gastrointestinal tract, kidneys, and CNS. However, the information about the COVID-19
infection in the CNS is insufficient. We do know that the virus can enter the central nervous system
(CNS) via different routes, causing symptoms such as dizziness, headache, seizures, loss of consciousness,
and depression. Depression is the most common disorder among all neurological symptoms following
COVID-19 infection, although the mechanism of COVID-19-induced depression is not yet clear.
The aim of the present study is to investigate the probable mechanisms of COVID-19-induced depres-

sion.
The reasons for depression in infected patients may be due to social and pathological factors including

social quarantine, economic problems, stress, changes in the HPA axis, inflammation due to the entry of
proinflammatory cytokines into the CNS, production of inflammatory cytokines by microglia, mitochon-
drial disorders, damage to the hippocampus, and malnutrition.
By evaluating different factors involved in COVID-19-induced depression, we have concluded that

depression can be minimized by controlling stress, preventing the cytokine storm with appropriate
anti-inflammatory drugs, and proper nutrition.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Coronaviruses are a large family of viruses, including SARS,
MERS, and COVID. Seven types of coronavirus that can transmit
to humans have been identified. The latest (SARS-CoV-2) started
in Wuhan, China in December 2019, and spread worldwide very
rapidly. Although most COVID-19 patients initially have mild
symptoms similar to the common cold, more severe symptoms
appear a few days after infection [1–3]. These symptoms include
dry cough, tiredness, dyspnea, fever, chills, headache, chest pain,
conjunctivitis, dizziness, sore throat, myalgia, and loss of sense of
smell [4,5]. The SARS-CoV-2 infection can be associated with differ-
ent consequences in the CNS [6]. Nervous manifestations include
seizures, stroke, Guillain-Barre syndrome, memory impairment,
PTSD, delirium, insomnia, sleep disorder, anxiety, and depression
[7,8].
Because more COVID-19 infected patients have flu-like symp-
toms, more attention has been paid to the respiratory complica-
tions, and the adverse consequences in the central nervous
system such as seizure and depression have been mostly neglected
[9]. The peripheral neural pathways are the most important
entrance routes for the virus to the CNS [10,11]. The unique anat-
omy of the olfactory nerves converts this pathway into a channel
between the nasal epithelium and the CNS [12].

It has been reported that some infected patients show non-
specific neurological symptoms such as delirium, headache, and
loss of consciousness without any signs of respiratory failure
[13]. The entry of the virus into the CNS is followed by inflamma-
tion. In some conditions, diseases such as MS, seizures, and depres-
sion can develop in these patients [11,13,14].

Major Depressive Disorder (MDD) is a common, multifactorial
heterogeneous, and chronic complex that affects approximately
350 million people worldwide [14]. MDD causes emotional, behav-
ioral, and physical problems. Common symptoms of depression
include boredom, inability to enjoy, feelings of hopelessness, social
isolation, and worthlessness. Problems in concentration, inability
to make decisions, sleep disorders (insomnia or excessive sleep),
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anorexia, loss of libido, and various physical aches are more symp-
toms of major depression [15–17]. In patients with COVID-19,
most depression symptoms can be clearly seen during the illness
and after a partial recovery [18,19].

Anxiety and depression induced by COVID-19 infection can
worsen the prognosis of the disease and have a negative effect
on the immune system [20].

Previous studies have shown the prevalence of depression in
COVID-19 infected patients is 45%, anxiety 47%, and sleeping dis-
turbances 34%. No significant difference was detected between
genders [21].

The most important reasons for developing depression in
COVID-19 infected patients can be divided into social and patho-
logical factors.

1.1. Psychological mechanisms involved in COVID-19 induced
depression

1.1.1. Quarantine
The policy of quarantine leads to loneliness and social isolation,

and these two are causes of stress, anxiety, and other psychological
complications [22–24]. In experimental animal models, social iso-
lation stress (SIS) alters activity, social behavior, neurochemical
function, and the neuroendocrine system. This may cause physio-
logical and anatomical changes in animals. Animals with SIS have
been shown to exhibit symptoms of psychiatric disorders such as
anxiety, depression, and memory loss. Social isolation stress also
activates the hypothalamic–pituitaryadrenal (HPA) axis, which
ultimately releases cortisol and catecholamines. In general, SIS is
accepted as an experimental method to induce depression in ani-
mals [25].

Considering the potential negative impact of quarantine on
depression, it is a very important factor in maintaining public
health. Receiving support from family, friends, and medical staff
can be a major palliative factor that helps patients to deal with
stress and depression induced by quarantine [26,27].

1.1.2. Stress
Studies have shown that stress that occurs during a pandemic

may play a major role in the development of depression in
Covid-19 patients. Stress may be due to psychosocial factors such
as the fear of contact possibility with infected people, quarantine,
lack of access to tests and medical care, receiving conflicting mes-
sages and even constant media coverage of epidemic reports or
instructions about public health practices, increased workload,
economic problems, and lack of available resources (e.g., masks
and personal protective equipment) [27,28].

Elevated blood cortisol concentrations and abnormalities in the
Hypothalamus-hypophysis axis (HPA axis) following virus infec-
tion are responsible for depression following SARS-CoV-2 infection.
Although high cortisol levels may have short-term beneficial
effects, enabling the brain to overcome stress, chronically elevated
cortisol levels can affect voltage-gated ion channels and increase
calcium uptake. Chronic stress is the main factor involved in the
development of depression caused by COVID-19. Reducing stress
can prevent or reduce depressive symptoms [29–31].

1.2. Central mechanisms involved in COVID-19 induced depression

1.2.1. COVID-19, inflammation and depression
The entry of COVID-19 into the CNS causes uncontrolled activa-

tion of microglia, which leads to the release of inflammatory
cytokines (TNF-a, IL-6, IL-1B), nitric oxide, prostaglandin E2, and
free radicals in the brain. In the case of a severe immune response
(cytokine storm), destructive damage in the blood–brain barrier
occurs, leading more inflammatory factors to enter the CNS (31,
284
32) and release even more cytokines from the microglia into the
CNS [32–37].

Among pro-inflammatory cytokines, IL-6 (an important mem-
ber of the cytokine storm) increases during SARS-CoV-2 infection
and plays a significant role in the pathogenesis of depression in
COVID-19 patients. The concentrations of IL-6 is probably directly
related to the severity of depression in infected patients [38,39].

Inflammation induced by COVID-19 can also increase the pro-
duction of free radicals and decrease the total level of glutathione,
which has been previously detected in patients with major depres-
sive disorder (MDD) (42). Pro-inflammatory cytokines also play an
essential role in regulating the response to stress and neurogenesis
in the CNS as they destroy the neurotrophic support, alter gluta-
mate release, and increase oxidative stress. Finally, these cytokines
cause cytotoxicity, neuronal loss, decreased neurogenesis, and
neurological complications in depression [41,42].

1.2.2. COVID-19, mitochondria disorder and depression
The mitochondria are damaged by COVID-19 either directly by

the hijack of the organelle for transcription of the virus genome or
indirectly by increasing pro-inflammatory cytokines and ROS pro-
duction [40,41]. In the direct way, COVID-19 either induced the
localization of its RNA transcripts or RNA itself in the host cell’s
mitochondria, manipulating mitochondrial function [41].

In patients with COVID-19 inflammatory cytokines, such as
TNF-a and IL-6, inhibit mitochondrial oxidative phosphorylation
and ATP production and increase ROS production, whichmay cause
impaired mitochondrial function and dynamics eventually leading
to apoptosis and cell death .[40]

Mitochondria are very sensitive to oxidative stress. Increased
inflammation in the brain as a result of COVID-19 leads to
increased oxidative stress and damage to mitochondria [42].

It is well established that mitochondria have a pivotal role in
ATP production, calcium hemostasis, the balance of oxidative fac-
tors, regulation of apoptosis, and neurotransmitter release in the
axonal terminal. Mitochondrial dysfunction contributes to the
pathogenesis of many diseases, including depression [43–48]. So,
the dysfunction of mitochondria caused by COVID-19 may be a
mechanism of COVID-19 induced depression.

Inflammatory cytokine exerts part of their neurodegenerative
effects by disrupting mitochondrial axonal transport [49]. Kinesis
and dynein are the motor proteins required for mitochondrial
transport and are affected by the Coronavirus [50].

1.2.3. COVID-19, hippocampus disorder and depression
While the human coronavirus (HCoV) infection appears to

spread rapidly throughout the CNS, it is more concentrated in the
temporal lobe [51]. Several studies point out the vulnerability of
the hippocampus to HCoV accompanied by a neuronal reduction
in CA1 and CA3 areas and a detrimental effect on learning and spa-
tial memory [52]. The specific vulnerability of the hippocampus to
other respiratory virus infections, like the influenza virus, has been
previously observed in mice [53]. In this study, the influenza virus
alters hippocampal morphology and function and reduces hip-
pocampal spatial memory and LTP. Even if the COVID-19 does
not enter the CNS, severe hypoxia induced by respiratory system
involvement can be enough to damage the hippocampus [54].

Depression induced by COVID-19 may exacerbate the hip-
pocampus damage in COVID-19. Indeed, the hippocampus is the
most interesting structure in the brain for studies related to
depression. There are several reasons for this interest: 1. The hip-
pocampus plays an essential role in memory and learning perfor-
mance; so, its dysfunction may be the cause of inappropriate
emotional responses (64). 2. The hippocampus is rich in corticos-
teroid receptors and has a close anatomical and physiological rela-
tionship with the hypothalamus stress axis through the axons of
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the fornix, which sends regulatory (inhibitory) feedback to the HPA
axis.

3. The hippocampus is one of the few areas in the brain with
continuous neurogenesis in adulthood; hence, it has a high capac-
ity to activate the process of neuroplasticity [55–61].

Studies have shown that depressive disorders are associated
with a decrease in the number of neurons and glial cells as well
as a decrease in the volume of some areas of the CNS, especially
in the hippocampus [62,63]. A patient with a history of depression
shows a significant reduction in hippocampal volume. The fre-
quency and duration of depression periods are also associated with
a reduction in the volume of the hippocampus [64].

Because MDD treated patients have a larger hippocampal vol-
ume than untreated, the clinical treatment appears to be associ-
ated with a return to normal structural changes [65,66].
Impairment of hippocampal synaptic plasticity and neurogenesis,
as well as neurodegeneration and reduction of the volume of the
hippocampus due to factors such as inflammation or neu-
rotrophins reduction, contributes to the progression of the depres-
sion symptoms [67]. BDNF plays a key role in the growth,
maturation, and survival of neurons and synaptic plasticity in the
hippocampus. Stress reduces hippocampal BDNF and impairs neu-
ronal survival [68]. The damaged hippocampus cannot adequately
regulate (inhibit) the HPA axis allowing high cortisol levels to per-
sist, which is likely to occur in COVID-19 infection disease [69,70].
Decreased hippocampal neurogenesis is another possible mecha-
nism for the detrimental effects of proinflammatory cytokines.
Neurogenesis has been implicated as a key contributing mecha-
nism in the pathophysiology and treatment of depression
[61,71,72].

1.3. COVID-19, malnutrition and depression

Clinical observations have shown that many patients with
COVID-19 suffer from malnutrition. Some symptoms of COVID-
19, such as dyspnea, anosmia, anorexia, dysphagia, nausea, vomit-
ing, and diarrhea, are likely to lead to weight loss and malnutrition.
SARS-CoV-2 can invade the epithelium of the oral mucosa and
cause painful oral lesions and canker sores that significantly reduce
nutrition in COVID-19 patients. Moreover, SARS-CoV-2 increases
anxiety in patients, which reduces the patient’s appetite and exac-
erbates malnutrition [73–75].

COVID-19 induced-malnutrition affects peripheral and central
serotonergic pathways through tryptophan (TRP) deficiency
(essential amino acid and serotonin precursor). Disruption of the
serotonergic system (5-HT) plays an important role in a variety
of psychiatric disorders such as depression and anxiety. Reduced
TRP intake leads to decreased serotonin synthesis in the brain.
Consumption of essential amino acids seems to increase the TRP
/ LNAA ratio. This ratio predicts the transfer of tryptophan through
the blood–brain barrier to the CSF. Tryptophan is then used to syn-
thesize brain serotonin, which reduces depressive symptoms. The
consequences of malnutrition in the serotonergic pathways and
depression have been proven [76,77].

1.4. COVID-19 vitamin D deficiency and depression

Malnutrition reduces the amount of essential vitamins in the
body, which causes many neurological side effects such as depres-
sion. Some reports indicate that the level of vitamin D3, Zinc, and
magnesium in blood serum are significantly related to depression.
Vitamin D is one of the most important vitamins for normal CNS
function [78,79]. The active form of vitamin D plays a protective
role in the brain by decreasing the calcium concentration in neu-
rons [80], and the vitamin D receptors (VDR) are detected in many
parts of the brain. Vitamin D receptors are present in the hip-
285
pocampus, and vitamin D deficiency is associated with a decrease
in the hippocampus volume. Vitamin D also facilitates the produc-
tion of serotonin in the brain [81–84].

Vitamin D can protect the neural progenitor of the hippocam-
pus against the negative effects of glucocorticoids, which are high
in chronic depression. Moreover, Vitamin D shows its neuroprotec-
tive effects in the hippocampus, mainly through its antioxidant and
anti-inflammatory properties. Vitamin D3 also displays neuropro-
tection against calcium-induced neurotoxicity in the hippocampus.
However, the exact effect of Vitamin D3 on BDNF is not fully
understood [84–87]. An association between depression and vita-
min D deficiency has been proven in many studies [81,82,88].

People with vitamin D deficiency are more prone to depression
[80]. A meta-analysis study confirmed this relationship [89]. Mag-
nesium is important for psychomotor function in major depression
[90], and it is effective in the treatment of depression via glutamate
[91], and some neurotransmitter systems [92]. Additionally, a neg-
ative relationship has been detected between zinc and depression
[93].

There is a significant reverse relationship between the mean
level of vitamin D and COVID-19 infections in European countries.
Studies have shown a correlation between vitamin D levels and
COVID-19 severity and mortality. The role of vitamin D in reducing
acute viral respiratory tract infections and pneumonia through
direct inhibition of virus replication or anti-inflammatory property
has been established. Vitamin D supplementation has been shown
to be safe and effective against acute respiratory infections. There-
fore, people with vitamin D deficiency during the pandemic should
consume vitamin D supplements to maintain an optimal blood
concentration [75,94–96].

Vitamin D can be also useful in the correction of depression
induced by COVID-19.
2. Conclusion

COVID-19 has emerged as a pandemic that may have long-term
effects on human health. SARS-Cov-2 causes damage to various
systems, including the respiratory, gastrointestinal, kidneys, and
CNS. Among other common neurological symptoms, COVID-19
patients have also experienced depression. Depression and stress
inducted by COVID-19 reduce the immune system and aggravate
the infection. SARS-Cov-2 spreads directly and indirectly into the
CNS, causes microglia over-activation, and produces inflammatory
cytokines. A cytokine storm damages the BBB and exacerbates
inflammation. This will ultimately cause apoptosis in various areas
of the nervous system, especially the hippocampus. The severity of
depression depends on the level of pro-inflammatory cytokines,
particularly IL-6. Elevated cortisol levels, changes in the HPA axis,
damage to the mitochondria, vitamin D3 deficiency, and malnutri-
tion are some factors involved in the development of depression
after infection with SARS-Cov-2. Understanding the mechanisms
and factors involved in the development of depression in SARS-
Cov-2 is an important factor in finding basic and appropriate ther-
apeutic strategies for the treatment of infected patients.
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