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Comparison of two simulators 
for individual based models in HIV 
epidemiology in a population 
with HSV 2 in Yaoundé (Cameroon)
Diana M. Hendrickx1,13*, João Dinis Sousa2,3,13, Pieter J. K. Libin1,2,4, Wim Delva1,2,5,6,7,8, 
Jori Liesenborgs9, Niel Hens1,10, Viktor Müller11 & Anne‑Mieke Vandamme2,3,12

Model comparisons have been widely used to guide intervention strategies to control infectious 
diseases. Agreement between different models is crucial for providing robust evidence for policy-
makers because differences in model properties can influence their predictions. In this study, we 
compared models implemented by two individual-based model simulators for HIV epidemiology in 
a heterosexual population with Herpes simplex virus type-2 (HSV-2). For each model simulator, we 
constructed four models, starting from a simplified basic model and stepwise including more model 
complexity. For the resulting eight models, the predictions of the impact of behavioural interventions 
on the HIV epidemic in Yaoundé-Cameroon were compared. The results show that differences in 
model assumptions and model complexity can influence the size of the predicted impact of the 
intervention, as well as the predicted qualitative behaviour of the HIV epidemic after the intervention. 
These differences in predictions of an intervention were also observed for two models that agreed in 
their predictions of the HIV epidemic in the absence of that intervention. Without additional data, it 
is impossible to determine which of these two models is the most reliable. These findings highlight 
the importance of making more data available for the calibration and validation of epidemiological 
models.

Mathematical modelling has been widely applied to better understand the transmission, treatment and prevention 
of infectious diseases. The role of mathematical models in understanding the dynamics of the human immu-
nodeficiency virus (HIV) epidemic has been recently reviewed by Geffen and Welte1. They present examples of 
HIV models that were used for estimating the size of the epidemic in specific subpopulations such as the Black 
population in South Africa and for estimating the impact of interventions such as the use of antiretrovirals and 
condoms to reduce HIV and AIDS.

When considering mathematical models, two commonly used types of implementation can be distinguished: 
compartmental and individual-based models (IBMs). While compartmental models simulate population counts, 
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IBMs (also called agent-based models or micro-simulation models) keep track of the history of each individual 
in the population separately.

Recent applications of compartmental HIV models include testing the effect of different assumptions for HIV 
dynamics on the predicted impact of antiretroviral therapy (ART) in men-having-sex-with-men (MSM)2, and 
the study of the influence of concurrent partnerships on HIV dynamics3. IBMs have been recently applied to 
assess the influence of pre-exposure prophylaxis (PrEP) in MSM4, to evaluate the long-term effect of early ART 
initiation5 and to understand the factors underlying the emergence of HIV in humans6.

In contrast to compartmental models, IBMs allow to model heterogeneous interactions between individuals7 
(e.g. regarding (sexual) risk behaviour, age demography and individual response to treatment). This is an advan-
tage when heterogeneity matters for the particular question/process that is studied. Because individual hetero-
geneity is inherent in transmission, prevention and treatment of HIV and other sexually transmitted infections 
(STI), IBMs are particularly suitable to estimate the most beneficial intervention for specific individuals. Fur-
thermore, IBMs allow for explicit modelling of the sexual relationships that jointly form the sexual network over 
which STI/HIV infections are transmitted8.

Model comparisons are crucial for providing robust evidence for decision-making in public health and 
policy purposes9. To assess uncertainty, it is necessary to study how differences in model properties influence 
their prediction. Eaton et al. compared ten mathematical models aimed at studying HIV prevalence, incidence 
and ART​10. However, in contrast to the models in our study, eight of these models were compartmental, and 
the majority of these models did not include the co-factor effects of other STIs. The remaining two models were 
discrete-time IBMs.

The inclusion of an STI is important in HIV modeling, as previous studies have shown that individuals 
infected with HIV have a higher risk for acquiring an STI11 and vice versa12. Furthermore, the risk for transmit-
ting HIV to another person is higher in HIV-STI co-infected people than in HIV mono-infected individuals12. In 
sub-Saharan African cities, including Yaoundé (Cameroon), HSV-2 infection has been identified as an important 
factor influencing the spread of HIV13.

This study presents and compares eight models generated with two IBM frameworks for simulating HIV 
transmission dynamics with STI co-factor effects. The purpose of the comparison was to assess how differences 
in properties between the eight models influence the prediction of the impact of behavioural interventions on the 
HIV epidemic. For this purpose, we chose the HIV epidemic in the heterosexual population in Yaoundé (Cam-
eroon) during the period 1980–2005, and calibrated all models to HIV prevalence time series from Yaoundé.

Methods
Individual‑based models.  In this study, individual-based models developed with the Simpact Cyan 1.0 
and StepSyn 1.0 modelling frameworks, were compared. We used these two HIV model simulators for compari-
son because they can both be used with the popular language R14, and both implement dynamic sexual networks 
and an STI co-factor effect. Simpact Cyan 1.0 models all stages of HIV (acute, chronic, AIDS stage, final AIDS 
stage), while StepSyn 1.0 does not distinguish between AIDS stage and final AIDS stage (see Sects. 1.3. and 1.4. 
of the Supplementary Material). Only StepSyn 1.0. models the natural history of HSV-2, including ulcerative 
recurrences. In Simpact Cyan 1.0, no distinction between HSV-2 stages is made. A short description of each 
modelling framework is given below. More details about differences between the two modelling frameworks 
and the generation of the sexual networks are provided in Table 1 and the Supplementary Material, Sect. 1. For 
each modelling framework, four models were generated, starting from a simplified basic model and incorpo-
rating additional complexity. A population of 9184 individuals was simulated, of which 5000 were males and 
4184 were females, corresponding with the adult sex ratio (M:F) in Yaoundé in 1997 (see “Data used for fitting 
Simpact Cyan 1.0 and StepSyn 1.0 models” section). Models were run without intervention and with behavioural 
interventions aimed at reducing the number of partners. Male circumcision, condom use and HIV antiretroviral 
therapy (ART) were not modeled in this study, as these interventions were not included in one or both of the 
modeling frameworks.

Simpact Cyan 1.0 modelling framework.  Simpact Cyan 1.0 (http://​www.​simpa​ct.​org/)15 is a freely available 
framework for developing IBMs to simulate HIV transmission, progression and treatment. Models developed 
with Simpact Cyan 1.0 are event-driven, which means that the models are not updated at fixed time intervals, but 
at every time an event happens, making Simpact Cyan 1.0 a continuous-time simulation modelling framework. 
Events occur as a result of stochastic event processes, described by hazard functions. The timing of an event is 
determined using the modified next reaction method (mNRM)16.

To initialize a model, a number of individuals are generated. The age of each person is drawn from an age 
distribution based on a population pyramid, and when the age is larger or equal to the sexual debut age, a person 
is marked as sexually active.

In Simpact Cyan 1.0, the user can specify which events are possible in the simulation, depending on the 
research question he or she wants to answer. The possible events are heterosexual and homosexual relation-
ship formation and dissolution, conception and birth, HIV transmission, AIDS and non-AIDS mortality, HIV 
diagnosis and treatment, HIV treatment dropout, and STI transmission events (in this study HSV-2). Further-
more, events describing the natural history of HIV are implemented in Simpact Cyan 1.0. In the present study, 
homosexual relationships and HIV treatment are not included. For each event, the form and the parameters 
of the hazard function can be modified flexibly. The HIV transmission hazard can be described in terms of an 
individual’s viral load. In the basic model in this study, this option, as well as birth and age-dependent non-AIDS 
mortality, is turned off. Simpact Cyan 1.0 is implemented in C++ with R14 and Python17 interfaces.

http://www.simpact.org/
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In Simpact Cyan 1.0, HIV transmission occurs through a HIV transmission event, which is scheduled when 
a HIV infected person forms a relationship with another individual.

StepSyn 1.0 modelling framework.  StepSyn 1.0 is an IBM modelling framework that simulates epidemics of 
STIs, including HIV. It focuses on the epidemiological synergy and interactions between HIV and other STIs. 
Time is divided into fixed one-week intervals. Formation and dissolution of sexual relationships and STI and 
HIV transmission are modelled as stochastic processes. Occurrence of HIV transmission is described by the 
transmission probability per sex act. For each STI, life history is explicitly modelled, including several stages, 
symptomatic recurrences and genital ulcers. The effects of these symptoms on the HIV transmission probability 
are explicitly modelled. The parameters for the timing and duration of the STI stages and symptoms and the co-
factor effects of genital ulcers on HIV transmission are based on a literature review. In the present study, StepSyn 
1.0 is parameterized to track only HIV and Herpes simplex virus type 2 (HSV-2). In the basic model the latter 
virus is modelled without explicit stages or symptomatic recurrences, and with the probability of transmission 
and co-factor effect on HIV both constant and not dependent on recurrences. In this study, StepSyn is ran in 
both this basic model, and in the full model in which HSV-2 stages and recurrences are modelled. Heterosexual 
relationships can include marital and short-term links and contacts between commercial sex workers (CSW) 
and clients. In the present study, CSWs are not included. Individuals vary in their tendency to form short-term 
relationships so that their number of non-marital partners within a year would follow a power-law distribution. 
The parameters of the latter were derived from behavioural data gathered in the 4 Cities Study18,19. StepSyn is 
implemented in R14. StepSyn is not yet freely available but will become so upon publication of a manuscript that 
describes the modelling framework into more detail (manuscript in preparation).

Models used in this study.  The following models were used in this study:

(1)	 Simpact Cyan 1.0 basic model (Si_Ba). This simplified model assumes no population inflow and no outflow 
by other causes than AIDS deaths. Furthermore, HIV transmission does not depend on an individual’s viral 

Table 1.   Comparison of properties of models developed with Simpact Cyan 1.0 and StepSyn 1.0. *On 100 
cores of the VSC (Xeon E5-2680v2 CPUs 2.8 GHz, 25 MB level 3 cache). Population size ~ 9000; time frame of 
the simulation = 35 years; parameters: see Table S10 (Simpact Cyan 1.0 basic model) and S14 (StepSyn 1.0 basic 
model).

Model property Simpact Cyan 1.0 StepSyn 1.0

Simulation framework Individual-based model Individual-based model

Implementation language C +  + with R and Python interfaces R

Source code freely available Yes After the publication of the manuscript describing the 
modelling framework in detail

Update of the state of the model system Event-driven: the state of the model system is updated each 
time an event happens

Fixed time steps of one week, with the creation and dissolu-
tion of sexual relationships and STI and HIV transmission

Description of stochastic processes By hazard functions By probability distribution functions called in each time 
step

Age-structured Yes No

Entering the population Birth (birth event) Sexual debut (birth-rate), immigration

Leaving the population AIDS- and non-AIDS mortality (mortality event, age-
dependent)

AIDS- and non-AIDS mortality (mortality rate), emigra-
tion

Formation and break-up of relationships within the sexual 
network

Formation and dissolution event. Timing of events sampled 
from a probability distribution resulting from carefully 
chosen hazard functions

Each time step, using an individual-specific probability of 
forming a new relationship

Individual variation in sexual behaviour
In the formation hazard, the eagerness of a person to form 
a relationship and the preferred age gap are used, to allow 
for individual variation in sexual behaviour. Both values 
are drawn from user-specified probability distributions

Number of short term relationships follows a power-law 
distribution

HIV natural history/stages Yes (acute phase, chronic phase, AIDS stage) Yes (acute phase, chronic phase, AIDS stage)

Other STIs as co-factor for HIV infection Yes (implemented as a simplified STI transmission hazard) Yes (syphilis, chancroid, gonorrhoea, chlamydia, HSV-2)

Natural history/stages—other STIs No, stages are not explicitly modelled Yes, with genital ulcers and discharge explicitly modelled

Pregnancy Yes, as the period between a conception event and a birth 
event No

Diagnosis/treatment of HIV Yes No

HIV seeding
A fraction to specify the probability of each person in the 
group to be a seeder or an amount to specify the number 
of seeders. Fraction or amount is taken from the number of 
people in the population

Either a random binomial for HIV seeding (seeding varies 
between simulations) or a fixed fraction to specify the frac-
tion of seeders; this fraction is taken from the number of 
males and the number of females separately

Interventions Behavioural interventions, HIV treatment Behavioural interventions, circumcision, treatment of 
syphilis, chancroid, gonorrhoea, chlamydia, HSV-2

individual variation of viral load Implemented in HIV transmission hazard No

Computational time for 10,000 simulations*  ~ 35 h  ~ 5 h
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load. HSV-2 is implemented as a generic STI co-factor, without modelling the natural history. This means 
that only the impact of HSV-2 on HIV acquisition and transmission, and vice versa, are implemented.

(2)	 Simpact Cyan 1.0 model with population inflow and outflow (Si_IO). Birth is implemented as an event 
related to relationship formation, followed by a conception event, using the default settings of Simpact Cyan 
1.0. Non-AIDS mortality is age-dependent and is derived from the 1980 population pyramid of Yaoundé20. 
Other settings are the same as in the Si_Ba model.

(3)	 Simpact Cyan 1.0 model implementing viral load (Si_VL). HIV transmission depends on an individual’s 
viral load. Other settings are the same as in the Si_Ba model.

(4)	 Simpact Cyan 1.0 model implementing population inflow, outflow and viral load (Si_IO_VL). Birth and 
non-AIDS mortality are implemented in the same way as for the Si_IO model. HIV transmission depends 
on an individual’s viral load.

(5)	 StepSyn 1.0 basic model (St_Ba). This simplified model assumes no population inflow (birth, immigration) 
and no outflow by other causes than AIDS deaths. Furthermore, HSV-2 is modelled without explicit stages 
or recurrences, and with the probability of transmission and co-factor effect on HIV both constant and not 
dependent on recurrences.

(6)	 StepSyn 1.0 model with population inflow and outflow (St_IO). This model implements birth, non-AIDS 
mortality, immigration and emigration. All of these variables are expressed as a rate. Other settings are the 
same as in the St_Ba model.

(7)	 StepSyn 1.0 model with the full set of HSV-2 co-factor assumptions (St_RG). HSV-2 life history is explicitly 
modelled, including several stages, recurrences and genital ulcers. The effects of these symptoms on the 
HIV transmission probability are explicitly modelled. Other settings are the same as in the St_Ba model.

(8)	 StepSyn 1.0 model with population inflow, outflow and the full set of HSV-2 co-factor assumptions (St_
IO_RG). This model implements birth, immigration, non-AIDS mortality and emigration in the same way 
as the Si_IO model. For HSV-2, the same settings as in the St_RG model are used.

Table 2 summarizes the properties of the 8 models mentioned above.

Data used for fitting Simpact Cyan 1.0 and StepSyn 1.0 models.  For the comparison of the two 
models, demographic data for 1997, and HIV prevalence data for 1989–1998 related to the African city of 
Yaoundé (Cameroon), are used. The adult male population (15–59 years) for that year was estimated at 387,398, 
in the 4 Cities Study21. Based on the surveys made by the same study (age range 15–49 years), 34.5% of men and 
44.2% of women were married; and 7.2% of married men were polygamous19. Assuming most of the latter had 2 
wives, we estimate the number of women as 387,398 × 0.345 × (1 + 0.072)/0.442 = 324,152, implying an adult sex 
ratio (M:F) of 1000:836.74.

Since one of our aims here is to compare HIV prevalence curves resulting from fitting HIV transmission 
parameters of our two models to data, we gathered HIV-1 prevalence data for Yaoundé for the period 1989–1998. 
The only prevalence data available were of pregnant women, for whom prevalence increased from 0.7% in 1989 
to 5.5% in 1998 (US Census Bureau, 2001, HIV/AIDS Profile, Cameroon, HIV/AIDS Surveillance Database22) 
as shown in Table 3 (2nd column).

Because StepSyn 1.0 does not implement pregnant women as a separate category of the population, and we 
wanted to compare model simulations for males and females separately, the prevalences for pregnant women were 
converted to prevalences for males and females as follows. In 1997, during the 4 Cities Study, HIV-1 prevalence 
was 4.1% (95% confidence interval: CI 3.0–5.7%; sample size: n = 896) in men (age 15–49 years) and 7.8% (CI 
6.2–9.6%; n = 1017) in women (age 15–49 years)23. The prevalence for pregnant women in 1997 was estimated by 
fitting a smoothing spline through the data from Table 3 (2nd column), using the smooth.spline function of the 
stats package in R, and evaluating the spline at the time point corresponding with 1997 (see Fig. S1). We obtained 
a prevalence of 4.778% for pregnant women in 1997 and calculated the prevalence ratio of men/pregnant women 
(resp. women/pregnant women) by dividing 4.1 (resp. 7.8) by 4.778. The prevalence ratios (0.858 for men and 
1.632 for women) were multiplied with the data from Table 3 (2nd column) to obtain HIV prevalences for men 
and women separately for all years between 1989 and 1998 (see Table 3, 3rd and 4th column).

Table 2.   Overview of the properties of the 8 models used in this study. Checkmarks indicate the features that 
are included in the models.

Model abbreviation
Population inflow and 
outflow Birth Non-AIDS mortality Immigration Emigration Viral load HSV-2 co-factor effect

HSV-2 stages/
recurrences

Si_Ba ✓

Si_IO ✓ ✓ ✓ ✓

Si_VL ✓ ✓

Si_IO_VL ✓ ✓ ✓ ✓ ✓

St_Ba ✓

St_IO ✓ ✓ ✓ ✓ ✓ ✓

St_RG ✓ ✓

St_IO_RG ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Calibration of the models.  For the eight models, HIV transmission parameters were fitted to HIV preva-
lence data of Yaoundé from 1989 to 1998, described in the previous section. The parameter estimation procedure 
is described in Sect. 3 of the Supplementary Material.

Furthermore, we adapted the parameters for STI (HSV-2) transmission. In major epidemiological reviews 
of HSV-224–26 the only data about Yaoundé that is mentioned is the data collected by Buvé et al.27 in the 4 Cit-
ies Study, in which the HSV-2 seroprevalence was 50% in females. Thus, we do not have information about the 
temporal trends of HSV-2 in Yaoundé. However, since the prevalence in Africa seems to have slightly declined 
between 2003 and 201222 we assumed that the measured prevalence in Yaoundé, in 199727, reflects an epidemic 
not far from its peak. Accordingly, we adapted the HSV-2 transmission parameters of the eight models so that 
the seroprevalence of this virus first increases and afterwards stabilizes at approximately 50% for females, cor-
responding to the HSV-2 prevalence in 1997 described by Buvé et al.27.

The estimated parameters and other key parameters for each of the eight models are described in the Sup-
plementary Material, Sect. 4.

All models could be calibrated so that they fit the HIV prevalence data between 1989 and 1998, and the 
HSV-2 prevalence first increases and afterwards stabilizes at approximately 50% for females (see Supplementary 
Material, Sect. 5).

Validation of the models against data not used for fitting.  The eight models were validated against 
the HIV prevalence in 2004, which was not used for model calibration and has been reported to be 6.0% in 
males and 10.7% in females28. For each of the eight models, we checked how well these literature values could be 
predicted. For each model, 100 simulations were performed using the fitted parameters.

Prediction of the impact of behavioural interventions.  The goal of behavioural interventions is to 
reduce behaviour that increases the risk for acquiring HIV, and can be accomplished by increasing condom use 
or reducing the number of concurrent partners through individual counseling29. To investigate the impact of 
behavioural interventions on the HIV epidemic, the distribution of the number of partners was changed in all of 
the eight models to study the impact of behavioural change with respect to promiscuity. Only a single parameter 
was changed, we refer to this parameter as “behavioural change parameter”. Changing this parameter reduces 
the number of concurrent partnerships a person can have. For Simpact Cyan 1.0, the weight for the number of 
relationships a person already has (α_(numrel,man) = α_(numrel,woman) in formula (1)) was changed from 0 
to − 0.05. For StepSyn 1.0, the proportion of male pending shorts links that are fulfilled by females (pending.
short.links.fulfilled) was changed from 1 to 0.7. More details on the behavioural change parameter for Simpact 
Cyan 1.0 and StepSyn 1.0 are provided in Sect. 6 of the Supplementary Material.

Changing the behavioural change parameter in Simpact Cyan 1.0 and StepSyn 1.0, as described above and in 
Sect. 6 of the Supplementary Material has a similar effect on the distribution of the number of partners in both 
modelling frameworks:

•	 the mean number of partners is reduced by 6%;
•	 the 95th percentile is reduced with 1;
•	 the median and 75th percentile are unchanged.

To investigate what would have happened to the epidemic if promiscuity would have been lower from day 
1 onwards, we implemented the change of the behavioural change parameter described above in 1980. Second, 
the intervention was applied in 1990 to study its impact when it would have been implemented at some point in 
time during the epidemic. The behavioural change in 1980 and 1990 is implemented in the same manner, but to 
draw attention to the distinction between a change at the start of the epidemic and an intervention during the 

Table 3.   HIV-1 prevalence data for Yaoundé’s pregnant women. Source US Census Bureau, 2001, HIV/AIDS 
Profile, Cameroon, HIV/AIDS Surveillance Database22 (confidence interval and sample size not available) 
(second column). Third and fourth column: Estimated HIV-1 prevalences for Yaoundé’s men and women, that 
were used as model calibration targets in this study.

Year HIV-1 prevalence (%) pregnant women Estimated HIV-1 prevalence (%) men Estimated HIV-1 prevalence (%) women

1989 0.71 0.609 1.159

1990 1.32 1.133 2.154

1991 2.10 1.802 3.427

1992 1.91 1.639 3.117

1993 1.30 1.115 2.122

1994 3.00 2.574 4.896

1995 2.72 2.334 4.439

1996 4.81 4.127 7.850

1997 Not available 4.100 7.800

1998 5.51 4.728 8.992
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course of the epidemic, we refer to the change in 1980 as “lower promiscuity” while referring to the change in 
1990 as “behavioural intervention”.

For each model, 100 simulations with the fitted parameters, but changing the behavioural change parameter 
as described above, were run.

When studying the impact of interventions, only the parameter(s) related to the interventions (in this study 
only the behavioural change parameter) are changed. This means that we assume that apart from the interven-
tion, no other influences are present. Therefore, the impact of behavioural interventions was also explored during 
the study period 1980–2005.

For each of the eight models, the impact of the intervention for females and males is calculated as the rela-
tive difference in cumulative HIV incidence at the end of the study period (2005) predicted by the model with 
and without intervention. As an additional measure, the difference in HIV prevalence in 2004 is reported in the 
Supplementary Material, Sect. 7.

Results
Quality of the model fits.  All model fits show good quality, with no overfitting or underfitting (see Sup-
plementary Fig. S12). A few small differences can be observed between the model fits, in particular for the last 
time point 1998. Most of the models, except the Si_IO_VL, St_RG and St_IO_RG models, slightly overestimate 
the HIV prevalence in 1998.

Validation of the models against data not used for fitting.  The median HIV prevalence from 1980 
to 2005 (in %), together with the literature value for the HIV prevalence in 200428 is shown in Fig. 1. The relative 
squared error of the median predicted HIV prevalence in 2004 for females and males is presented in Table 4. All 
models simulating no population inflow and outflow, except the StepSyn 1.0 model with STI life history explic-
itly modelled (St_RG), largely overestimate the HIV prevalence in 2004 for both females and males. In contrast, 
the St_RG model underestimates the HIV prevalence in 2004 and the HIV prevalence stabilizes after 2000 and 
2004 for females and males respectively. Implementing inflow and outflow considerably improves the prediction 
of the HIV prevalence for both females and males in 2004. For females, the Simpact 1.0 model including inflow, 
outflow and a VL-dependent HIV transmission hazard (Si_IO_VL) results in the prediction closest to the litera-
ture value (relative squared error of the median = 0.011). For males, the StepSyn 1.0 model with inflow, outflow 
and STI life history explicitly modeled (St_IO_RG) results in the best prediction of the value in the literature 
(relative squared error of the median = 0.034). In general, the StepSyn 1.0 models showed less variation between 
simulations in predicted HIV prevalence in 2004 than the Simpact 1.0 models (Supplementary Table S24). The 
largest variability among predictions (range of the simulation results without intervention) is observed for the 
Si_VL model, while the St_RG model has the lowest variability.

Figure 1.   Prevalence curves for HIV from 1980 to 2005 in case no behavioural intervention is implemented. 
Median HIV prevalence (in %) of 100 simulations. The black dot represents the literature value from Ref.28. 
Left panel: females; right panel: males. Models: Si_Ba: Simpact 1.0 basic model; Si_IO: Simpact 1.0 model 
with inflow and outflow; Si_VL: Simpact 1.0 model with VL-dependent HIV transmission hazard; Si_IO_VL: 
Simpact 1.0 model with inflow, outflow, VL-dependent HIV transmission hazard; St_Ba: StepSyn 1.0 basic 
model; St_IO: Stepsyn 1.0 model with inflow and outflow; St_RG: StepSyn 1.0 model with STI life history 
explicitly modeled; St_IO_RG: StepSyn 1.0 model with inflow, outflow and STI life history explicitly modeled. 
Figures were generated using R software version 3.6.0. (R Core Team (2019). R: A language and environment 
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL https://​www.R-​proje​ct.​
org/)14.

https://www.R-project.org/
https://www.R-project.org/
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Prediction of the impact of behavioural interventions.  Figures 2 and 3 and Table 5 show that, in 
terms of difference in cumulative HIV incidence, a lower promiscuity from 1980 onwards has a similar effect 
on HIV relative to the Simpact Cyan 1.0 and StepSyn 1.0 basic models (Si_Ba and St_Ba). For the intervention 
in 1990, a larger effect is observed for the St_Ba model than for the Si_Ba model (see Table 5). In terms of HIV 
prevalence, both interventions have a similar effect for both basic models (see Supplementary Figs. S15, S16).

Apart from reducing HIV, the interventions also reduce HSV-2 (see Supplementary Table S22), and the size 
of the reduction differs among the eight models and between interventions (intervention in 1990: reduction of 
the median cumulative HSV-2 incidence over the whole study period (number of new cases between 1980 and 
2005): 1.9–16.3% (females) and 2.1–25.0% (males); lower promiscuity in 1980: reduction of 6.2–20.5% (females) 
and 6.7%–32.7% (males)).

Table 4.   Relative squared error of the median predicted HIV prevalence in 2004 for females and males 
(depicted in Fig. 1a,d). Models: Si_Ba: Simpact 1.0 basic model; Si_IO: Simpact 1.0 model with inflow and 
outflow; Si_VL: Simpact 1.0 model with VL-dependent HIV transmission hazard; Si_IO_VL: Simpact 1.0 
model with inflow, outflow, VL-dependent HIV transmission hazard; St_Ba: StepSyn 1.0 basic model; St_IO: 
StepSyn 1.0 model with inflow and outflow; St_RG: StepSyn 1.0 model with STI life history explicitly modeled; 
St_IO_RG: StepSyn 1.0 model with inflow, outflow and STI life history explicitly modeled.

Model Females Males

Si_Ba 1.142 1.035

Si_IO 0.267 0.681

Si_VL 2.048 2.868

Si_IO_VL 0.011 0.148

St_Ba 1.710 0.849

St_IO 0.445 0.211

St_RG 0.044 0.065

St_IO_RG 0.012 0.034

Figure 2.   Cumulative incidence for HIV in females from 1980 to 2005. Median cumulative incidence of 
100 simulations and the range ([minimum,maximum]) (shaded area). Red: no intervention implemented; 
blue: intervention implemented in 1990; green: lower promiscuity from 1980 onwards. Interventions were 
implemented as follows. For Simpact Cyan 1.0, the weight for the number of relationships a person already 
has (α_(numrel,man) = α_(numrel,woman) in formula (1)) was changed from 0 to − 0.05. For StepSyn 1.0, the 
proportion of male pending shorts links that are fulfilled by females (pending.short.links.fulfilled) was changed 
from 1 to 0.7. Model abbreviations as in Fig. 1. Figures were generated using R software version 3.6.0. (R Core 
Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria (URL https://​www.R-​proje​ct.​org/)14.

https://www.R-project.org/
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Cumulative HIV incidence plots and relative differences in cumulative HIV incidence are provided in Figs. 2, 
3 and Table 5. Median and range of cumulative HIV incidence in 2005 are provided in Supplementary Table S23. 
Median HIV prevalence in 2004 for females and males (in %) and range (the maximum minus the minimum) 
of 100 simulations in case of no intervention, a behavioural intervention in 1990 and lower promiscuity from 
1980 onwards are shown in Supplementary Table S24.

Figures 2 and 3 show that for all models, the implementation of a behavioural intervention reduced the 
median cumulative HIV incidence and the range (see also Table 5). For the Simpact Cyan 1.0 models, the rela-
tive difference in cumulative HIV incidence was higher in the models without inflow and output, while in the 
StepSyn 1.0 models it was the opposite way around (see Table 5). Except for the models with STI history explicitly 

Figure 3.   Cumulative incidence for HIV in males from 1980 to 2005. Median cumulative incidence of 
100 simulations and the range ([minimum,maximum]) (shaded area). Red: no intervention implemented; 
blue: intervention implemented in 1990; green: lower promiscuity from 1980 onwards. Interventions were 
implemented as follows. For Simpact Cyan 1.0, the weight for the number of relationships a person already 
has (α_(numrel,man) = α_(numrel,woman) in formula (1)) was changed from 0 to − 0.05. For StepSyn 1.0, the 
proportion of male pending shorts links that are fulfilled by females (pending.short.links.fulfilled) was changed 
from 1 to 0.7. Model abbreviations as in Fig. 1. Figures were generated using R software version 3.6.0. (R Core 
Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria (URL https://​www.R-​proje​ct.​org/)14.

Table 5.   Influence of interventions—relative difference in cumulative HIV incidence at the end of the study 
period (2005). Interventions were implemented as follows. For Simpact Cyan 1.0, the weight for the number of 
relationships a person already has (α_(numrel,man) = α_(numrel,woman) in formula (1)) was changed from 
0 to − 0.05. For StepSyn 1.0, the proportion of male pending shorts links that are fulfilled by females (pending.
short.links.fulfilled) was changed from 1 to 0.7. Median HIV incidence and range ([minimum,maximum]) of 
100 simulations. Models abbreviations as in Fig. 1

Model

Intervention in 1990
Lower promiscuity from 1980 
onwards

Females (%) Males (%) Females (%) Males (%)

Si_Ba  − 20  − 22  − 44  − 48

Si_IO  − 13  − 14  − 26  − 28

Si_VL  − 22  − 26  − 35  − 41

Si_IO_VL  − 12  − 12  − 29  − 28

St_Ba  − 31  − 30  − 48  − 48

St_IO  − 40  − 39  − 54  − 56

St_RG  − 23  − 19  − 56  − 54

St_IO_RG  − 32  − 32  − 58  − 60

https://www.R-project.org/
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modeled, the intervention has a larger effect on the median HIV prevalence when implemented in models with-
out inflow and outflow (see Supplementary Figs. S15, S16). After implementing a behavioural intervention in 
1990, a reduced but still increasing HIV prevalence was observed for all models except the StepSyn 1.0 model with 
STI life history explicitly modeled (St_RG) which shows a decreased HIV prevalence after 1998 (Supplementary 
Fig. S17b,e). In case of lower promiscuity from 1980 onwards (Supplementary Fig. S17c,f), similar trends are 
observed but the reduction in HIV prevalence is considerably larger than when applying the intervention in 1990.

For the two models that resulted in the best predictions of the HIV prevalence in 2004 in case of no interven-
tion (Si_IO_VL and St_IO_RG), the predicted effect of a behavioural intervention was larger for the St_IO_RG 
model than for the Si_IO_VL model (Table 5). While the Si_IO_VL model predicts a 12% reduction in median 
cumulative HIV incidence in 2005 for both females and males, in case a behavioural intervention was imple-
mented in 1990, the St_IO_RG model predicts a 32% reduction for both females and males. In case of lower 
promiscuity from the start of the epidemic (1980), Si_IO_VL predicts a 29% and 28% reduction in median 
cumulative HIV incidence in 2005 for females and males respectively, while St_IO_RG model predicts a 58% and 
60% reduction in females and males respectively. The larger effect of the interventions in the Si_IO_RG model 
can also be observed in the HIV prevalence in 2004 (Supplementary Table S24).

Discussion
In this study, eight individual-based models, generated with the simulators Simpact Cyan 1.0 and StepSyn 1.0 
were compared in terms of their prediction of the impact of behavioural interventions on the course of the HIV 
epidemic in the heterosexual population in Yaoundé, Cameroon during the period 1980–2005.

All models could be fitted equally well to the calibration targets in Table 3 (3rd and 4th column) (see Sup-
plementary Fig. S12), which shows that similar HIV prevalence curves can be simulated using different model 
assumptions and transmission parameters.

After calibration of the models, they were first validated against data not used for fitting. For each of the 
two modelling frameworks, the model that implements population inflow and outflow together with a detailed 
description of HIV transmission (i.e. the Si_IO_VL and St_IO_RG models) shows the best prediction of the 
HIV prevalence for males and females in 2004 (Fig. 1).

In general, a model implementing inflow and outflow better predicts HIV prevalence at a time point not used 
for fitting than its counterpart without inflow and outflow (Fig. 1). Remarkably, while models with no inflow 
and outflow implementing a generic STI co-factor effect largely overestimated the HIV prevalence in 2004, the 
model implementing HSV-2 life history and its effect on HIV in detail, and no inflow and outflow (the St_RG 
model) predicted a lower HIV prevalence for both males and females than what was reported in the literature. 
This can be explained by the difference in parametrization between the generic and the detailed HSV-2 co-factor. 
The simplified parametrization in the models implementing a generic STI co-factor effect (2 parameters, see 
Supplementary Tables S10, S12, S14) compared to the models which implement HSV-2 stages and ulcerative 
recurrences (6 parameters, see Supplementary Table S16) results in higher estimates of the HIV prevalence. 
Absence of inflow and outflow strengthens this effect. This results in overestimates of the HIV prevalence for 
models with a generic STI co-factor effect, and underestimates for models with a detailed STI co-factor effect. 
Moreover, the effect of implementing inflow and outflow on the model predictions was smaller for the model 
implementing HSV-2 in detail than for the other models.

The Simpact Cyan 1.0 models showed a higher relative difference in cumulative HIV incidence in the models 
without inflow and outflow after implementing a behavioural intervention, while in the StepSyn 1.0 models it 
was the opposite way around (see Table 5). This can be explained by the differences in implementation of inflow 
and outflow between Simpact Cyan 1.0 and StepSyn 1.0. While Simpact Cyan 1.0 only implements birth and 
non-AIDS mortality, StepSyn 1.0 also implements immigration and emigration.

The predictions of the impact of behavioural interventions for the eight models are similar during the first 
five years after the intervention, but show large differences on the long term (see Figs. 2, 3, Supplementary 
Fig. S17b,c,e,f). Similar conclusions could be drawn by Eaton et al.30 when comparing mathematical models 
predicting the impact of antiretroviral therapy (ART).

All simplified Simpact Cyan 1.0 models (Si_Ba, Si_IO, Si_VL) overestimate the HIV prevalence in 2004 
compared to the most detailed model (Si_IO_VL), and as a consequence these are the models with the highest 
HIV prevalence estimates. Furthermore, the simplified Simpact Cyan 1.0 models also have higher estimates of 
the proportion of serodiscordant couples (see Supplementary Table S25).

A behavioural intervention has a larger effect when implemented in a situation with higher HIV incidences 
and a higher proportion of serodiscordant couples. As a consequence, also larger effects of interventions on the 
cumulative HIV incidence are predicted in the simplified Simpact Cyan 1.0 models (Figs. 2, 3, Table 5). For the 
same reason, a smaller effect of interventions on the cumulative HIV incidence is observed for the StepSyn 1.0 
models without inflow and outflow.

For StepSyn 1.0, the models that overestimate (St_Ba, St_IO) and underestimate (St_RG) the HIV prevalence 
in 2004, predict larger and smaller effects of behavioural interventions on HIV prevalence, respectively, com-
pared to the most detailed model (St_IO_RG) (Table S24, Supplementary Figs. S15, S16, S18, S19). This can also 
be explained by the lower estimated proportion of serodiscordant couples in the St_RG model and the higher 
proportion of serodiscordant couples in the St_Ba and St_IO models (Supplementary Table S25).

For males, the baseline models (Si_Ba and St_Ba) are almost in perfect agreement (Fig. 1), but adding addi-
tional complexity to Si_Ba always leads to higher prevalence estimates whereas adding additional complexity 
to St_Ba always leads to lower prevalence estimates. The lower HIV prevalence estimates in StepSyn 1.0. can be 
explained by the inclusion of immigration and emigration (St_IO), the inclusion of a more detailed parametriza-
tion of the HSV-2 co-factor (St-RG) or both (St_IO_RG).
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As the Si_IO_VL and St_IO_RG models showed the best predictions of the HIV prevalence in 2004 in 
females and males respectively, these models can be considered as the most reliable for predicting behavioural 
interventions.

Although the Si_IO_VL and St_IO_RG models predict the HIV prevalence in 2004 equally well, in particular 
in females (relative squared error 0.011 and 0.012 respectively), the two models behave differently when imple-
menting the effect of a behavioural intervention. After an intervention in 1990, the median cumulative HIV 
incidences for females and males in 2004 were both reduced with 12% for the Si_IO_VL model (see Table 5), 
while the St_IO_RG model predicts a reduction of 32% for both females and males. In case of lower promiscuity 
from 1980 onwards, a reduction in median cumulative HIV incidence of 29% for females and 28% for males were 
predicted by the Si_IO_VL model. For the St_IO_RG model, the corresponding values were 58% and 60%. The 
larger effect of the interventions in the Si_IO_RG model could also be observed in the differences in cumulative 
HIV prevalence (Supplementary Table S24). The difference in the prediction of the effect of the behavioural 
intervention can be explained by several factors. First, the lower cumulative HIV incidences in the St_IO_RG 
model compared to the Si_IO_VL model can be explained by the more detailed parametrization of the HSV-2 co-
factor effect (see above) and the inclusion of immigration and emigration in the St_IO_RG model (see Table 2). 
Second, lower promiscuity is known to have a positive effect on viral load31 and also lowers the risk of acquiring 
an STI/HSV-2. The differences between the outputs of the simulations could be explained by differences in the 
sizes of the effect of lower promiscuity on viral load and STI co-factors. More data has to become available, in 
particular more detailed information on the relationship between sexual risk behaviour, HIV viral load and STI 
co-factors, to further explore which of these two models provides the most reliable predictions of behavioural 
interventions. As studies also suggest that HSV-2 influences HIV viral load32, it is recommended to combine the 
predictions of the St_IO_RG and Si_IO_VL models using ensemble modeling. When comparing the estimates 
of the proportion of serodiscordant couples for the Si_IO_VL and St_IO_RG models with the literature value 
of 14.4% in 2004, reported in Ref.28, we notice that the estimated value for the Si_IO_VL model (15.0%) is the 
closest to the reported value (Supplementary Table S25). For the HIV prevalence in males in 2004, the estimated 
value for the St_IO_RG model is the closest to the reported value (see Fig. 1).

Seven of the eight models predicted that the HIV prevalence would still increase during the period 1980–2005, 
although at a lower rate, after applying a behavioural intervention (see Supplementary Fig. S17b,c,e,f). Only the 
St_RG model predicted that the HIV prevalence will decrease after reaching a peak in 1997. As mentioned earlier, 
including detailed HSV-2 stages underestimates HIV prevalences in absence of inflow and outflow, and predicts 
a stabilizing HIV prevalence in case of no intervention (Fig. 1). As a consequence, a decreasing HIV prevalence 
was predicted when a behavioural intervention was implemented. The difference between the predictions can 
also be explained by the lower estimated proportion of serodiscordant couples in the St_RG model compared to 
the other StepSyn 1.0 models (Supplementary Table S25).

This study shows that differences in model assumptions and model complexity can considerably influence 
their predictions of the impact of behavioural interventions. Hontelez et al.33 reported similar conclusions after 
stepwise inclusion of model complexity in a model for predicting the impact of a universal test and treat (UTT) 
intervention and concluded that sufficient detail is necessary to make accurate predictions.

Apart from differences in the size of the impact of a behavioural intervention on the HIV epidemic, we also 
detected differences in qualitative behaviour between simulations generated with different models.

Our study has several limitations. First, to be able to compare the models generated with the two modeling 
frameworks, our study was restricted to a population that can be handled by both StepSyn 1.0 and Simpact 1.0. 
Therefore, men having sex with men (MSM) and commercial sex workers (CSW) were not included in this study. 
To the best of our knowledge, no data on HIV in MSM in Yaoundé are available for the study period 1980–2005. 
A study from 2014 estimated that the proportion of males being MSM is 1.38% (95% confidence interval (CI) 
0.51–2.25%34. In 2011, the reported HIV prevalence in MSM in Yaoundé was 44.4%35. Because of the low pro-
portion of MSM in the male population, we expect that including HIV transmission in MSM in mathematical 
models for the whole sexually active population would only lead to a small increase in the HIV prevalence in 
males, and therefore recommend to study MSM as a separate population in HIV modeling studies. The propor-
tion of females in Yaoundé being CSW is estimated 1.88% (95% CI 1.15–2.61)34, and the reported HIV prevalence 
in CSW was 34.8% in 199736. Therefore, including CSWs will also results in higher HIV prevalence estimates.

Second, the intervention had to be chosen such that it could be simulated with both Simpact Cyan 1.0 and 
StepSyn 1.0 frameworks. As treatment of HIV with antiretroviral therapy (ART) is not implemented in StepSyn 
1.0, male circumcision is not available in Simpact Cyan 1.0 and none of the two modeling frameworks has an 
option to simulate condom use, we decided to simulate an intervention reducing the number of partners (by e.g. 
individual counseling). Because ART for HIV was not implemented in both frameworks, the study period had to 
be restricted to 1980–2005. As an increase in ART coverage from 0% in 2003 to 22% in 2014 has been reported37, 
the model assumption of no ART in our model will not be valid for more recent time periods. The interventions 
not modelled in this study (ART, condom use, male circumcision) are all expected to reduce HIV prevalence.

Third, mother-to-child transmission (MTCT) was not implemented, which means that all individuals in the 
simulation that enter the population through birth are assumed to be HIV negative. Implementation of MTCT 
will be a direction for future research.

Fourth, there is a need for accurate estimates of the lifetime number of partners for evaluating the dynam-
ics of partnership formation and dissolution in mathematical models. These estimates currently rely on self-
reported values. For the heterosexual population in Yaoundé, these data are reported by Ferry et al.19 (median 
and interquartile range (IQR)) and the 2004 Demographic Health Survey (DHS)28 (mean). Reported values were 
based on a questionnaire from UNAIDS38, which determines the lifetime number of partners as the number 
of partners up to the date participants filled in the questionnaire. When comparing these literature values with 
estimates from the mathematical models (see Supplementary Material, Sect. 9 for more detail), we observe that 



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14696  | https://doi.org/10.1038/s41598-021-94289-z

www.nature.com/scientificreports/

the large discrepancy in lifetime number of partners between males and females (median of 10 and 3 respectively) 
reported in the literature is not reflected by the mathematical models in this study (Supplementary Table S26). 
This does not necessary invalidate the models, as reliability of self-reported sexual behaviour data, in particular 
the discrepancy between females and males, has been subject to debate39. Furthermore, which model value is 
closest to the literature value depends on gender and the literature source (Supplementary Table S26). For the 
median and IQR from Ferry et al.19, the values of the St_IO and St_IO_RG models are closest to the literature 
values. For males, the numbers reported by the St_Ba and St_RG models are closest to the those in Ferry et al. 
(but for females they are the furthest from the literature value). For the mean reported in the 2004 DHS28, the 
value from the St_IO_RG and Si_IO model are closest to the literature average for females and males respectively.

Because of the limitations above, the models described in this study are only partial descriptions of reality, 
a property of all mathematical models in epidemiology. Although the models are highly simplified, they can 
still provide meaningful information40 and it still makes sense to compare the models in the current phase 
of their development. Comparing different models also stimulates to extend them, but therefore it is neces-
sary to have sufficient data available. Because of the large uncertainty in several epidemiological parameters, 
it is also important to have different models with different assumptions, and to combine these models using 
ensemble methods41,42. Several studies have shown that combining models using ensemble approaches consid-
erably improve prediction accuracy compared to predictions from individual models. Examples are ensembles 
of transmission models for the burden of dengue43, ensembles of epidemiological models to study the impact of 
vaccination strategies44,45, the RAPIDD ebola forecasting challenge which combined 8 independent modelling 
approaches41 and an ensemble model combining 20 mathematical models for seasonal influenza42.

Finally, only limited data were available that could be used for model validation. We showed that even when 
there is an agreement between two models in their prediction of a future time point not used for fitting, they 
can have different outputs when simulating the impact of interventions. Without more HIV prevalence data 
for validation, it is not possible to determine which of these two models is the most reliable. In case more HIV 
prevalence data would have been available for the period 1999–2005 than only the HIV prevalence in 2004, vali-
dation could have been performed on multiple data points not used for calibration. This would have enabled to 
better determine which model has the best prediction of the epidemic for the period 1999–2005. These findings 
highlight the importance of making more data available for both the calibration and validation of epidemiological 
models that aim to inform decisions made by policy-makers.

Data availability
The data used to calibrate the models in this study, together with references supporting these data, are avail-
able within the Supplementary Material, Sect. 2. The R-scripts that have been used for fitting HIV transmission 
parameters and the data sets of simulation results (HIV prevalence and cumulative HIV incidence) are available 
from GitHub: https://​github.​com/​dmhen​drickx/​Scrip​ts_​compa​rison_​Simpa​ct_​StepS​yn. Simpact Cyan is freely 
available from http://​www.​simpa​ct.​org/. StepSyn is not yet freely available but will become so upon publica-
tion of a manuscript that describes the modelling framework into more detail (manuscript in preparation). In 
the meanwhile, the StepSyn code is available from KU Leuven (contact: João Dinis Sousa, e-mail: joao.sousa@
kuleuven.be) on reasonable request.
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