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Accurate prediction of breast 
cancer survival through coherent 
voting networks with gene 
expression profiling
Marco Pellegrini

For a patient affected by breast cancer, after tumor removal, it is necessary to decide which adjuvant 
therapy is able to prevent tumor relapse and formation of metastases. A prediction of the outcome of 
adjuvant therapy tailored for the patient is hard, due to the heterogeneous nature of the disease. We 
devised a methodology for predicting 5-years survival based on the new machine learning paradigm 
of coherent voting networks, with improved accuracy over state-of-the-art prediction methods. The 
’coherent voting communities’ metaphor provides a certificate justifying the survival prediction for 
an individual patient, thus facilitating its acceptability in practice, in the vein of explainable Artificial 
Intelligence. The method we propose is quite flexible and applicable to other types of cancer.

Breast Cancer is one of the main causes of death in Europe, the USA, and China. The number of new cases each 
year in Europe is about 92.2 women every 100,000 women. The mortality rate in Europe is 23.1 women every 
100,0001 (https://​encr.​eu/​sites/​defau​lt/​files/​facts​heets/​ENCR_​Facts​heet_​Breast_​2014.​pdf).

It is estimated that for 2020 in the US the expected number of new cases of Breast Cancer (BC) in female 
patients is about 276,000 (30% of all new tumor cases in female patients) and the expected number of deaths 
caused by Breast Cancer in female patients is about 42,000 (15% of all deaths due to tumors in female patients), 
thus making BC the first type of cancer for the number of new cases, and the second type of cancer as the cause 
of death2 in female patients. Similar rankings are observed in Europe3 and China4.

Primary cancer treatment for new cases of BC is surgery (of various types), followed by adjuvant therapies 
(see e.g.: https://​www.​gov.​uk/​gover​nment/​publi​catio​ns/​chemo​thera​py-​radio​thera​py-​and-​surgi​cal-​tumour-​resec​
tions-​in-​engla​nd/​chemo​thera​py-​radio​thera​py-​and-​surgi​cal-​tumour-​resec​tions-​in-​engla​nd). For a patient affected 
by breast cancer, after tumor removal, it is necessary to decide which adjuvant therapy can prevent the tumor 
relapse and the formation of metastases. To this effect, a series of measurements of several parameters (clinical, 
histological, molecular) are collected and evaluated by experts with the help of guidelines.

Conventional clinical–pathological parameters have been used since the definition of the first cancer staging 
systems in 19465 up to the recent St. Gallen Consensus6 to select patients eligible for adjuvant treatment following 
BC surgery, thus helping in avoidance of unnecessary cytotoxic treatments. The high social and personal cost 
of chemotherapy and the evidence of over-prescription with the standard methodologies7, fueled the search for 
scientific and technological advances in this area, that could impact clinical practice.

The need for better prognosis and prediction of therapy results has led to substantial research in alternative 
bio-markers based on BC molecular profiling, and novel prediction models and algorithms, that could overcome 
intrinsic limitations of previous approaches. In particular high-throughput sequencing technologies have been 
key enablers for the success of this new approach, as well as the efforts for systematic collection of molecular data.

At this moment prognostic tools based on molecular biomarkers are considered valid clinical decision support 
tools, complementing traditional histopathology (see e.g. the Mammaprint and Oncotype DX tests)8.

Prognostic molecular tests are cost-effective versus the cost of chemotherapy for patients who would not 
eventually benefit from it. They are considered complementary to histology-based more traditional methods 
(e.g. TNM staging).

Van’t Veer and her co-authors9 describe a panel of 70 mRNA biomarkers for breast cancer predicting survival 
after 5 years from breast cancer surgery. This panel is the basis for the Mammaprint test, which after several 
clinical trials, has been approved by regulatory agencies in the USA and Europe for clinical use.
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Paik et al.10 proposed a panel of 16 genes (plus 5 control genes) whose expression level is the basis for com-
puting a score that allows classifying patients into low, medium, and high risk of relapse within 5 years after 
surgery. This panel is commercialized as Oncotype DX  and it has been validated in the clinical trial TAILORx11. 
In published data, the intermediate class, which is rather neutral for clinical decisions, covers 30% of the patients 
in the testing cohort. Other methods for multigene based prognosis of breast cancer are covered in a survey by 
Győrffy et al.12.

In this paper, we describe a novel machine learning (ML) supervised classification method and we apply it to 
the task of producing prognostic predictions of survival at 5 years for BC patients using gene expression levels 
measured from the samples of the tumor surgically removed. The prediction method is conditional on the type 
of post-operative adjunct therapy selected for the patient. Data from a cohort of about 2000 patients available 
through the Metabric consortium13 are used to train, validate and test the prognostic predictor, and they indicate 
competitive performances compared to state-of-the-art methods. See “Methods” section (Tables 10, 11) for basic 
statistics of the main features of the populations used for training, validation, and testing.

Survival analysis aims at modeling and estimate complex objects like the survival function, or the hazard 
function that give deep insight into the expected survival time (as a continuous function). Here we aim at a more 
restricted type of result, where survival is dichotomized into low-risk and high-risk classes, with a threshold 
set at 5 years. The 5 years threshold is a common benchmark in Breast Cancer studies, however, as BC patients 
often experience a long survival time, also a 10 years benchmark is commonly found in the clinical and epide-
miological literature.

Coherent Voting Network (CVN) is a supervised learning paradigm designed explicitly to uncover non-
linear, combinatorial patterns in complex data, within a statistically robust framework. Breast Cancer patients 
after surgery may receive several types of post-surgery adjuvant therapeutic regimen (endocrine, radiotherapy 
or chemotherapy, and combinations thereof) aiming at reducing relapse and the formation of metastases, and 
thus favoring long term survival. We wish to predict the outcome of adjuvant therapy using just small molecular 
fingerprints (mRNA) of the patient’s transcriptome. We aim at simultaneous high scores for PPV (positive predic-
tive value) and NPV (negative predictive value) as these are important indices for the final clinical applications 
of the predictor. A Training-validate-test protocol is applied onto CVN built on patient data from the Metabric 
Consortium (about 2000 patients).

The performance in tests is at the state-of-the-art for several BC cancer sub-types and it is remarkable for 
the subclasses: TNBC, Her2+, and Luminal B. The effectiveness of the selected fingerprints is confirmed also 
on several independent data sets (for a total of 601 patients) from the NCBI Gene Expression Omnibus (GEO).

This article is organized as follows. In “Results”, “Therapy classes” and “Secondary stratifications”, we describe 
the main results in the application of the CVN-based prognostic predictor on Metabric data. In “Comparison 
of CVN with other ML classification methods” we compare the CVN-based prognostic predictor against other 
state-of-the-art ML methods using the Autoweka package. In “Performance of CVN on independent cohorts of 
patients”, we apply the molecular fingerprints derived for Metabric to several independent cohorts of patients. In 
“Discussion”, we place our results in the context of the currently known results and we comment on strong and 
weak points of the proposed method, as well as on possible extensions. In “Methods” we give a high-level descrip-
tion of the CVN method and of the data preprocessing, while more details are in the Supplementary Materials.

Results
Therapy classes.  Patients after surgery may or may not follow one of the following adjuvant therapies: 
chemotherapy, radiation therapy, and hormone therapy (also called endocrine therapy), which are reported 
in Metabric annotations. There are thus 8 possible combinations of three therapies. For each therapy profile, 
we repeat the training-validate-testing procedure to obtain 8 therapy-specific gene sub-panels and prediction 
performance estimates (primary stratification) (see Supplementary materials 1 for a self-contained recollection 
of the performance measures used in this context). Table 1 reports 5 therapy classes for which Metabric data 
are sufficiently numerous to estimate the statistical significance of the predicted performance indices, and the 
automatic hyper-parameter/feature selection optimization converges.

The number of genes in each fingerprint for the therapy classes ranges from a minimum of 5 to a maximum 
of 17, with an average of 9.875. Overall 78 distinct genes are used. The selected fingerprints hardy overlap with 
previously known fingerprints (see Supplementary materials 1).

Secondary stratifications.  Starting from the 5 sub-panels based on the therapy classes (primary stratifica-
tion), it is possible to define stratifications based on different features (secondary stratification) of the patient. 
The secondary stratifications do not change the prediction of any single patient but provide a different evaluation 
of the quality of the prediction. We take into consideration ER status as measured by IHC (Table 2), Intrinsic 
Type (Table 3), ER/HER2 classification (Table 4), Tumor stage (Table 5), Tumor grade (Table 6), and Lymph 
node state (Table 7).

Here we highlight some of the tabled results. For the testing pool of 82 lymph node positive patients, we obtain 
PPV 0.77 and NPV 0.78 (odds ratio 11.50); for the pool of 61 lymph node negative patients, we obtain PPV 0.68 
and NPV 0.88 (odds ratio 16.07). Improved results are obtained on some specific subtypes of BC. For the testing 
pool of 16 TNBC patients, we obtain PPV 1.0 and NPV 0.83 (odds ratio 45.00). For the testing pool of 18 HER2+ 
patients, we obtain PPV 0.91 and NPV 1.0 (odds ratio 40.00). For the testing pool of 41 Luminal B patients, we 
obtain PPV 0.75 and NPV 0.95 (odds ratio 60.00). The PPV and NPV results should be seen in the context of 
the prevalence (the proportion of the population with high vs low risk) in the test sets used. Kaplan–Meier plots 
for notable subclasses are shown in Figs. 1, 2, 3, 4 and 5. Kaplan–Meier plots for all the secondary stratifications 
are shown in the Supplementary Materials 1.
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Table 1.   Performance of therapy-based stratification. Results on test data with automatic hyperparameter 
optimization and feature (gene) selection. Therapy class labels are (RAD, CHE, HOR). n.p. number of patients, 
n.a.  number of answers. 95% confidence interval, lrt p-val p value for the log rank test, lh lookahead number, 
fp fingerprint size.

Therapy Yes-no-yes No-no-yes No-no-no Yes-no-no Yes-yes-yes

n.p. 43 31 21 13 35

> 5y 17 14 7 8 8

< 5y 26 17 14 5 27

n.a. 37 30 21 13 30

Sen. 0.65 0.81 0.66 0.85 0.8

Spec. 0.92 0.78 0.8 0.66 0.84

OR 24.3 16.8 8.0 12.0 21.0

OR p-val 0.0006 0.002 0.11 0.1 0.01

CI-Lo 2.6 2.55 0.96 0.79 1.8

CI-Hi 221 111 66 180 240

Kappa 0.52 0.58 0.44 0.53 0.51

AUC​ 0.85 0.87 0.77 0.77 0.63

AUC p-val 0.0001 0.0002 0.02 0.06 0.13

lrt p-val 0.02 0.0006 0.06 0.33 0.03

lh 2 2 4 1 3

fp 7 12 17 8 5

Table 2.   Secondary stratification by ER status.

Type n.p. > 5y < 5y n.a. Sen. Spe. or p-val CI-Lo CI-Hi Kappa lrt pval PPV NPV

Pos 116 78 38 107 0.67 0.83 9.83 6.67e-07 3.88 24.93 0.50 0.001 0.67 0.83

Neg 24 10 14 21 0.86 0.71 15.00 0.02 1.63 138.16 0.57 0.01 0.86 0.71

Table 3.   Secondary stratification by intrinsic status.

Type n.p. > 5y < 5y n.a. Sen. Spe. or p-val CI-Lo CI-Hi Kappa lrt pval PPV NPV

LumA 45 37 8 41 0.25 0.88 2.42 0.58 0.36 16.34 0.14 0.11 0.33 0.83

LumB 41 26 15 37 0.92 0.83 60.00 1.09e-05 5.98 601.61 0.72 0.05 0.75 0.95

Claudin-low 14 7 7 13 0.71 0.83 12.50 0.10 0.84 186.31 0.54 0.24 0.83 0.71

Her2 22 12 10 20 0.90 0.60 13.50 0.06 1.20 152.22 0.50 0.79 0.69 0.86

Basal 14 3 11 14 0.82 0.67 9.00 0.18 0.52 155.25 0.43 0.06 0.90 0.50

Table 4.   Secondary stratification by 3 genes status.

Type n.p. > 5y < 5y n.a. Sen. Spe. or p-val CI-Lo CI-Hi kappa lrt pval PPV NPV

her2+ 18 8 10 15 1.00 0.80 40.00 0.01 1.98 807.14 0.84 0.01 0.91 1.00

er+/her2− 98 68 30 90 0.57 0.84 6.93 1.37e-04 2.53 19.02 0.42 0.07 0.62 0.81

er−/her2− 16 6 10 15 0.90 1.00 45.00 7.62e-03 2.29 885.65 0.86 0.004 1.00 0.83

Table 5.   Secondary stratification by tumor stage.

Type n.p. > 5y < 5y n.a. Sen. Spe. or p-val CI-Lo CI-Hi Kappa lrt pval PPV NPV

1 27 20 7 26 0.71 0.84 13.33 0.01 1.71 103.76 0.53 0.03 0.62 0.89

2 68 43 25 61 0.80 0.78 14.00 1.66e-05 3.99 49.16 0.57 0.009 0.71 0.85

3 13 5 8 13 0.62 1.00 8.33 0.14 0.63 110.03 0.56 0.02 1.00 0.62
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Comparison of CVN with other ML classification methods.  To compare our algorithmic solution 
with the state-of-the-art in machine learning, we performed experiments with the Autoweka package14,15 within 
the Weka workbench environment16,17. Autoweka performs automatically feature selection and hyper-parameter 
optimization of 27 base classification methods, 10 meta-methods, and two ensemble methods, moreover it uses 
several feature selection search methods along with 8 feature evaluation functions. The hyper-parameters are 
optimized in Autoweka using a Bayesian optimization strategy to explore the space of parameters. The Autoweka 

Table 6.   Secondary stratification by tumor grade.

Type n.p. > 5y < 5y n.a. Sen. Spe. or p-val CI-Lo CI-Hi Kappa lrt pval PPV NPV

2 54 39 15 45 0.77 0.84 18.00 1.75e-04 3.62 89.58 0.59 0.0006 0.67 0.90

3 75 40 35 72 0.74 0.76 8.99 4.38e-05 3.09 26.13 0.50 0.02 0.74 0.76

Table 7.   Secondary stratification by lymph node status.

Type n.p. > 5y < 5y n.a. Sen. Spe. or p-val CI-Lo CI-Hi Kappa lrt pval PPV NPV

POS 82 48 34 75 0.70 0.83 11.50 4.19e-06 3.83 34.54 0.54 0.0003 0.77 0.78

NEG 61 41 20 56 0.79 0.81 16.07 2.41e-05 4.06 63.63 0.58 0.005 0.68 0.88

Figure 1.   Stratification by hormonal type: ER−/Her2−.

Figure 2.   Stratification by hormonal type: Her2+.
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Figure 3.   Stratification by intrinsic type: Luminal B.

Figure 4.   Stratification lymph node status: positive.

Figure 5.   Stratification lymph node status: negative.
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package includes also the Ridge regression method (a form of simple penalized logistic regression ) often used in 
survival analysis. The ridge parameter is optimized by Autoweka in the range of values from 1e−7 to 10.

As we noticed that the initial feature selection phase is onerous when applied to the input of roughly 24,000 
genes, we also applied explicitly several Weka feature selection pre-filters so to reduce the number of features in 
the input to Autoweka. Autoweka uses ten-fold cross-validation over the training set to select the best configura-
tion of hyper-parameters. We fixed the kappa statistics as the objective function to be maximized in the learning 
phase (see Supplementary Materials 1). The reported kappa statistics are computed on the trained predictor for 
the test data set.

Table 8 reports the kappa statistics for the best Autoweka trained classifiers (in round brackets) along with 
the result we obtain with the coherent voting networks over the test set. For CVN next to the kappa statistics we 
report the lookahead number or, in two cases, the manual selection of the best configuration. Ignoring for the 
moment the two manually selected configurations, we notice that we can get the highest kappa values in three of 
the six remaining cases. We also notice for CVN a robust uniform behavior with consistent high positive values 
of kappa. In all columns (except corr-ranker) there are negative entries indicating that the best ML method for 
that input has performed worse than a random classifier. For the corr-ranker feature selection the ML methods 
have all positive values, but generally lower than those of CVN. Moreover, the best Autoweka results are attained 
by 15 different methods thus making it hard to pinpoint a single winner algorithm in the Autoweka suite.

Overall the setup experimental conditions for the Autoweka and CVN differ in some aspects, therefore the 
findings must be considered with care. Keeping these differences in mind, we can conclude that CVN has a 
level of performance at least comparable with existing ML methods. Moreover, CVN is a single easy-to-explain 
method that allows for a more uniform approach to the BC prognosis problem over a wide spectrum of clinical 
conditions.

Performance of CVN on independent cohorts of patients.  After a screening of the breast cancer data 
sets in the NCBI GEO (Gene Expression Omnibus) repository we have identified a few BC data sets with charac-
teristics compatible with the Metabric data set regarding the recorded therapy, endpoint survival (preferentially 
overall survival). The prediction performance is tested in a leave-one-out evaluation framework in which the 
multi-gene fingerprint is the optimal fingerprint defined on Metabric data. Greedy hyper-parameter optimiza-
tion is applied and the best result in terms of OR subject to slackness below 15% is the selected configuration 
reported in Table 9. Due to different microarray technologies, we have mapped the genes onto the probes for the 
target technology (using all mapping probes, if multiple probes map onto the same HUGO gene ID).

The GSE45255 data set holds information on three different therapeutic classes. The numbers of patients in 
each class are however rather small. While for the GEO45255 chemotherapy (ch) subset there is perfect per-
formance, the p-value for OR is too high for claiming statistical significance on this measure, but, in contrast, 
the AUC value is statistically significant. For the GEO45255 endocrine (ho) and the GEO45255 endocrine plus 
chemotherapy (chho) subsets, we attain high values in kappa and OR, with significant OR and AUC p values.

Data set GSE37181 holds a large number of patients (119), and it is perfectly balanced among the two 
classes (60 vs 59), but the endpoint is disease-free survival (dfs), rather than overall survival (os). We notice a 
loss in terms of OR although the kappa statistics and AUC are still in an acceptable range, with good statistical 
significance.

Data set GSE7390 holds a larger number of patients (181) but is unbalanced among the two classes (157 vs 
24). This has the effect of inducing relatively low kappa statistics, however, the odds ratio (20.86), sensitivity 
(0.7), specificity (0.89), and the p values indicate a good performance on these indices.

Data set GSE2034 is the largest independent cohort (264) in this table and is roughly balanced (95 vs 169) 
within a factor 2. Although the kappa statistics is low, the odds ratio OR is high (20.12) even if the endpoint is 
relapse-free survival (rfs) rather than overall survival (os).

Overall these experiments show that the selected multi-gene fingerprints may be effective across different 
microarray platform and different patient cohorts, while some loss of performance can be expected when a 

Table 8.   Kappa statistics for training data sets for various Autoweka/Weka feature selection settings. Therapy 
class (RAD, CHE, HOR). lh lookahead number or manually determined (m). Legend for autoweka methods: 
rf random forest, mp multilevel perceptron, nb Naive Bayes, bn Bayes Net, sgd stochastic gradient descent, rc 
random committee, ibk k-nearest neighbour classifier, sl simple logistic, nbm Naive Bayes Multinomial, rpt 
Fast Decision Tree REPTree (C4.5), smo fast training support vector machine, lo Logistic, lwl Locally Weighted 
Learning, ab AdaBoostM1, rss random subspace, dt decision table. (*) result for the validation dataset.

Therapy No filter cfs-best cfs-greedy Corr-ranker Gain-ranker j48-ranker j48-greedy CVN (lh)

Yesnoyes 0.30 (rf) 0.52 (mp) 0.52 (mp) 0.23 (lo) 0.38 (smo) 0.33 (lwl) 0.58 (mp) 0.52 (2)

Nonoyes 0.35 (sl) 0.34 (nb) 0.15 (rf) 0.22 (smo) 0.16 (lwl) 0.35 (bn) 0.15 (rf) 0.58 (2)

Nonono 0.09 (rf) 0.64 (bn) 0.5 (smo) 0.35 (ibk) 0.35 (nb) 0.35 (nb) 0.50 (rf) 0.44 (4)

Yesnono 0.7  (rf) 0.53 (sgd) 0.69 (rf) 0.39 (lo) 0.56 (rf) 0.56 (rf) 0.7  (rf) 0.53 (1)

Yesyesno − 0.09 (dt) 0.36 (rc) 0.05 (nb) 0.22 (lwl) 0.10 (lwl) 0.0 (ab) 0.05 (nb) 0.48 (m)

Yesyesyes − 0.07 (nbm) − 0.07 (ibk) − 0.01 (ibk) 0.19 (smo) 0.14 (lwl) 0.26 (rss) − 0.07 (ibk) 0.51 (3)

Noyesno − 0.26 (rf) − 0.03 (mp) − 0.03 (mp) 0.11 (mp) − 0.26 (smo) − 0.22 (mp) − 0.03 (mp) 0.41 (2)

Noyesyes (*) 0.0 (rpt) − 0.53 (rf) − 0.53 (rf) 0.13 (rf) 0.17 (rf) 0.23 (rf) − 0.54 (rf) 0.60 (m)
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different endpoint is used. This suggests that when we change the endpoint of the prediction (e.g. disease-free 
survival) we should recalibrate the fingerprints in the chosen setting.

Discussion
We have developed a new ML supervised classification method called Coherent Voting Networks (CVN) which 
is suitable for handling highly non-linear phenomena such as those prevalent in biological systems. We have 
applied CVN to the problem of predicting the prognosis of BC patients depending on the chosen post-surgery 
adjuvant therapy selected. After surgery, a breast cancer patient must follow a therapeutic regime aimed at pre-
venting relapse and formation of metastases. The CVN-based prognostic tool can predict, with good accuracy 
for a large percentage of the patients, whether the patient will survive more or less than 5 years following current 
the state of the art adjuvant therapeutic protocols (based on chemotherapy, radiation therapy, and hormone 
therapy). Such prognostic tool helps the clinician and the patient by validating the chosen therapeutic path (in 
case of predicted good prognosis), or by suggesting, in combination with other elements, the need for further 
investigations, or the application of newer, possibly experimental, alternative protocols (in case of predicted 
poor prognosis). The advantage for the patient is the possibility to personalize the therapeutic choices by using 
her molecular prognostic profile, with a higher chance of an effective cure and survival. The advantage for the 
clinician is a tool to validate baseline therapeutic choices (or suggest the need for alternatives). The advantage for 
the health system at large is better discrimination among those patients requiring expensive and invasive cures 
(e.g. chemotherapy), and those that would benefit from less expensive and invasive ones (e.g. hormonal therapy). 
The CVN-based prognostic tool uses a small molecular profile of a few dozen genes that can be measured for 
each patient’s tumor biopsy with standard technologies like RNA-seq or RT-PCR.

The fingerprint gene panel has been identified using public data of the project Metabric (Molecular Tax-
onomy of Breast Cancer International Consortium) and tested using other publicly available data of independent 
cohorts. Thus the results in this paper rely rather heavily on the quality of the Metabric protocols for collecting 
molecular and clinical data. An interesting line of research to be developed is to assess the robustness of the 
CVN-based prediction when different technologies and different data processing protocols are used. Prelimi-
nary tests on independent cohorts (see Table 9) suggest that the devised gene fingerprint is rather robust with 
respect to changes in the gene expression measurement technology and are even capable of operating with 
endpoints different from the default one chosen in this study (overall survival). However the hyper-parameter 
optimization phase during predictor’s training is likely to be rather more data and technology-dependent, and 
thus probably the adoption of different technology/protocol in data collection may entail a re-training of the 
predictor. A second limitation of the method in its training phase is that it relies on knowledge of the adjuvant 
therapy chosen for the patients. There is an implicit assumption that over the time frame of the data collection 
no drastic changes in the clinical practice and criteria would take place. As this cannot be guaranteed over a 
long period (and indeed changing current clinical protocols is the final aim of this tool) there is the practical 
need of continuous monitoring to ensure consistency between the patient population used in training and the 
population for which the tool is applied.

The CVN methodology is a general ML supervised classification tool, and, for prognostic purposes, it can be 
in principle applied to many variants of this problem.

The CVN-based prognostic tool is currently optimized to maximize and balance the kappa statistics (alterna-
tively the odds ratio) across training, validation, and test data while limiting the number of patients for which no 

Table 9.   Independent cohorts. Results of leave-one-out evaluation with optimal multigene fingerprints 
derived from Metabric data sets. Therapy class: (RAD, CHE, HOR). Endpoint (e.p.) is os overall survival, 
dfs disease-free survival, rfs relapse-free survival. Confidence interval for odds ratio at 95% confidence. n.a. 
number of answers.

GEO 45255 (ch) 45255 (ho) 45255 (chho) 37181 7390 2034

End point os os os dfs os rfs

Therapy No-yes-no No-no-yes No-yes-yes No-no-no No-no-no Yes-no-no

n.p. 8 16 13 119 181 264

> 5y 3 6 4 59 24 95

< 5y 5 10 9 60 157 169

n.a. 8 16 13 106 179 258

Kappa 1.0 0.58 1.0 0.35 0.36 0.12

Sen. 1.0 0.8 1.0 0.66 0.7 0.90

Spe. 1.0 0.81 1.0 0.70 0.89 0.67

OR 15.0 18.0 36.0 4.59 20.86 20.12

CI-Lo 0.66 1.24 1.77 2.01 4.93 2.53

CI-Hi 339 260 731 10 88.2 159

OR p-val 0.19 0.03 0.01 3.7E−4 3.0E−5 1.8E−4

AUC​ 1.0 0.89 1.0 0.72 0.70 0.63

AUC p-val 0.01 0.005 0.003 2.6E−5 7.5E−4 1.0E−4
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answer is given. This strategy produces also often a balancing of PPV and NPV. It is possible to obtain alternative 
gene panels for a specific situation (or different predictors on the same panels) that may optimize directly PPV 
and NPV, say by maximizing PPV subject to a lower bound on NPV (or vice versa).

Also, when a higher rate of no-answers is allowed we can increase the PPV and NPV for the given answers. 
Preliminary data for certain therapy classes give an NPV and PPV close to 95% for 50% of the patients. Thus with 
the same data, it is possible to devise a cascade of predictors having higher guarantees for the easier cases, as to 
cover a given population by several stratified predictors (from the easiest to the most complex cases to predict).

It is possible in principle to apply this CVN methodology to derive a prognostic panel at 10 years (this infor-
mation has also clinical relevance in long-term follow-ups).

In general, it should be possible to derive similar gene panels for other tumors, provided that Metabric-like 
high quality data is available on a sufficiently large cohort of patients.

Finally, since we have used only gene expression data (and knowledge on the patients 5-year survival) to build 
the predictors, one may think that feeding other clinical or molecular indices as additional input to the CVN may 
improve the predictive powers. Preliminary experiments in this direction however show that a straightforward 
integration of known single clinical measurements does not improve predictions significantly. It remains thus 
open the question whether more sophisticated heterogeneous data integration strategies taking several indices at 
once may be beneficial within the CVN approach to prognosis predictions. A promising line of future research 
involves integrating mRNA and miRNA to produce mixed prognostic signatures18,19. Data on miRNA expression 
in Metabric patient’s samples have been produced recently within the Metabric miRNA landscape project (https://​
ega-​archi​ve.​org/​studi​es/​EGAS0​00000​00122). Preliminary results from this project indicate that “breast cancer 
miRNAs appear to act as modulators of mRNA-mRNA interactions rather than molecular switches”. Thus while 
it is likely that mixed miRNA-mRNA fingerprints may sharpen some of our results, within the CVN framework, 
we expect that mRNA will continue to be key elements of the predictors, even in this extended setting. Certainly, 
a better appreciation of miRNA-mRNA interactions in BC may shed more light on the causative elements of BC 
progression. A second promising direction of research integrates biomedical imaging and molecular profiling 
for prognostic purposes20,21.

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer affecting about 15% of the cases, 
and it is known to be quite non-homogeneous from a clinical and molecular point of view22–24. Research on devis-
ing prognostic molecular fingerprints for TNBC has thus been directed mainly at subclasses of of TNBC25–31. In 
our results, we are able to attain good performance in terms of PPV, NPV, and OR on the full pool of Metabric 
TNBC patients. The good overall performance may be explained with the intuition that the initial therapy-based 
stratification of the patients is able to capture implicitly the TNBC molecular and clinical heterogeneity.

HER2 positive BC covers about 25% of the BC cases. It is considered an aggressive tumoral form, and while 
it responds well to recent therapeutics, it is known to develop drug resistance in time for about 50% of the cases 
distant metastases occur32–35. Molecular signatures for HER2-positive BC prognosis have been found for certain 
subtypes of the disease or for predicting the response to specific drugs36–39. Also for this important type of BC, 
we could attain high PPV, NPV, and OR results.

Lumina-B BC is one of the intrinsic types of BC discovered by Perou et al.40, based on clustering of BC gene 
expression profiles. Prognostic properties of this subtype have been investigated in particular compared to the 
other intrinsic types41,42. In general, however, less is known about discriminating prognosis within the type43,44. 
Here we show that the CVN-based classifier is effective in discriminating good and poor prognosis patients with 
high PPV, NVP, and OR.

van de Vijver et al.45 report the performance of a 70-genes prognostic gene fingerprint: for lymph node nega-
tive patients OR is 15.0 (3.3–56, p val < 0.001) with PPV 0.63 and NPV 0.89. For lymph node positive patients 
OR is 13.7 (3.1–61 , p val < 0.001), with PPV = 0.4 and NPV 0.95. Overall our results for lymph node positive 
and negative are similar in terms of OR but, in our case, we have a better balancing between the PPV and NPV 
measures.

Paik et al.10 developed a 21-gene signature (16 predictive and 5 control genes) to predict recurrence in lymph 
node negative breast cancer treated with Tamoxifen, which was later incorporated in the Oncotype DX prognostic 
kit. Taking into account only the low and high-risk classification of the patients we obtain an OR 5.67 (3.39–9.46, 
p value 9.6e−12) with NPV 0.90 and PPV 0.38. Again, our results show a better balancing of PPV and NPV values.

Our work has focussed on selecting relatively small fingerprints that can be used to build predictive CVN, by 
maximizing the kappa statistic (or the odds ratio) in testing sets of patient data, subject to an upper bound on 
the slackness of the method (percentage of no responses). In this research, we did not aim at uncovering causa-
tive fingerprints (i.e. a pattern of gene expression level measures that explain the future survival in combination 
with a therapeutic regime46. Although we cannot rule out that the uncovered genes may indeed be involved in 
the causation of the disease, two orders of considerations advise caution. One consideration is that several just 
slightly sub-optimal fingerprints may also be found (a phenomenon compatible also with the findings by Venet 
et al.47). Thus causative genes may be present outside a predictive fingerprint of minimal size, with an explana-
tory role as important as that of those present in the fingerprint. The second consideration is that we have used 
one mRNA data set from protein-coding genes as our feature space. It is known that BC involves several layers 
of biological regulation (e.g. genetic aberrations, actions of non-coding RNA, epigenetic signals, multi-cell 
signaling, metabolic and environmental conditions), thus a causative explanation might involve a more complex 
interplay of several layers. Finally, we did not touch yet on the topic of whether such fingerprints contain directly 
actionable targets for therapeutic agents (either for administered drugs or for new drugs tailored to the personal 
molecular profile of the patients). These related problems are of interest and may entail the collection and fusion 
of additional relevant ‘omic’ data, as well as the refinement of the algorithms introduced in this study.

https://ega-archive.org/studies/EGAS00000000122
https://ega-archive.org/studies/EGAS00000000122
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Methods
Here we give an overview of the Coherent Voting Network (CVN) methodology at a high level. For details, 
we refer to the Supplementary materials 1 (“Methods” in detail). The description is in two parts. The first part 
introduces the CVN and its use for prognosis prediction. The second part describes the feature-selection and 
hyper-parameter optimization procedure that is performed in a train-validate-test protocol aiming at optimiz-
ing the gene fingerprint, the CVN configuration, and estimating the performance of the method on a testing 
set of patients.

Construction of a CVN.  As working with a complete gene set is a computational burden and may introduce 
too much noise from the experimental measurements, we apply a mild initial statistical filter to preserve in the 
computation only genes able to discriminate the two categories of patients (high-risk or low-risk) that corre-
spond to bad and good prognosis, using thresholds for fold change, t test, ks-test (Kolmogorov–Smirnov), and 
mwu-test (Mann–Whitney U). Thus the gene set we use in the further CVN construction is composed of genes 
passing a combination of these statistical discrimination tests.

We build a bipartite graph G in which we have patient nodes P and Gene-Interval nodes GI where each node 
of the GI class is labeled with a gene and an interval of values for the expression of that gene. This graph is built in 
a straightforward manner from the input data matrix of gene expression for a pool of patients, by using quantiza-
tion methods48. We build a partial dense cover of this bipartite graph (see definition in Pellegrini et al.49) which 
is a collection C of dense subgraphs of G, where each subgraph is also called a community. Each community will 
have both patient and gene nodes, and the communities may overlap. Let us for the moment concentrate only 
on the patient nodes. Each patient may belong to many communities. Each patient has a category (high-risk or 
low-risk) that corresponds to a bad or good prognosis. Each community expresses a vote (high-risk, low-risk, 
or null) by a voting scheme (say, for the moment, simple majority, but more schemes are described in the Sup-
plementary Materials 1). Each patient receives a prediction that is the majority category expressed by the com-
munities it belongs to. Finally, the voting is coherent for a given patient p if the vote received by p is equal to her 
category. The degree of coherence of the voting network is the fraction of patients for which it is coherent. Ideally, 
the higher the degree of coherence of a CVN the better such CVN is as a basis for a predictor. The key point is 
that in such a construction the partial dense cover does not depend on the category of the patients, thus we may 
have in input non-classified patients, for which the vote of the network represents their category prediction. The 
intuition is that a network that is coherent for the classified patients, even if built without knowing their category, 
is a good predictor also for the unclassified ones.

We can see a CVN as a generalization of the notion of guilt by association (GbA) in biological networks. In 
a typical application, some nodes in a biological network will have labels and some will be unlabeled. We make 
a prediction for an unlabeled node by using the labeled nodes within a neighborhood of the unlabeled node in 
the biological graph. Note that in GbA each node receives a vote from a single subset of the nodes.

So far each community in a CVN may have a large number of genes, and one of our aims is to find a minimal 
set of genes that leave the communities (of patients) unchanged since the reduction of the number of genes would 
not change much their density. To achieve this goal we consider now only the genes belonging to any community. 
We look for a minimal set M of genes so that each community (of genes) includes at least k genes in M. The set 
M can be well approximated by using a greedy set multi-cover algorithm (see e.g.50).

After computing the minimal set M of genes we can rebuild the CVN using only the patient set P and the 
genes in M obtaining a CVN’, measure the coherence of CVN’, and use CVN’ for prediction of the category of 
unclassified patients.

Train‑validate‑test protocol.  Each phase of the construction described above depends on the choice of 
values for hyper-parameters, and we will have a CVN for each such choice (which we call a parameter-vector v of 
the parameter-space V). While sophisticated strategies for searching this discrete parameter-space exist (in ML 
they are termed hyper-parameter optimization strategies) in our application the construction of a single CVN is 
in practice very efficient thus we will use greedy search and compute a CVN for each v ∈ V  , as |V| is in the range 
of only a few hundreds.

A further aim, besides finding an optimal v, and a small gene set M is to have high performance for the testing 
phase in a train-validation-test set-up.

We begin by splitting the initial set of patients into three sets: the training set T0, the validation set T1, and 
the test set T2. In a standard ML setting information leaking is avoided by finding the optimal (v∗,M∗

) pair 
only on (T0, T1) and then applying such optimal predictor to (T0, T2). The performance is measured on this 
unique predictor for (T0, T2). We relax such an all/nothing schema by allowing the use of T2 in the choice of 
(v∗,M∗

) in a very limited and controlled way, by use of the concept of lookahead. Instead of producing a single 
predictor on (T0, T2) we produce a ranking of all predictors on (T0, T1) that we can build by choosing a v ∈ V  . 
We then lookup vectors v in this ranked list, and we stop when the corresponding predictor for (T0, T2) satisfies 
a stopping criterion. The number of vectors v we visit in this lookahead process is the lookahead number (lh). 
For lh=1 we have the standard ML set up. In Table 1 we report the lh values observed for the therapy classes: 1 
once, 2 twice, 3 once, and 4 once.

Computation of p values.  In this study, we use three different p values associated with the statistics: odds 
ratio, ROC AUC, and log-rank test. The log-rank test statistic and the associated p value are computed with the 
API of the lifelines package (https://​lifel​ines.​readt​hedocs.​io). The log-rank test statistic is a chi-squared test under 
the null hypothesis of the two series having the same hazard ratio. The ROC AUC statistic and the associated p 
value are computed via equivalence to the Wilcoxon Mann Whitney test using the API in the scipy.stats package 

https://lifelines.readthedocs.io
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(https://​scipy.​org/). This p value is one-sided and assumes an asymptotic normal distribution. The Odds Ratio 
statistic and the associated p-value are computed with the exact Fisher test API in the scipy.stats package, with 
the ‘two-sided’ option. In this test, the distribution of odds ratio values follows the hypergeometric distribution.

Metabric patients sample selection.  The Metabric collection used in this paper is described in Curtie 
et al.13 and is made of 1992 clinically annotated primary fresh-frozen breast cancer specimens from tumor banks 
in the UK and Canada. The Metabric collection is the union of two main cohorts: the first cohort of 997 female 
patients and the second cohort of 995 female patients. The differences among the two main cohorts do not 
impact our research, as the relevant transcriptomic methodology adopted is the same in both cases, thus we do 
not distinguish the cohort of origin in subsequent steps. Note also that we do not use data on the normal tissue 
specimens.

Nearly all estrogen receptor (ER)-positive and/or lymph node (LN)-negative patients did not receive chemo-
therapy, whereas ER-negative and LN-positive patients did. Moreover, none of the HER2+ patients received 
trastuzumab. Thus the treatments were homogeneous within clinically relevant groupings, which is an impor-
tant feature of this collection supporting our therapy-based stratification. Although many assays are available 
for this collection of specimens, here we exploit the clinical data only in conjunction with the normalized gene 
expression matrix.

All patient specimens were obtained with appropriate consent from the relevant institutional review boards13. 
RNA was isolated from samples and hybridized to Illumina HT-12 v3 platforms for transcriptional profiling. 
Illumina HT-12 v3 technology targets more than 25,000 annotated genes with more than 48,000 probes. Probes 
were designed using the RefSeq (Build 36.2, Rel 22) and the UniGene (Build 199) databases. Illumina HT-12 v3 
raw data is then preprocessed in steps: spatial artifact correction, summarization, normalization of Log2 intensi-
ties with beadarray (https://​bioco​nduct​or.​org/) and bash51 (see Suppl. Mat. in Curtis et al.13).

Each patient is annotated with her risk class, taking censoring into consideration, setting survival below 60 
months (5 years and below) as high-risk, and survival above 72 months (6 years and above) as low-risk. We take 
the full collection of 1992 Metabric patients in a vector and apply a random permutation (function random.
shuffle in python). Next, we assign the first half of the positions of the vector to the training (1000 patients), the 
subsequent quarter of the positions to validation (500 patients), and the last quarter to testing (492 patients). 
Note that due to the properties of random permutations every subset of patients of the corresponding size has 
the same chance of showing up as a training/validation/testing set. We perform also on the three sets an equali-
zation step. Within the majority risk-class, we take a random sample (via random permutation) of the same size 
as the minority risk-class. The patients in the majority risk class not selected are discarded. Afterward, each of 
the three sets (training/validation/testing) in the two variants (unequalized/equalized) is stratified according 
to the eight possible therapy classes, as reported in the clinical annotations. When for a therapy class the two 
risk-classes groups are sufficiently balanced in the unequalized case for the three sets (with a ratio below 2.5:1 of 
the largest class to the smallest) we use the unequalized sets. Otherwise (unbalanced case) we use the equalized 
versions of the sets.

Handling missing data.  When data is used in matrix form missing data need to be taken into account 
before numerical computation may start, as a fully dense matrix is usually assumed by most numerical methods. 
In our setting data is presented in a matrix, and re-mapped to a graph G after the application of the initial statis-
tical filters and discretization. Initial statistical filters and discretization are done in a gene-by-gene fashion and 
they are well-defined operations even when some matrix entries are missing. Here we just apply loose filtering, 
excluding by default genes having more than 50% of missing entries. For the phase of graph generation missing 
entries in the matrix are simply mapped to missing edges in the graph. Note that, from a formal point of view, 
graph algorithms do not suffer from this. More specifically in our context, missing edges may result in lower 
density for the communities associated with the incident nodes, and this situation is handled in full generality 
by the algorithm for building the dense communities. Our approach thus avoids altogether any potential bias or 
noise introduced by the standard missing data handling methodologies that rely on interpolation.

Handling censored data.  Our approach to dichotomization and censoring can be classified as an “uncen-
soring” technique52, a transformation of the input data so that standard classification algorithms can be applied 
effectively to censored data. Our approach has similarities with the method described in Zupan et al.53, where the 
instances in the given data are split into three categories: (1) instances that experience the event of interest (death 
by BC related causes) during the observation period will be labeled as eventful and assigned to the risk class 
according to the event time; (2) instances whose censored time is later than the predefined time point (5 years) 
are assigned to the low-risk class; (3) instances whose censored time is earlier than the predefined time point are 
removed from further consideration. In the context of Metabric data, which is of high quality only 20 patients 
out of 1992 are censored due to loss-in-follow-up. All other censored cases of type (3) are censored due to their 
entry the observation program later than 5 years before the end of the observation period (end-of-study). Note 
that our choice of removing patients of type (3) does not introduce any bias, as the time-of-entry of a patient in 
a study is considered independent of any other feature of the patient. As Metabric data are sufficiently numer-
ous we can afford to neglect the patient of type (3) and still attain statistically significant results in most cases. 
In situations where data is not sufficient, one might want to adopt the full approach in Zupan et al. 2000 and 
assign a marginal probability of event occurrence estimated by the Kaplan–Meier method to patients of type (3).

Statistics on patients features.  Here we report the distribution of 17 patient features (continuous and 
categorical) for training, validation, and testing sets (after possible equalization in a therapy class). Categorical 

https://scipy.org/
https://bioconductor.org/
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Train Validation Testing

Lymph node

Num 326 – 186 – 200 –

NEG 113 34% 56 30% 67 33%

POS 213 65% 130 69% 133 66%

No data 4 – 4 – 2 –

Stage

Num 240 – 141 - 155 –

1 50 20% 25 17% 27 17%

0 1 0% 0 0% 0 0%

3 27 11% 25 17% 25 16%

2 161 67% 91 64% 100 64%

4 1 0% 0 0% 3 1%

No data 90 – 49 – 47 –

Grade

Num 323 – 185 – 197 –

1 19 5% 5 2% 9 4%

3 207 64% 120 64% 127 64%

2 97 30% 60 32% 61 30%

No data 7 – 5 – 5 –

Subtype

Num 328 – 187 – 202 –

Normal 27 8% 15 8% 10 4%

Basal 75 22% 27 14% 32 15%

Her2 52 15% 27 14% 39 19%

LumB 67 20% 50 26% 42 20%

Claudin-low 37 11% 23 12% 29 14%

LumA 70 21% 45 24% 50 24%

No data 2 – 3 – 0 –

Surgery

Num 326 – 186 – 200 –

MASTECTOMY 209 64% 118 63% 130 65%

BREAST-CONSERVING 117 35% 68 36% 70 35%

No data 4 – 4 – 2 –

Histology

Num 330 – 190 – 202 –

IDC+ILC 11 3% 14 7% 10 4%

IDC-MUC 6 1% 6 3% 5 2%

ILC 25 7% 9 4% 15 7%

OTHER-INVASIVE 1 0% 1 0% 0 0%

OTHER 1 0% 0 0% 0 0%

IDC-MED 6 1% 2 1% 3 1%

INVASIVE-TUMOUR 3 0% 0 0% 1 0%

IDC-TUB 6 1% 3 1% 3 1%

DCIS 1 0% 0 0% 0 0%

IDC 270 81% 155 81% 165 81%

No data 0 – 0 – 0 –

Menopause

Num 330 – 190 – 202 –

Pre 111 33% 56 29% 60 29%

Post 219 66% 134 70% 142 70%

No data 0 – 0 – 0 –

Her2 SNP6

Num 330 – 190 – 202 –

NEUT 224 67% 131 68% 137 67%

LOSS 20 6% 8 4% 8 3%

GAIN 86 26% 51 26% 57 28%

Continued
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features in Table 10 are: intrinsic subtypes, type of breast surgery, histological subtypes, inferred menopausal 
status, HER2 SNP6 copy number gain/loss, laterality, intrinsic clustering, cohort of origin, ER status by immuno-
histochemical analysis, hormone receptors status, cellularity, lymph node status, tumor stage and tumor grade. 
Continuous features in Table 11 are age at diagnosis (in years), NPI (Nottingham prognostic index), and overall 
survival (in months). The repeated use of uniform random sampling ensures a high similarity in the distribution 
of the feature values across the train, validate and test sets.

Table 10.   Distribution of patient categorical features over training, validation, and testing sets.

Train Validation Testing

No data 0 – 0 – 0 –

Laterality

Num 306 – 181 – 189 –

r 140 45% 92 50% 87 46%

l 166 54% 89 49% 102 53%

No data 24 – 9 – 13 –

Cluster

Num 330 – 190 – 202 –

4.5 34 10% 19 10% 21 10%

10 78 23% 36 18% 33 16%

1 24 7% 17 8% 10 4%

3 33 10% 22 11% 23 11%

2 8 2% 12 6% 8 3%

5 49 14% 27 14% 30 14%

4 17 5% 5 2% 12 5%

7 20 6% 11 5% 8 3%

6 10 3% 7 3% 10 4%

9 25 7% 16 8% 19 9%

8 32 9% 18 9% 28 13%

No data 0 – 0 – 0 –

Cohort

Num 330 – 190 – 202 –

1 95 28% 58 30% 57 28%

3 115 34% 61 32% 73 36%

2 44 13% 29 15% 36 17%

5 27 8% 19 10% 14 6%

4 49 14% 23 12% 22 10%

No data 0 – 0 – 0 –

ER IHC

Num 328 – 189 – 199 –

Neg 150 45% 65 34% 72 36%

Pos 178 54% 124 65% 127 63%

No data 2 – 1 – 3 –

ER/HER status

Num 292 – 167 – 185 –

HER2+ 53 18% 24 14% 31 16%

ER−/HER2− 86 29% 37 22% 43 23%

ER+/HER2–High-Prolif 82 28% 65 38% 65 35%

ER+/HER2–Low-Prolif 71 24% 41 24% 46 24%

No data 38 – 23 – 17 –

Cellularity

Num 320 – 186 – 200 –

High 180 56% 92 49% 106 53%

Moderate 108 33% 70 37% 75 37%

Low 32 10% 24 12% 19 9%

No data 10 – 4 – 2 –
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Ethical statement.   Patients were not directly involved in the study.

Data availability
Data supporting the findings of this study are available form the Github repository https://​github.​com/​Marco​
Pelle​grini​CNR/​Coher​ent-​Voting-​Netwo​rk-​for-​BC-​progn​osis.

Code availability
Custom software and code availability is to be agreed via licensing contracts with National Research Council 
of Italy.
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