
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14636  | https://doi.org/10.1038/s41598-021-94007-9

www.nature.com/scientificreports

An integrated machine learning 
framework for a discriminative 
analysis of schizophrenia using 
multi‑biological data
Peng‑fei Ke1,3,5, Dong‑sheng Xiong1,3,5, Jia‑hui Li1,3,5, Zhi‑lin Pan1,3,5, Jing Zhou1,3,5, 
Shi‑jia Li1,3,5, Jie Song1,3,5, Xiao‑yi Chen1,3,5, Gui‑xiang Li4,7, Jun Chen4,7, Xiao‑bo Li8, 
Yu‑ping Ning2,3, Feng‑chun Wu2,3* & Kai Wu1,2,3,4,5,6,7,9*

Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great 
importance yet remains challenging. Relatively little work has been conducted on multi-biological 
data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple 
features from three types of biological data, including gut microbiota data, blood data, and 
electroencephalogram data. Then, an integrated framework of machine learning consisting of 
five classifiers, three feature selection algorithms, and four cross validation methods was used to 
discriminate patients with schizophrenia from healthy controls. Our results show that the support 
vector machine classifier without feature selection using the input features of multi-biological data 
achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These 
results indicate that multi-biological data showed better discriminative capacity for patients with 
schizophrenia than single biological data. The top 5% discriminative features selected from the 
optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the 
blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and 
the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path 
length in the temporal and frontal-parietal brain areas). The proposed integrated framework may 
be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for 
schizophrenia using multi-biological data.

Finding effective and objective biomarkers to inform the diagnosis of schizophrenia (SZ) is of great importance 
yet remains challenging1,2. Currently, increasing evidence has shown that the gut microbiome, blood and elec-
troencephalogram (EEG) provide abundant clues for the diagnosis of SZ. Recently, several studies have indicated 
that patients with SZ show an altered gut microbiome composition3–5, which is significantly associated with the 
severity of symptoms3 and human brain structure and function5. Moreover, a large number of previous studies 
indicate alterations in both pro- and anti-inflammatory molecules in the central nervous system, which have also 
been detected in peripheral blood, and may correlate with SZ symptoms6–8. Furthermore, several EEG analyses 
indicate that patients with SZ show significant alterations in the power of various frequency bands, including the 
increases in delta and theta waves, the decreases in alpha waves and the increases in beta and gamma waves9–12. 
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However, most of these alterations are observed at the group level with substantial variability among individuals 
with the same phenotypic diagnosis. Consequently, none of these alterations has proven to have the ability to 
reliably aid in the differential diagnosis of SZ to date1,13. Therefore, studies analyzing how gut microbiota data, 
blood data and EEG data behave at an individual level are important; for example, this information could be 
used to better understand the pathology and identify objective biomarkers for the clinical diagnosis of SZ14.

Recently, pattern recognition based on machine learning has attracted increasing attention, which is well 
suited for the identification of subtle patterns of information in the data and, consequently, is useful to better 
predict the diagnosis at an individual level1,15–17. Using a variety of biological data, such as gut microbiota data4,18, 
blood data14, and EEG data12,19–22, along with machine learning techniques, hundreds of studies have been per-
formed in an attempt to achieve the accurate classification of patients with SZ. For instance, a previous study4 
used Boruta variable selection to select the most discriminatory taxa and random forests methods to develop a 
classifier and predict SZ based on the important microbiota features. A receiver operating characteristic curve 
analysis revealed that 12 significant microbiota biomarkers were capable of being used as diagnostic factors. A 
more recent study14 developed a probabilistic multi-domain data integration model consisting of immune and 
inflammatory biomarkers in peripheral blood and cognitive biomarkers using machine learning to discriminate 
patients with SZ from healthy controls (HCs). Another study20 applied the 1-norm support vector machine 
(SVM) method based on EEG signals of 64 channels during a working memory task to classify patients with SZ 
versus healthy controls and an accuracy of 87% was achieved. Despite these advances, previous discriminative 
studies of SZ have primarily focused on biomarkers extracted from a single type of biological data, which only 
capture partial information about the human body and therefore influence the resulting classification perfor-
mance. Currently, increasing evidence has shown that the combination of multimodal imaging data can further 
improve the classification performance23–26.

In this study, we collected multi-biological data, including gut microbiota data, blood data and EEG data, 
from patients with SZ and HCs. An integrated framework of machine learning consisting of multi-biological data, 
multi-classifiers, multi-feature selection algorithms and multi-cross validation methods, was used to discriminate 
patients with SZ from HCs. Numerous previous studies have shown that: (1) combining multi-biological data 
provides more complementary information for discriminative analysis14,24; (2) multi-classifiers, multi-feature 
selection algorithms can better adapt to heterogeneous biological data27,28; (3) multi-cross validation methods can 
test the performance of models more credibly21. In this study, we proposed an integrated framework to improve 
the classification performance and the understanding of biomarker identification for SZ.

Materials and methods
Participants.  The final sample comprised 99 participants, including 49 patients with SZ and 50 HCs. Patients 
with SZ were recruited from the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, and 
met the diagnostic criteria in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorder-IV-
Text Revision (DSM-IV-TR). The psychopathology and symptom severity of the patients were evaluated with 
the positive and negative syndrome scale (PANSS) and the psychiatric symptoms were steady for > 2 weeks; the 
PANSS evaluated the rate of change at ≤ 20% over 2 weeks and the total score on the PANSS was ≥ 30. Patients 
with SZ were excluded if they met any of the following criteria: (1) any other psychiatric axis I disorder meet-
ing the DSM-IV criteria; (2) constipation, diarrhea, diabetes, hypertension, heart disease, thyroid diseases or 
any somatic diseases; (3) a history of epilepsy, with the exception of febrile convulsions; (4) a history of having 
received electroconvulsive therapy in the past 6 months; (5) lactating, pregnant, or planning to become preg-
nant; (6) alcohol dependence; or (7) noncompliant with drug treatment or a lack of legal guardians.

The HCs were solicited from the local community through advertisements and were screened for their fam-
ily clinical history and a history of mental illness. All healthy subjects had no history of brain disease (such as 
pain, schizophrenia, concussion, brain trauma, etc.), ocular disease, treatment with psychotropic medication 
and drug abuse. In addition, the subjects were asked not to drink alcohol, tea, coffee or any other food or drugs 
that might excite the central nervous system within 48 h before the experiment and that they get enough sleep 
the night before the test.

The study protocol was approved by the ethics committees of the Affiliated Brain Hospital of Guangzhou 
Medical University, and written informed consent was obtained from each subject or their legal guardian prior 
to the study.

Multi‑biological data acquisition and preprocessing.  EEG recording and preprocessing.  Three min-
utes of resting EEG data were recorded from 16 scalp electrodes (i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, 
F7, F8, T3, T4, T5, and T6) while the participant’s eyes were closed according to the International 10/20 System 
and referenced to electrode Cz (UEA-B, symptom, China). All electrode impedances were maintained at less 
than 10 kΩ. Signals were amplified and digitized using a sampling rate of 1000 Hz and a 60-Hz low-pass filter 
during recording.

EEG preprocessing was conducted using MATLAB software (Math Works, Natick, MA). Preprocessing was 
divided into four steps: electrode positioning, filtering, elimination of bad signal segments and signal frequency 
band decomposition. A bandpass filter of 0.1–45 Hz was used to improve the quality of the signal. Then, the EEG 
signal was divided into several epochs of 2 s, and artifact noise, such as eye blinks and movement, was removed 
by technicians. Finally, the signal was divided into seven frequency subbands by a finite impulse response fil-
ter: delta band (1.5–4 Hz), theta band (4–8 Hz), alpha1 band (8–10 Hz), alpha2 band (10–13 Hz), beta1 band 
(13–20 Hz), beta2 band (20–30 Hz) and gamma band (30–45 Hz).
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Fecal sample collection and preprocessing.  Fresh fecal samples were collected from all subjects and then were 
stored at − 80 °C until DNA extraction. Two hundred milligrams of each fecal sample were used for DNA extrac-
tion.

The DNA extraction method was consistent with our previously published report3. Sequencing of the V4 
region of the 16S rRNA gene was performed on the Illumina MiSeq platform. The row sequences were processed 
using QIIME2 (version 2018.6). Forward and reverse reads for each individual sample were demultiplexed, joined 
and quality filtered. We obtained a total of 4,561,105 joined sequences from these raw paired-end sequences, 
ranging from 15,449 to 95,651, and the average length of all joined sequences was approximately 251 bp. Then, 
the DADA229 algorithm was used for sequence quality control and feature table construction. After quality filter-
ing, we obtained 4,148,451 high-quality reads, ranging from 13,581 to 90,203 and with a mean of 41,903.5 reads. 
Then, all the high-quality reads were clustered, 2031 features were obtained, and the frequency per feature ranged 
from 2 to 533,200, with an average of 3356.9. We used a pretrained naïve Bayes classifier for taxonomic annota-
tion, and this classifier was trained on the Greengenes database (version 13.8). The raw sequence data reported 
in this article have been deposited in GenBank in the National Center for Biotechnology Information (NCBI) 
under accession numbers MT545156–MT547172, which are publicly accessible at https://​www.​ncbi.​nlm.​nih.​gov.

Blood collection and preprocessing.  Three milliliters of blood were collected from control subjects and patients 
by simple venipuncture between 7.00 and 9.00 a.m., after an overnight fasting and tobacco abstinence for more 
than 12 h. Blood biochemical indicators were detected with an automatic biochemical analyzer.

Multi‑biological feature extraction.  EEG feature extraction.  In this study, we used the phase-locked 
value (PLV) method to quantify the functional connectivity (FC) between any two channels of EEG signals, as 
shown in Fig. 1.

Figure 1.   Flow chart of the brain network construction of the EEG signal. EEG electroencephalogram, PLV 
phase locking value. Figure (a) was generated by an EEG processing tool of “EEGLAB” (Version 2019.0, https://​
sccn.​ucsd.​edu/​eeglab/​index.​php), based on MATLAB (Version R2018a). Figure (b–d) were generated by a brain 
network visualization tool of "BrainNet Viewer" (Version1.62, https://​www.​nitrc.​org/​proje​cts/​bnv/), based on 
MATLAB (Version R2018a).

https://www.ncbi.nlm.nih.gov
https://sccn.ucsd.edu/eeglab/index.php
https://sccn.ucsd.edu/eeglab/index.php
https://www.nitrc.org/projects/bnv/
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The instantaneous phase ∅(t) was calculated from the signal x(t) by using the Hilbert transform:

The phase was computed using the following expression:

Phase synchronization is defined as the locking of phases of two oscillators:

The phase-locking value (PLV) is defined as:

where i denotes the imaginary unit, N indicates the total number of samples, and �t is the bespeak time between 
the successive samples j from 1 to N − 1.

In this study, a cost threshold strategy was used to analyze global and nodal attributes of the functional brain 
network (FBN). The cost threshold should be greater than 2 ∗ ln(N)/N  , where N represented the number of 
nodes, to ensure that the small-world properties of FBNs were estimable30. Moreover, the resulting brain networks 
should have sparse properties and distinguishable properties compared to the degree-matched random networks. 
Thus, we selected the small-world regime as a range of cost thresholds ( 34% ≤ cost ≤ 73%, step = 1% ). The 
area under the curve for each attribute was then calculated across the range of cost thresholds and used in a 
subsequent analysis. Here, all the global and nodal attributes were calculated using the toolbox of BCT31. Global 
attributes include the global clustering coefficient (aCp), shortest path length (aLp), global efficiency (aEg), local 
efficiency (aEloc), aGamma, aLambda, and aSigma. Nodal attributes include the clustering coefficient (aNCp), 
nodal shortest path length (aNLp), nodal efficiency (aNe), nodal local efficiency (aNLe), and degree centrality 
(aDc). In this study, 56 global attributes of an FBN and 640 nodal attributes of 16 nodes were computed from 
the whole band and seven frequency subbands. Importantly, any features with missing values for any participant 
were removed. Finally, 48 global attributes and 526 node attributes were used for the subsequent analysis.

Gut microbiota feature extraction.  Through gene sequencing technology, microbiota markers from 171 species 
were obtained from all subjects. Among them, any microbiota marker that was missing in more than 85% of the 
participants was removed. Ninety-four microbiota markers were removed, and 77 gut microbiota markers were 
selected for the final analysis.

Blood feature extraction.  The white blood cells (WBC) count, neutrophils (NEU) count, lymphocytes (LYM) 
count, platelets (PLT) count and monocytes (MON) count were recorded from complete blood counts after rou-
tine blood tests. Four blood indicators inflammation and immunity, including the neutrophil–lymphocyte ratio 
(NLR), platelet–lymphocyte ratio (PLR), monocyte–lymphocyte ratio (MLR) and systemic immune inflamma-
tion index (SIII), were calculated based on the numbers of the five cell types described above. Moreover, the 
oxidative stress indicators, including superoxide dismutase (SOD), homocysteine and C-reactive protein (CRP) 
levels, were also detected in the collected serum. In conclusion, we collected a total of 12 blood features for the 
final analysis.

Statistical analysis.  Statistical analyses were conducted using SPSS software version 22 (IBM). The com-
parison of the sex distribution between the two groups was performed using the χ2 test. Comparisons including 
age and education years between the two groups were performed using a two-tailed two-sample t test. Unless 
specified otherwise, the significance of all tests was set to p < 0.05, or FDR-corrected p < 0.05.

Machine learning.  We developed an integrated framework of machine learning to discriminate patients 
with SZ from HCs (Fig. 2). Briefly, the framework involved three phases: the data preparation, model training, 
and independent model testing.

Data preparation.  Data preparation included feature extraction and subject grouping. We extracted three types 
of biological features from fecal data, blood data, and EEG data, namely, gut microbiota features, blood features, 
and EEG features, respectively. For the final analysis, Seventy-seven gut microbiota features, 12 blood features, 
and 574 EEG features were selected for the final analysis. Three types of biological features were used as input 
features for machine learning, either individually or in combination, to form four input feature sets. At this stage, 
we randomly split the set of participants into two groups, a training dataset and an independent testing dataset, 
at a ratio of 3:1. The training dataset was used to train the model parameters, and the independent testing dataset 
was used to evaluate the performance of the trained model.
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Figure 2.   Overview of the proposed integrated machine learning framework for classifying schizophrenia. 
The proposed integrated machine learning framework for classifying schizophrenia consists of 5 M-methods. 
(a) Multi-biological data were collected from all subjects, including electroencephalogram (EEG) data, fecal 
data and blood data. (b) Multi-biological features were extracted from multi-biological data. (c) Multi-feature 
selection algorithms were used to eliminate redundant features, including recursive feature elimination (RFE), 
principal component analysis (PCA), and analysis of variance (ANOVA) (d) Multi-classifier were used to 
match heterogeneous biological features including support vector machine (SVM), random forest (RF), linear 
discriminant analysis (LDA), logistic regression (LR), and k-nearest neighbor (KNN) methods. (e) Multi-cross 
validation methods including tenfold, fivefold, threefold, and leave-one-out methods, were used to evaluate the 
performance of the trained model.

Figure 3.   Flowchart of the machine learning classification method.
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Model training.  The specific details of the model training phase and independent model testing phase are 
shown in Fig. 3. The model training procedures included three steps: multi-feature selection algorithms, multi-
classifier, and multi-cross validation methods.

Because some features are less effective, irrelevant, or redundant for classification, and too many features may 
cause “overfitting”, effective feature selection methods can be used to identify the discriminative features and 
facilitate disease classification and interpretation. Three feature selection algorithms were used on each classi-
fier, including principal component analysis (PCA), recursive feature elimination (RFE) and analysis of variance 
(ANOVA), to observe the classification effect of the classifier.

A specific classification model directly based on multi-biological data is difficult to build due to heterogeneity. 
Therefore, the use of several machine learning methods to construct different classification models is meaningful. 
In this study, we used five different popular classifiers including support vector machine (SVM), random forest 
(RF), linear discriminant analysis (LDA), logistic regression (LR) and k-nearest neighbor (KNN), to determine 
the most suitable model and to evaluate classification performance based on single and combined biological 
features.

Multi-cross validation methods were used to analyze the training set, including tenfold, fivefold, threefold and 
leave-one-out methods, and to ensure that the sample size was sufficiently large to train the model and prevent 
overfitting caused by insufficient training. Several combinations of the aforementioned procedures were inves-
tigated for optimized data analysis. PCA and RFE feature selection algorithms were unable to be used due to the 
small dimension of blood features. As a result, 280 models were obtained based on four input feature sets, five 
classifiers, three feature selection algorithms and four cross validation methods. Model training in the second 
phase was performed with their application restricted to the training data set.

Independent model testing.  In the third phase, we used an independent testing dataset to estimate the gen-
eralizability of 280 models arising from the second phase. We utilized the metrics of accuracy, sensitivity and 
specificity to quantitatively estimate the performance of all the methods mentioned in this study. Moreover, we 
plotted receiver operating characteristic (ROC) curves and then calculated the area under the curve (AUC) for 
each classification situation to examine the possibility of correctly discriminating patients with SZ and HCs.

A permutation test was applied to evaluate the statistical significance of the classification results. In our 
analysis, we disrupted the labels of all samples 1000 times, and the p value was computed as the proportion of 
accuracies that were no less than the accuracy obtained with the original data. The statistical significance was set 
to p < 0.05. All automatic classification work was performed using NEURO-LEARN (https://​github.​com/​Raniac/​
NEURO-​LEARN32), which is a solution for collaborative pattern analysis of neuroimaging data.

Results
Participants.  The resulting data set comprised 99 participants, including 49 patients with SZ (mean [SD] 
age, 42.06 [12.48] years; 24 [49.0%] males) and 50 HCs (mean [SD] age, 41.70 [13.07] years; 23 [46.0%] males). 
Significant differences in either age (t = 0.141, p = 0.888) and sex (t = 0.294, p = 0.769) were not observed between 
the patients with SZ and HC group. See Table 1 for a detailed description of other characteristics.

Classification results and analysis.  We used an independent testing dataset to estimate the generaliz-
ability of the 280 models. The classification performance of the tenfold cross validation method, fivefold cross 
validation method, threefold cross validation method, and leave-one-out cross validation method (eTables 1–
Table 4 in the “Supplementary S1”) was obtained. No significant differences were observed among the results of 
multi-cross validation methods. Table 2 shows the classification performance of the model obtained using dif-
ferent input features with tenfold cross validation methods. The optimal classification performance was achieved 
when multi-biological features were combined as input features, with 91.7% accuracy, 91.7% sensitivity, 91.7% 
specificity, and 96.5% AUC. The performance of the classifier based on multi-biological features was better than 
that of the classifiers using a single type of biological feature (Fig. 4). In addition, the blood features achieved the 
best classification performance when using a single type of biological feature, with an accuracy of 83.3% and an 
AUC of 87.5%. When gut microbiota features, blood features, and EEG features were used as input feature sets 
alone, the classifiers and feature selection algorithms of the optimal model were inconsistent, potentially due to 
the heterogeneity of biological data. The SVM, LR and RF classifiers without using any feature selection algo-
rithm displayed better classification performance when using combined features, with AUCs greater than 90%.

Table 1.   Demographic and clinical characteristics used in the analysis. HCs healthy controls, SZs patients with 
schizophrenia, NA not applicable.

Characteristic HCs (n = 50) SZs (n = 49) p value

Age, mean (SD) (years) 41.7 (13.1) 42.1 (12.5) 0.89

Sex, No (%)

Male 23 (46.0) 24 (49.0)
0.77

Female 27 (54.0) 25 (51.0)

Education years, mean (SD) (years) 14.2 (3.6) 11.6 (3.4) < 0.001

PANSS, mean (SD) NA 58.84 (17.50) NA

https://github.com/Raniac/NEURO-LEARN
https://github.com/Raniac/NEURO-LEARN
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Discriminative features.  In this subsection, the most informative features selected to differentiate the 
patients with SZ from HCs are reported. We discuss the most discriminative features from the optimal model 
that were generated when combined features were used. For quantitative analysis, the top 34 (5% of the total 
number of features) commonly selected features are summarized in Table 3, which shows the top 34 features for 
classification listed in descending order of their weights, including 14 gut microbiota features, 8 blood features, 
and 12 EEG features.

Discussion
To the best of our knowledge, this discriminative study of SZ is the first to combine multi-biological data of 
gut microbiota data, blood data, and EEG data. We developed an integrated framework of machine learning 
to discriminate patients with SZ from HCs. The main findings of this study are described below. (1) Using a 
combination of three types of biological features as input features for the classification, the best performance 
was achieved, with an accuracy of 91.7%, a sensitivity of 91.7%, a specificity of 91.7%, and an AUC of 96.5%. (2) 
the most discriminative features (top 5%) included gut microbiota features (Lactobacillus, Haemophilus, and 
Prevotella), blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), 
and EEG features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and 
frontal-parietal areas).

In this study, we developed an integrated framework of machine learning using a combination of multi-
biological data, which is a promising direction for the identification of biomarkers for the diagnosis, prognosis, 
and treatment patients with SZ. The comparison of classification performance with existing studies is listed 
in Table 4. A recent study indicated that the diagnosis of SZ can be predicted with possible clinical utility by 
a computational machine learning algorithm using the combination of blood and cognitive biomarkers; more 

Table 2.   Classification performance of the optimal model including different input features using the 
integrated machine learning framework (tenfold). AUC​ area under the receiver operating characteristic curve, 
RFE recursive feature elimination, KNN k-nearest neighbor, LR logistic regression, RF random forest, SVM 
support vector machine, EEG electroencephalogram. a The statistical significance of the permutation test was 
set to p < 0.05. b None means no feature selection algorithm was used.

Input feature
Feature Selection 
Method Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC​ p valuea

Gut microbiota features 
(n = 77) RFE RF 70.8 58.3 83.3 0.80 0.03

Blood features (n = 12) Noneb KNN 83.3 83.3 83.3 0.88 0.010

EEG features (n = 574) RFE RF 79.2 83.3 75.0 0.90 0.010

Combined features 
(n = 663) None SVM 91.7 91.7 91.7 0.97 0.010

Figure 4.   Areas under the receiver operating characteristic curves (AUC) for the best model comparing the gut 
microbiota features, blood features, electroencephalogram features and the combination of GMV, BF and EF 
as the input for machine learning. Each curve in the figure represents the ROC curve of the best model using 
different input features. GMF gut microbiota features, BF blood features, EF electroencephalogram features, CF 
combined features. This figure was generated by “Visual Studio Code” (Version 1.56, https://​code.​visua​lstud​io.​
com/).

https://code.visualstudio.com/
https://code.visualstudio.com/
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importantly, the integration of multi-biological data outperforms a single type of biological data14, consistent 
with our findings. Interestingly, an early SVM-based prediction of the later development of SZ in a familial 
high-risk cohort is possible and can be improved by combining schizotypal and neurocognitive features with 
neuroanatomical variables33. In summary, based on the integrated framework of machine learning, the combi-
nation of multi-biological data substantially improves the classification performance for patients with SZ. Our 
results revealed that the features from multiple biological datasets provided complementary information and 
can help to develop effective and objective biomarkers for the clinical diagnosis of SZ1.

To date, although numerous discriminative studies of SZ have used either data of blood-based6,34,35, or neu-
roimaging data9,10,26,36,37, few studies have investigated the potential of biomarkers for the diagnosis of SZ using 
gut microbiota data. Based on accumulating evidence, the gut microbiota bidirectionally communicates with 
the central nervous system through the microbiome-gut-brain axis (MGBA), thereby influencing brain function 
and behavior38,39. Recently, a few studies have focused on the role of the MGBA in SZ and revealed several altera-
tions in the gut microbiota in patients with SZ4,40–42. These reports of an altered gut microbiotas are consistent 
with the finding from study, for which the most informative features of the gut microbiota include Lactobacillus, 

Table 3.   Top 34 features (5%) showing the most discriminative biomarkers for multi-biological 
predictions. The top 34 features are listed in the descending order of their weights. GM gut microbiota, EEG 
electroencephalogram, SOD superoxide dismutase, MLR monocyte–lymphocyte ratio, MON monocyte, NEU 
neutrophil, CRP C-reactive protein, WBC white blood cell, NLR neutrophil–lymphocyte ratio, PLT platelet, 
aNLe nodal local efficiency, aNe nodal efficiency, aNCp nodal clustering coefficient, aDc degree centrality. a The 
EEG features are represented as a_b_c, where a represents the frequency band, b represents brain network 
attributes, and c represents the electrode channel. b Undefined Lachnospiraceae. c Undefined Ruminococcaceae.

Number Feature name Feature type Number Feature name Feature type

1 SOD Blood 18 Undefinedb GM

2 MLR Blood 19 Anaerostipes GM

3 Lactobacillus GM 20 PLT Blood

4 MON Blood 21 alpha2_aNLe_P4 EEG

5 Haemophilus GM 22 Dialister GM

6 Prevotella GM 23 beta1_aLambda EEG

7 NEU Blood 24 Slackia GM

8 CRP Blood 25 Undefined GM

9 Megamonas GM 26 Odoribacter GM

10 theta_aNLe_T6a EEG 27 Ruminococcusc GM

11 theta_aNe_T6 EEG 28 theta_aDc_FP1 EEG

12 theta__aNCp_T6 EEG 29 alpha2__aNCp_P4 EEG

13 WBC Blood 30 beta2_aNLe_FP2 EEG

14 NLR Blood 31 beta2_aDc_O2 EEG

15 Collinsella GM 32 Gemmiger GM

16 gamma_aDc_F7 EEG 33 alpha2_aNLe_T4 EEG

17 Clostridium GM 34 alpha2__aNCp_T4 EEG

Table 4.   Comparison of classification performance with existing research. RF random forest, PLS-DA partial 
least squares discriminant analysis, LDA linear discriminant analysis, EEG electroencephalogram, SVM 
support vector machine, AUC​ area under the receiver operating characteristic curve.

References Sample size Input feature
Feature selection 
method Classifier

Cross validation 
method Performance

Shen et al.4 SZ = 64
HC = 53 Gut microbiota Boruta variable 

selection RF None AUC = 0.837

Brisa et al.14 SZ = 58
HC = 123 Blood and cognitive PLS-DA LDA Tenfold Accuracy = 0.86

AUC = 0.89

Jason et al.20 SZ = 40
HC = 12 EEG None SVM None

Accuracy = 0.87
Sensitivity = 0.90
Specificity = 0.77

Sai Krishna Tikka 
et al.21

SZ = 38
HC = 20 EEG None SVM Hold-out

Accuracy = 0.79
Sensitivity = 0.92
Specificity = 0.50
AUC = 0.71

Our best SZ = 49
HC = 50

Gut microbiota
Blood
EEG

None SVM Tenfold
Accuracy = 0.92
Sensitivity = 0.92
Specificity = 0.92
AUC = 0.97
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Haemophilus, Collinsella, Clostridium, and Prevotella. Furthermore, Yuan et al.42 have shown that changes in 
the gut microbiota and its metabolites may cause neuronal damage. Lactobacillus stimulate TNF production; 
therefore, Lactobacillus may induce changes in inflammatory factors that induce SZ43. On the other hand, short-
chain fatty acids (SCFAs), the primary bacterial metabolites produced, can enter the central nervous system 
through the blood–brain barrier (BBB)44. Clostridium is the main source of propionate in the gut, indicating 
that Clostridium may influence the BBB and act on the brain by regulating SCFAs. In addition, Collinsella has 
been shown to produce the proinflammatory cytokine IL-17a and to alter intestinal permeability by promoting 
the release of neurotransmitters produced by gut microbiota45, thereby acting on the central nervous system. 
Above all, these investigations suggested that the gut microbiota may affect the central nervous system by acting 
on several pathways, providing a physiological basis for validating the use of the gut microbiota as a biomarker 
in the classification of the two groups.

Among the blood features we extracted, those that contributed the most to the classification included SOD 
level, MLR, MON count, NEU count, CRP level, WBC cunt and NLR, consistent with previous studies using 
conventional univariate statistical analysis. Numerous studies and increasing evidence suggest that the oxidative 
stress contributes to the pathogenesis of SZ, and abnormalities in antioxidant enzymes, including SOD activ-
ity, are frequently observed in patients diagnosed with SZ46–48. A previous study49 indicated that SOD activity 
remained lower in patients with SZ and may be an important indirect biomarker of oxidative stress in individuals 
with SZ. The present findings provide additional evidence of increased oxidative stress in patients with SZ. Blood 
inflammatory and immune system abnormalities in patients with SZ have been widely reported, which lead to an 
increase in levels of inflammatory markers. The NEU count was reported to be increased in patients with chronic 
SZ50. An increased MON count has also been reported in patients with chronic SZ51,52. Furthermore, a moder-
ately increased CRP level in patients with SZ compared to HCs has been observed53–55. Subjects with SZ have 
significantly elevated WBC counts. The MLR and NLR have recently been used as indicators of inflammation, 
and predictors of cardiovascular disease, the leading cause of death in patients with SZ. A recent meta-analysis 
revealed a significant increase in the NLR in patients with SZ56. Elevated MLR and NLR have been observed in 
patients with SZ, suggesting an increased inflammatory response in individuals with SZ50. Our experimental 
results are consistent with these studies.

Table 3 shows that the EEG features with heavy weight are primarily derived from the delta and alpha2 fre-
quency bands and partly from the beta and gamma frequency bands. Previous investigators observed increases 
in delta and theta waves, decreases in alpha waves and increases in beta and gamma waves in individuals with 
SZ9,10,12,14,57,58. Moreover, the most prominent change was in the spectral power of the delta wave, which may 
support the development of a biological marker for diagnosing patients with SZ9,10,59. In addition, among these 
EEG features, node attributes including nodal local efficiency (aNLe), nodal efficiency (aNe), nodal clustering 
coefficient (aNCp), and degree centrality (aDc), contributed most to classifying patients with SZ. EEG studies 
have shown a disruption in the small-world attributes of patients with SZ in the resting state, with a lower clus-
tering coefficient and a longer shortest path length60. In addition, global and local efficiency are lower in patients 
with SZ than that in healthy people61. The most discriminative EEG features in Table 3 are primarily concentrated 
in the temporal lobe and partly in the frontal lobe. Abnormalities in temporal and frontal lobe function and 
structure have been widely reported in patients with SZ62 The frontal and temporal lobes are primarily associ-
ated with higher cognitive functions, among which the temporal lobe is associated with hearing and language 
functions, which have been confirmed by MRI studies63. These results are consistent with previous structural 
and functional neurological findings.

Limitations
The present study has several limitations. First, since this study employed a cross-sectional design, we cannot 
infer causality. Some evidence suggests that immune-inflammatory markers are altered from the beginning of SZ, 
and researchers have broadly accepted that inflammation plays a causal role in SZ. However, from a diagnostic 
perspective, this finding is irrelevant. A specific marker must only discriminate between two conditions, regard-
less of whether it is a cause, consequence, or correlate of the pathophysiological process. Second, a significant 
difference in education years was observed between the two participant groups, although the results remained 
unchanged when this factor was included as a covariate. Third, the sample size was moderate. A larger independ-
ent sample is essential to examine the reproducibility of our findings.

Conclusions
In conclusion, we developed an integrated framework of machine learning and used the combination of multi-
biological data to discriminate patients with SZ from HCs, which substantially improved the classification perfor-
mance. Based on our results, features from multiple biological datasets provide complementary information that 
aids in providing effective and objective biomarkers to inform the clinical diagnosis of SZ, and our framework is 
effective at conveying comprehensive and complementary information for the purpose of classification.
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