Skip to main content
. 2021 Jul 19;11:14645. doi: 10.1038/s41598-021-94243-z

Table 8.

Kappa statistics for training data sets for various Autoweka/Weka feature selection settings.

Therapy No filter cfs-best cfs-greedy Corr-ranker Gain-ranker j48-ranker j48-greedy CVN (lh)
Yesnoyes 0.30 (rf) 0.52 (mp) 0.52 (mp) 0.23 (lo) 0.38 (smo) 0.33 (lwl) 0.58 (mp) 0.52 (2)
Nonoyes 0.35 (sl) 0.34 (nb) 0.15 (rf) 0.22 (smo) 0.16 (lwl) 0.35 (bn) 0.15 (rf) 0.58 (2)
Nonono 0.09 (rf) 0.64 (bn) 0.5 (smo) 0.35 (ibk) 0.35 (nb) 0.35 (nb) 0.50 (rf) 0.44 (4)
Yesnono 0.7 (rf) 0.53 (sgd) 0.69 (rf) 0.39 (lo) 0.56 (rf) 0.56 (rf) 0.7 (rf) 0.53 (1)
Yesyesno − 0.09 (dt) 0.36 (rc) 0.05 (nb) 0.22 (lwl) 0.10 (lwl) 0.0 (ab) 0.05 (nb) 0.48 (m)
Yesyesyes − 0.07 (nbm) − 0.07 (ibk) − 0.01 (ibk) 0.19 (smo) 0.14 (lwl) 0.26 (rss) − 0.07 (ibk) 0.51 (3)
Noyesno − 0.26 (rf) − 0.03 (mp) − 0.03 (mp) 0.11 (mp) − 0.26 (smo) − 0.22 (mp) − 0.03 (mp) 0.41 (2)
Noyesyes (*) 0.0 (rpt) − 0.53 (rf) − 0.53 (rf) 0.13 (rf) 0.17 (rf) 0.23 (rf) − 0.54 (rf) 0.60 (m)

Therapy class (RAD, CHE, HOR). lh lookahead number or manually determined (m). Legend for autoweka methods: rf random forest, mp multilevel perceptron, nb Naive Bayes, bn Bayes Net, sgd stochastic gradient descent, rc random committee, ibk k-nearest neighbour classifier, sl simple logistic, nbm Naive Bayes Multinomial, rpt Fast Decision Tree REPTree (C4.5), smo fast training support vector machine, lo Logistic, lwl Locally Weighted Learning, ab AdaBoostM1, rss random subspace, dt decision table. (*) result for the validation dataset.