Skip to main content
. 2021 Jul 19;11:14636. doi: 10.1038/s41598-021-94007-9

Table 3.

Top 34 features (5%) showing the most discriminative biomarkers for multi-biological predictions.

Number Feature name Feature type Number Feature name Feature type
1 SOD Blood 18 Undefinedb GM
2 MLR Blood 19 Anaerostipes GM
3 Lactobacillus GM 20 PLT Blood
4 MON Blood 21 alpha2_aNLe_P4 EEG
5 Haemophilus GM 22 Dialister GM
6 Prevotella GM 23 beta1_aLambda EEG
7 NEU Blood 24 Slackia GM
8 CRP Blood 25 Undefined GM
9 Megamonas GM 26 Odoribacter GM
10 theta_aNLe_T6a EEG 27 Ruminococcusc GM
11 theta_aNe_T6 EEG 28 theta_aDc_FP1 EEG
12 theta__aNCp_T6 EEG 29 alpha2__aNCp_P4 EEG
13 WBC Blood 30 beta2_aNLe_FP2 EEG
14 NLR Blood 31 beta2_aDc_O2 EEG
15 Collinsella GM 32 Gemmiger GM
16 gamma_aDc_F7 EEG 33 alpha2_aNLe_T4 EEG
17 Clostridium GM 34 alpha2__aNCp_T4 EEG

The top 34 features are listed in the descending order of their weights.

GM gut microbiota, EEG electroencephalogram, SOD superoxide dismutase, MLR monocyte–lymphocyte ratio, MON monocyte, NEU neutrophil, CRP C-reactive protein, WBC white blood cell, NLR neutrophil–lymphocyte ratio, PLT platelet, aNLe nodal local efficiency, aNe nodal efficiency, aNCp nodal clustering coefficient, aDc degree centrality.

aThe EEG features are represented as a_b_c, where a represents the frequency band, b represents brain network attributes, and c represents the electrode channel.

bUndefined Lachnospiraceae.

cUndefined Ruminococcaceae.