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A deep learning model for predicting next-
generation sequencing depth from DNA sequence
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Targeted high-throughput DNA sequencing is a primary approach for genomics and mole-
cular diagnostics, and more recently as a readout for DNA information storage. Oligonu-
cleotide probes used to enrich gene loci of interest have different hybridization kinetics,
resulting in non-uniform coverage that increases sequencing costs and decreases sequencing
sensitivities. Here, we present a deep learning model (DLM) for predicting Next-Generation
Sequencing (NGS) depth from DNA probe sequences. Our DLM includes a bidirectional
recurrent neural network that takes as input both DNA nucleotide identities as well as the
calculated probability of the nucleotide being unpaired. We apply our DLM to three different
NGS panels: a 39,145-plex panel for human single nucleotide polymorphisms (SNP), a 2000-
plex panel for human long non-coding RNA (IncRNA), and a 7373-plex panel targeting non-
human sequences for DNA information storage. In cross-validation, our DLM predicts
sequencing depth to within a factor of 3 with 93% accuracy for the SNP panel, and 99%
accuracy for the non-human panel. In independent testing, the DLM predicts the IncRNA
panel with 89% accuracy when trained on the SNP panel. The same model is also effective at
predicting the measured single-plex kinetic rate constants of DNA hybridization and strand
displacement.
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ARTICLE

ith more than 3 billion DNA nucleotides in the hap-

loid human genome, deep sequencing of the entire

human genome for clinical applications is not eco-
nomically feasible. Instead, researchers and diagnostic labora-
tories typically use targeted sequencing, in which a set of DNA
hybridization probes is designed to bind and enrich the DNA
regions of interest!:2, However, the DNA oligonucleotide probes
in a targeted sequencing panel typically all have different kinetics
and thermodynamics of binding to their respective targets.
Consequently, a naively designed and synthesized panel of DNA
probes will result in grossly different enrichment efficiencies for
different genetic loci.

The sensitivity of NGS to a locus is directly proportional to the
number of NGS reads that contain the locus (the locus’s
sequencing depth). Nonuniformity of sequencing depth either
reduces the sensitivity at low-depth loci or necessitates additional
sequencing to guarantee that all loci are sequenced to a minimum
desired depth. Empirical optimization of an NGS panel’s probe
sequences and concentrations is time-consuming and labor-
consuming, but currently cannot be avoided. A computational
method to predict the sequencing depth based on probe sequence
could inform the selection of probe sets with higher uniformity
and modulation of probe concentrations to achieve higher
uniformity.

The DNA biochemistry and biophysics literature contains
several  well-validated  models of DNA  structure,
thermodynamics®4, and kinetics>-8. To model sequencing depth
against probe sequences, ignoring our extensive knowledge of
DNA biophysics and relying only on DNA sequence information
would likely lead to suboptimal model performance. Simulta-
neously, we want to avoid extensive feature construction and
curation, as such expert systems are generally labor-intensive to
build and exhibit low generalizability to adjacent problems.
Consequently, we decided to take a middle ground where we
utilized only a small number of global (oligonucleotide molecule-
level) features and local (individual nucleotide-level) features that
can be fully autonomously computed by the well-accepted DNA
folding software Nupack? (Fig. 1b).

Here, we constructed a deep learning model (DLM) for pre-
dicting NGS sequencing depth for a given oligonucleotide probe
and characterized its performance on predicting the sequencing
depths of three NGS panels, one with 39,145 probes against
human single nucleotide polymorphisms (abbreviated as SNP
panel), one with 2000 probes against human long non-coding
RNA (abbreviated as IncRNA panel), and one with 7373 probes
against artificially designed synthetic sequences for information
storage (abbreviated as synthetic panel)!%. The IncRNA panel
serves as an independent test set for the SNP panel as its probes
were separately designed and experimentally tested using the
same library preparation method (Fig. 1a). Our DLM is based on
a recurrent neural network (RNN) architecture to better capture
both short-range and long-range interactions within the DNA
probe sequence that can impact capture efficiency and speed.

Results

Design of the deep learning model. In the genomics field, DNA
probe oligonucleotide lengths range from 50-150 nucleotides
(nt). Thus, in designing our DLM, we considered that the model
should be generalizable to DNA sequences of different lengths. To
this end, neural networks (NN) with a fixed number of input
nodes, including conventional feed-forward NNs and convolu-
tional NNs for image recognition!!, are not well-suited for DNA
sequence inputs. Furthermore, from DNA thermodynamics and
structure studies>®1213, we know that distal DNA nucleotides
can hybridize to each other in secondary structures. These long-

range interactions in DNA molecules are better captured by
recurrent neural networks (RNNs), which have been applied
commercially in speech recognition and natural language
processing!4.

In brief, RNNs contain a number of internal hidden nodes,
which are updated serially based on the ordered inputs and their
current state values. RNNs have two primary implementations:
long short-term memories (LSTMs) and gated recurrent units
(GRUs). We chose to implement our DLM using GRUs because
they have been reported to achieve similar performance using
fewer computational resources!®. Our DLM includes a total of
four GRUs grouped into two sets (Fig. 1c): two GRUs for target
sequence T, and two GRUs for probe sequence P. Although the
target sequence is always the reverse complement of the probe
sequence in our DLM model, we included separate GRUs for T
and P both to ease the training of the model and to enable the
DLM to be more generalizable to problems with asymmetric
information on T and P, such as in the strand displacement
kinetics that we discuss later.

Each of the two GRUs for each oligonucleotide (T or P) takes
the sequence either in the direction from 5’ to 3/, or from 3’ to 5’
(Fig. 1c). Unlike biological polymerization reactions which have a
clear 5" to 3’ directionality, the hybridization process is equally
likely to initiate on either end. For RNNs and GRUs, the last
inputs tend to have a larger influence on the final state values of
the hidden nodes, so the design decision to include sequences in
both directions is aimed at reducing input direction bias.

For each GRU, at every single nucleotide there are three input
variables: (1) a binary bit indicating whether the nucleotide is a
purine (A or G), (2) a binary bit indicating whether the nucleotide
is “strong” (G or C), and (3) an analog Nupack-computed
probability pynpairea that the nucleotide is unpaired at the reaction
conditions®. We chose to encode the identity of each nucleotide
in two dimensions rather than a single dimension (e.g., A=1,
T =2, C=3, G=4), in order to reflect the pairwise “distances”
between any two nucleotides, based on DNA biochemistry
knowledge. The unpaired probability of each nucleotide reflects
our biophysical understanding that only unpaired nucleotides can
participate in hybridization reactions; a paired nucleotide must
first dissociate in order to allow new Watson-Crick base-pairing.
Punpaired 18 calculated using Nupack and considers the ensemble of
all possible secondary structures that can be adopted by each
DNA molecule, rather than just the minimum free energy
structure.

Each GRU was designed to have 128 hidden nodes (h). All
node values are initialized to 0 and updated based on each
nucleotide’s information. The hidden nodes of the RNNs
represented potential patterns in the DNA sequence that the
GRU could identify, and the final values of states after updating
all nucleotides in the T and P sequences correspond to the
presence or absence of those patterns. Thus, the number of
hidden nodes in the RNN (currently 128) limited the maximum
number of patterns that could be observed by the RNN.
Preliminary studies showed similar prediction performance for
GRUs with 128 internal states as for 256 internal states (data not
shown), suggesting that 128 states were sufficient to capture the
bulk of the patterns. Through the course of DLM training and
weight updating through back-propagation, the GRU parameter
weights were modified until they represented frequently observed
patterns in the training data.

Downstream of the GRU, we used a conventional feed-forward
neural network (FFNN) that takes as input the final state values of
the hidden nodes of the GRUs (128 from H*~>? and 128 from
H*¥~>%). In addition to the hidden node values, the FENN also
takes as input 4 global features: the reaction temperature, the
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Fig. 1 Overview of targeted NGS panel workflow and deep learning model (DLM) for predicting sequencing depth. a DNA probes (P) are designed for
hybridizing to target sequences (T) for subsequent solid-phase separation and enrichment. In NGS, each read corresponds to a randomly sampled DNA
molecule from the enriched library, and NGS reads are bioinformatically aligned to the probe sequences using standard algorithms and software. See

Supplementary Note 1 for further details on the NGS experimental and bioinformatic workflow. b Overview of NGS read depth prediction method. ¢ The
DLM consists of 4 recurrent neural networks implemented as gated recurrent units (GRUs) and 1 feed-forward neural network (FFNN). Each GRU has 128
internal state nodes. The final GRU node values for the target DNA sequence T and for the probe DNA sequence P from 5’ to 3’ (H?‘ >3 and Hf,'_>3') are
summed; likewise HZ~>% and H3~>%. These two hidden state node sum vectors are then concatenated into a vector of 256 node values, serving as input
to the FFNN. In addition, 4 global parameters also serve as input to the FFNN, bringing the total inputs to 260. The output was a single node corresponding

to the log predicted read depth log;o(depth) for the DNA target sequence.

predicted standard free energy of folding of probe(AG°(P)) and
Target(AG°(T)), and the predicted standard free energy of
formation of the TP double-stranded DNA molecule (AG*(TP)).
These global features were intended to capture properties of the
T + P reactions that were not easily revealed by the base pair
probabilities. Thus, a total of 260 nodes were used as the FFNN
input. The FFNN network contained 2 hidden layers with 256
and 128 nodes, respectively; these values were picked arbitrarily
based on our experience, and overall prediction performance did
not appear to be sensitive to the dimensionality of the FFNN
hidden layers.

Training and validation of the DLM on NGS read depth. The
SNP panel and the synthetic panel were used to independently
train the DLM, and sequencing depths were predicted in cross-
validation for each panel individually. The IncRNA panel was
used as a separate test set for the SNP panel since these two panels
share the same library preparation method. The reason for doing
so is because each NGS library preparation method has a large
number of different experimental variables (experimental work-
flow, sample type, hybridization temperatures, etc.) that we felt
were beyond the scope of the DLM. From a practical point of
view, we expect that most users would aim to selectively optimize
probe sequence and concentration to improve uniformity within
one NGS library preparation method, rather than across different
methods. Nevertheless, we still tried training and predicting
between the SNP panel and the synthetic panel and summarized
the results in Supplementary Note 3. Probe sequences and
observed read depth can be found in Supplementary Data 1-3.
Each of our NGS datasets consists of two parts: features generated
from probe sequences and read depth measured with one NGS

library. For the SNP panel and the synthetic panel, we randomly
split the data into 20 classes, and predictions of each class (5% of
the total dataset) were obtained by a DLM trained on the
remaining 19 classes (95% of the total dataset), as shown in
Fig. 2a. Thus, a total of 20 DLMs were used in the 20-fold cross-
validation predictions for evaluating prediction accuracy. Within
each training set, the global features and the log;o(Depth) were
standardized to have a mean of 0 and a standard deviation of 1.
The mean and standard deviation of each training set was used to
standardize the global features of the corresponding validation
set, and to rescale the model predictions to their original mean
and standard deviation. There are roughly 300,000 weight para-
meters in the DLM (illustrated in Fig. 1c); these were preset via
Xavier initialization (uniformly distributed weights with standard
deviation depends on the number of parameters in a layer) in
order to alleviate the vanishing gradient problem for deep NNs!©

During training, we iteratively minimized the Loss using gradient
descent with an Adam optimizer!” to update the network weights.
The Loss here is proportional to the mean squared error between
the predicted and experimental log sequencing depth. To minimize
overfitting, we implemented an additional dropout layer after each
hidden layer of the FFNN, in which 20% of parameters are
randomly selected and prevented from updating in each training
iteration. The DLM was implemented using Tensorflow!$, and
DLM hyper-parameters include GRU hidden nodes (128), FFNN
hidden nodes (256 and 128), batch size (999), learning rate (0.0001),
and node dropout fraction (20%). We tried roughly 50 sets of
different hyper-parameter values, and the values listed above appear
to yield the shortest training time and best predictive performance.
Training stops at epoch 250 and 1000 for the SNP panel and the
synthetic panel, respectively. For the SNP panel, the training time
for each epoch is roughly 10s while taking less than 3 gigabytes
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Fig. 2 Cross-validation and independent test results of the DLM on predicting NGS depth. a Data pre-processing and training pipeline. Raw FASTQ NGS
reads were aligned to the target sequences3334, and the read depth of each template sequence was counted3®. Separately, local and global features for
each target/probe were computed using Nupack®. For the SNP panel and the synthetic panel, the complete dataset was split into 20 classes, and each
class was predicted based on the DLM training results on the other 19 classes. b Summary of observed root-mean-square error (RMSE) for the SNP panel.
Each point corresponds to the prediction results for one of the 20 validation classes; the naive model predicted log;o(Depth) based on the mean of the
training set, while the linear model fit log;o(Depth) by the four global features (including the intercept). In box-whisker plots, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The maximum whisker lengths are specified as
maxima and minima. ¢ Predicted vs. observed sequencing depth for the SNP panel. The plots are the aggregated results for all 20 validation classes. Dark
gray shading marks the zones where the predicted and the observed read depth agreed to within a factor of 2; light gray shows agreement to within a factor
of 3. F2err and F3err denote the fraction of sequences with depth predicted beyond a factor of 2 and 3, respectively. Colormap shows the number of probes
within each 2-D bin. d Predicted vs. observed sequencing depth for the IncRNA panel, which contains a total of 2000 probes, where 34 probes with O
depth were excluded. IncRNA panel was separately designed and experimentally tested using the same library preparation method as the SNP panel,
serving as an independent test set. The DLM was first trained on the SNP panel with early stopping at 250 epoch and then predicted the IncRNA panel with
the same model parameters. Read depth was scaled so that the average was the same as the SNP panel. e Predicted vs. observed sequencing depth for the
synthetic panel, which contains a total of 7373 probes, where 158 probes with O depth were excluded. The plots are the aggregated results for all 20
validation classes. f Histogram of G/C content of the probe sequences from the three panels. The SNP panel and the IncRNA panel contain a greater
variability in G/C content since the synthetic panel is procedurally designed and has a tighter G/C content distribution.

memory of a graphics processing unit, and feature generation using
Nupack takes about 0.5s per probe sequence on a conventional
desktop computer.

DLM performance and reproducibility on NGS datasets. Fig-
ure 2b summarizes the root-mean-square error (RMSE) of the
DLM predicted values of log;o(Depth) based on different
sequences vs. the actual observed NGS read depth for the SNP
panel comprising 39,145 probes synthesized as a pool by Twist
Biosciences. Notably, all the probes hybridize under the same
temperature (65 °C) and bear the same length of 80 nt, excluding
the two adapters (30 nt) at both ends for probe amplification. Of
the 39,145 probes, NGS results showed 0 reads on 1105 probes.
Our previous studies on Twist oligonucleotide pools suggest that
the lack of sequencing reads for these may indicate difficulties
with probe synthesis!®. Consequently, we chose to exclude these
probes with 0 observed NGS reads in order to eliminate the
possibility of training against noise.

The DLM vyielded an average RMSE of roughly 0.30 on both
the training classes and the test classes. For comparison, a naive
model of predicting sequencing depth only based on the mean
log;o(Depth) of all observed sequences produced an RMSE of
0.41. A linear regression model that fit the four global features
(including the intercept) against the log;o(Depth) produced an
RMSE of 0.34 (Fig. 2b). Figure 2c¢ plots the comparison of
predicted and measured sequencing depths for each sequence,
where the 20 validation sets are aggregated. From this figure, we
see that a significant contributor to our DLM’s RMSE is a subset
of DNA sequences that are observed to have very low
log;o(Depth) (e.g., 0.3, corresponding to a depth of 2), but
predicted to have log;o(Depth) between 1 and 3.3. Further
investigating the probe sequences, we found that most of the
probes have low G/C content. Our interpretation of this
phenomenon is that probes with lower expected read depth
(e.g., probes with low G/C content) are more sensitive to random
fluctuations (probe synthesis yield, hybridization yield, binding to
plasticware, bridge PCR efficiency during Illumina NGS, etc.),
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which would bias the observed log;o(Depth). For example,
suppose the expected read depth for a certain probe is 50 and
the random fluctuation is +45 with uniform distribution, then the
observed depth ranges from 5 to 95 while the observed
log;o(Depth) ranges from 0.70 to 1.98. Note that the expected
log;o(Depth) is 1.70; thus there is a higher probability of
log;o(Depth) being lower than expected than being higher than
expected (1.70 — 0.7<1.98 —1.70). If the DLM predicts the
expected log;o(Depth), then there would be more probes whose
observed log;o(Depth) is lower than the predicted log;o(Depth).
However, the DLM cannot explain those random fluctuations
solely based on probe sequences.

To validate our DLM in the practical scenario of optimizing new
panels with a model trained on existing panels, we designed and
tested the IncRNA panel comprising 2,000 DNA probes synthesized
by Twist Biosciences. The IncRNA panel has the same library
preparation method (experimental workflow, probe length, hybri-
dization temperature, sample type, etc.) as the SNP panel, but
differs in probe sequences, experimental operator, donor of DNA
sample, sequencing instrument, and a batch of reagents. Figure 2d
shows the predictions of IncRNA panel produced by a DLM trained
on SNP panel with early-stop at epoch 250. Read depth of the
IncRNA panel is scaled so that its average read depth is the same as
the SNP panel. Despite the RMSE, F2err, and F3err of the IncRNA
panel being slightly worse than the SNP panel (0.326 vs. 0.301,
30.4% vs. 20.9%, and 11.04% vs. 7.31%), the performance decrease
may be attributed to experimental variations that are not related to
the library preparation method. It is important to point out that the
DLM was trained on read depth measured with only one NGS
library of SNP panel, which greatly reduced the cost of training such
a model. The results from the IncRNA panel indicate that the DLM
is capable of generalizing different panels with the same library
preparation method while being robust against experimental
variations.

Figure 2e shows the DLM results applied to the synthetic panel
comprising 7373 DNA probes against non-biological DNA
sequences intended for DNA information storage applications.
All the probes hybridize under 55 °C and share the same sequence
length of 110 nt, excluding the two 20nt adapters for probe
amplification. As these sequences were procedurally generated to
avoid known problematic DNA sequences, such as those with
high or low G/C content (Fig. 2f), homopolymers, etc., there is
much less variation in sequencing depth, to begin with. None-
theless, the DLM is effective at predicting sequencing depths
beyond the naive model and the linear regression model
(Supplementary Note 3).

Our DLM in total contains over 300,000 parameters (e.g., node
biases and node-node weights). A large number of parameters
leads to potential concerns regarding overfitting and model
reproducibility. To address this, we next performed 15 indepen-
dent 20-fold cross-validation runs on the SNP panel, in order to
characterize the reproducibility of the model (Fig. 3). For each
cross-validation run, the whole dataset was randomly grouped
into 20 classes and each of the 300 (15 x 20) DLMs was initiated
with different weight parameters. All 300 DLMs consistently
reached early-stop at rough epoch 250 (Fig. 3a), and the predicted
sequencing depths showed high pairwise concordance (Fig. 3b,c).
Across the 105 pairwise comparisons of the 15 cross-validation
runs, we observed a Pearson’s r value of no less than 0.975.
Consequently, we believe that our approach produces DLMs with
fairly consistent predictions despite variations in parameter
initialization and training sets.

DLM prediction of single-plex DNA hybridization and strand
displacement rate constants. Based on our understanding of

DNA and NGS, we believe that NGS read depth is primarily
dependent on the yield and speed of DNA probe hybridization,
and secondarily by chemistry-specific biases. Consequently, our
DLM should also be effective at predicting the rate constants of
hybridization of DNA (Fig. 4a). To further challenge our DLM
and to highlight the effectiveness of our DLM approach, we
further applied the DLM to the prediction of a related DNA
mechanism, strand displacement?02! (Fig. 4b). Unlike NGS
experiments in which thousands of DNA probes and targets are
simultaneously hybridizing, for DNA hybridization and strand
displacement rate constant prediction, we use time-based fluor-
escence data in which a single target and probe species are
observed with high time and yield resolution (Fig. 4c, Supple-
mentary Note 2). Sequences of targets, blockers, and probes can
be found in Supplementary Data 4 and 5. See also ref. & for
additional explanation on hybridization reaction kinetics experi-
mental details.

Experimental hybridization rate constants are taken from ref. 8,
and experimental strand displacement rate constant data are
collected for this work. Supplementary Note 2 describes details of
how best-fit rate constants are fitted to fluorescence-based
kinetics data. Figure 4d shows the DLM prediction vs. experi-
mental best-fit rate constants for 210 hybridization reactions and
211 strand displacement reactions. Note that the hybridization
and strand displacement experiments used the same set of 100
probe sequences of 36nt and each probe was tested under
different temperatures (28 °C to 55 °C), producing a total of 421
data points. Data points sharing the same probe sequence are
grouped as one class. Here, we performed 100-fold leave-one-
class-out (LOCO) prediction rather than 20-fold cross-validation,
because the smaller number of data points would lead to
significant biases due to small sample sizes of the test set; see
Supplementary Note 3 for details. The variation in rate constants
observed is similar to the variation in NGS sequencing depths (4
logs), though the latter is possibly somewhat smaller due to the
saturation of hybridization for the timescales of NGS hybrid-
capture reactions. In addition, we compared the DLM predictions
of hybridization rate constants with the predictions from a
previous expert system machine learning approach based on
weighted neighbor voting®. Figure 4e shows that their prediction
results are similar.

The purpose of this sub-study was to see if the DLM could be
used for non-NGS applications of nucleic acid molecular
diagnostics, such as those based on qPCR*223 and
electrochemistry?*. Importantly, our DLM was trained simulta-
neously on both the hybridization and the strand displacement
rate constant datasets. Because the target T and probe P
sequences for the hybridization reactions are identical to that of
strand displacement reactions, the difference between the two is
manifested only in the predicted probability of each nucleotide
being unpaired. This information alone was enough to commu-
nicate to the DLM the distinction between hybridization and
strand displacement, and no special case handling or neural
network architecture modification was needed to accommodate
strand displacement.

Contribution of different features to DLM performance. The
architecture of the DLM and the local and global features were
initially decided based on our understanding of the behavior of
DNA, rather than through knowledge-free exploration. Conse-
quently, it is possible that some of the features are not directly
relevant to NGS depth or hybridization/strand displacement rate
constants. To test this hypothesis, we next constructed a series of
DLMs in which different features were removed from the model
(Fig. 5).
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Fig. 3 Reproducibility of DLM predictions for SNP panel. a The plot of Loss vs. training epoch, showing 300 (15 x 20) DLMs from 15 independent 20-fold
cross-validation runs. The shaded blue area shows the upper and lower limit of Loss of the 300 training sets, while the shaded red area shows the upper
and lower limit of Loss of the 300 validation sets. At above 250 epochs, the training set Loss consistently continues to decrease but the validation set Loss
starts increasing, indicating overfitting. Consequently, we halt DLM training at 250 epochs. b Comparison of read depth prediction results on the SNP panel
from two independent cross-validation runs. For each cross-validation run, the whole dataset was randomly grouped into 20 classes and each of the 300
DLMs was initiated with different weight parameters. See Supplementary Note 3 for additional comparison results. ¢ The deviation between predicted read
depths from 2 independent cross-validation runs. In the box-whisker plot, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The maximum whisker lengths are specified as 1.5 times the interquartile range. d Summary of pairwise
comparison results for 15 independent cross-validation runs (105 total comparisons). In the box-whisker plot, the central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The maximum whisker lengths are specified as maxima and

minima.

We found that 3 of the 4 global features, individually, had
essentially no impact on any of the predictions. Both sets of local
features (sequences and base probabilities) were important for
some aspects of the DLM prediction, but it appears that the two
are interchangeable for predicting the NGS depths of the SNP
panel. Examining the global features more closely, we note that
temperature T is the same for all sequences within a panel, so it is
tautological that the DLM cannot learn any impact from
changing T.

The standard free energy of formation of the target-probe
duplex Erp likely did not matter because the lengths of all probes/
targets were long enough that the probe binding was no longer
limited by its thermodynamics. Finally, the standard free energy
of folding of the target by itself E; likely did not matter because it
was not and could not be accurately calculated: whereas the probe
P has a homogenous molecular population with a well-defined
sequence, the target T is a heterogeneous mixture constructed
through randomized physical fragmentation of human genomic
DNA. Consequently, the 5" and 3’ overhang sequences of the
target are highly variable, and cannot be reflected as a single
sequence. Prediction accuracies of all feature-reduced DLMs are
summarized in Supplementary Note 4. For predicting DNA
hybridization and strand displacement rate constants, the
performance of even reduced models is in general much better
than random guess models (Supplementary Note 5).

Discussion

Targeted high-throughput sequencing of DNA has become a
dominant method for biological and biomedical research, and
furthermore is becoming standard of practice for cancer
treatment?®>. More recently, targeted sequencing has been
explored as a method for random-access readout of information
stored densely and for the long term in DNA!C. Although DNA
sequencing costs are exponentially decreasing over the years26,
poor sequencing uniformity would waste a large majority of reads
sequencing high-depth targets redundantly and providing insuf-
ficient information on low-depth targets. Consequently, a strong
need exists to rationally design NGS panels with high uniformity.

However, predicting DNA hybridization kinetics and efficiency
is extremely difficult even for experts in single-plex settings®. In a
complex multi-component system that is hybrid-capture target
enrichment, prediction of sequencing depth becomes intractable
for first-principles biophysical models. At the same time, the large
size of NGS datasets renders the problem well-suited for machine
learning.

Deep learning leverages large datasets to autonomously dis-
cover weak correlative features between inputs and outputs. This
has led to deep learning becoming dominant in computer vision
and other areas with large available datasets. On the other hand,
simpler statistical models (e.g., multivariate linear regression)
remain dominant in the natural and biomedical sciences?’-%8
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where well-curated data for specific problems are scarce. Expert
system machine learning approaches based on extensive manual
feature construction and curation take an in-between approach,
using expert knowledge to guide the construction of narrowly
optimized prediction software, but are generally poor at gen-
eralization to similar problems.

In our DLM, we restricted our inputs to a limited set of global
and local features that can be automatically computed based on

DNA sequence, in order to avoid the trap of labor-intensive and
problem-specific model construction. Given both the DNA
thermodynamics model inaccuracy/incompleteness* and the fact
that we could not feasibly consider the intermolecular interac-
tions from all 3+ billion nucleotides of the human genome, we
believe that the Nupack-predicted base-pair probability values
likely have significant error. Future models for more accurately
predicting base-pair accessibility in a highly complex and
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heterogeneous solution could prove crucial to further improve the
prediction accuracy of the DLM.

DNA sequences are rather unlike most other inputs for pro-
blems solved by deep learning networks. DNA molecules are
known to have long-range interactions where distal DNA
nucleotides bind to each other. Moreover, there are not orderly
“grammar” rules such as in natural language processing?® that
can be readily discovered by neural networks. Distal and inter-
molecular DNA binding is essentially the effect of chemistry and
does not necessarily need to conform to human intuition. These
all contribute to the difficulty of building neural networks that
accurately predict DNA behavior based on the sequence.

Conversely, once a neural network architecture is established to
“understand” DNA sequences, it could hold potential for a large
range of other nucleic acid-based problems. As a research
example, a large range of non-coding RNAs?” have been dis-
covered; being able to predict their structures can provide insights
into their function. As a biomedical example, codon optimization
problems3! for synthetic biology, including de novo construction
of RNA-based drugs®?. The incorporation of generalizable
domain knowledge within deep learning architectures will be a
key enabler for predicting behaviors for nucleic acids, given the
impact of their sequences on form and function and the expo-
nential number of possible sequences of given lengths.

Methods

In this paper, we performed DLM training and validation on two types of datasets:
NGS sequencing depth and DNA interaction kinetics rate constants. We would like
to introduce experimental methods individually on both systems.

NGS studies. We have two sets of NGS read depth data from two different starting
materials: sheared human genomic DNA fragments and synthetic DNA sequences.
We start with the human genomic DNA panel experiment.

Human genomic DNA NGS library preparation

Target pool preparation from Human Genomic DNA. Genomic DNA used in this
NGS experiment was extracted from the buffy coat of a patient blood sample, using
QIAamp DNA Blood Mini Kit (Qiagen). All extracted Genomic DNA was sheared for
5 min using the Covaris M220 Focused-Ultrasonicator and Holder XTU Insert
microTUBE 130 L to generate products with a basepair-peak of 170-200 bp. This
sheared DNA was quantified using Qubit 3.0 Fluorometer (Thermo Fisher Scientific)
and Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific). As demonstrated in main
text Fig. 1. a, 25 ng of sheared genomic DNA was used for downstream end-prep
ligation and size-selection using NEBNext Ultra II DNA Library Prep Kit for Illumina.
The end product was quantified using qPCR and then sufficiently amplified with index
primers. PCR amplicons were purified and size selected using Dual-Side size selection
of SPRISelect Beads(Beckman Coulter Life Sciences) and finally quantified using Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific) as 138 ng in total 20 pL. In both the
NGS library preparation process(human genomic DNA panel and synthetic DNA
panel), we used iTaq Universal SYBR Green Supermix(Biorad) with the fast protocol
for all QPCR quantifications, Phusion® Hot Start Flex DNA Polymerase(NEB) with
standard protocol for all PCR amplifications, DEPC water as dilution/elution buffer for
all PCR mixture and elution, and SPRISelect Beads for most purification/size selection
if not otherwise specified.

Capture probe pool preparation. Forty-two thousand 80-nt long targeting regions
were selected out of the whole genome with high specificity so that there was no
pseudogene impacting sequencing depth. Each target was attached with a 30-nt
universal forward primer domain and a 30-nt universal reverse domain on two
ends respectively for future PCR amplification. We used 2 sets of universal domains
for all 42,000 targets, 21,000 targets share one set of primers. Capture probe stock
containing 42,000 140-nt long sequence species was synthesized by Twist Bios-
ciences. As shown in Fig. S1, we started with amplifying 10,000x dilution of capture
probe stock for 33 cycles using Biotinylated forward primers(containing dU) and
phosphorylated reverse primers, where separate tubes were used for each pair of
primers. Purified amplicons of these tubes were mixed for Lamda Exonuclease
(NEB) digestion of the phosphorylated reverse strands. The final products, which
were single-stranded capture probes, were purified using Zymo Oligo Clean and
Concentrator and quantified using Qubit™ ssDNA Assay Kits.

Hybrid-capture and library preparation. Fifteen microliters of the target pool with
indexed genomic DNA fragments were first treated with adapter blocker sequences
(to prevent long adapter sequences from forming daisy chains) and purified.

Instead of using water as an elution buffer, we used 19 uL of the mixture of capture
probe pool and IDT Hybridization Buffer (IDT) to elute the mixture of target and
capture probe mix for hybridization capture. The average final concentration for
the capture probe mix was 30 pM per capture probe species. The mixture was
denatured at 95 °C for 5 min to dissociate all double-stranded target oligos and then
incubated at 65 °C for at least 16 h in order to achieve high target capture efficiency.
After hybridization, the hybridization mixture was transferred to the tube con-
taining Beads mixture (4 pL Dynabeads MyOne Streptavidin T1 pre-incubated and
washed with ERCC oligos mix for surface coating). Then the tube content was fully
mixed and incubated at 65 °C for an additional 45 min, while vortexed every 10 min
for beads to remain in suspension. Subsequently, in order to remove un-captured
genomic DNA fragments, the bead solution was washed using 100 pL preheated
washing buffer under 65 °C with 5 min incubation. Then the solution was washed
an additional 3 times using room temperature washing buffer with 2 min incu-
bation at 65 °C. Post-wash product was transferred to a new tube and treated with
USER enzyme and TE buffer to release bound DNA. A solution containing released
DNA was qPCR quantified using index primers. Additional amplification using
index primer was performed if the quantity was too low for NGS sequencing.
When additional PCR was performed, the purified post-PCR product was quan-
tified again using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific).

Data processing. The fasta file was aligned to reference sequences using Bowtie2
alignment software33. We found that 39,145 out of 42,000 probes captured target
withs high specificity, and 38,040 out of the 39,145 probes had reads, which could
be used in the DLM as log 1o(Depth).

Synthetic DNA NGS library preparation. Synthetic DNA NGS experiment had
different target and capture probe preparation process from using human genomic
DNA. As shown in Fig. S2, 7373 110-nt target sequences were selected out of
100,000-plex synthetic panel synthesized by Twist Bioscience and attached with 20-
nt universal regions at both ends of the targets during synthesis. Similar to using a
human panel, this stock solution was diluted and then amplified to a final con-
centration of 50 pM of each species, using universal forward primer and reverse
primer(biotinylated&with dU), where the synthesized forward strand worked as
the target strand and the biotinylated reverse strand worked as the capture probe.
20 times of Blocker mix was spiked into this amplified product to block non-
specific capturing caused by universal primer region and enzymatic extension from
leftover primers. The blocker mix was a mixture of primer sequences with 3’
decorations. This mixture was allowed to denature at 95 °C for 3 min and re-
hybridize at 55° for 3 h. The hybridization mixture was treated similarly to the
human genomic DNA panel, as was captured by Streptavidin T1 Beads and
released by USER enzyme after multiple times of washing. The purified final
product was diluted and attached with an index through PCR with index primers.
Final quantification of the purified library was performed using Quibit and then
diluted for downstream NGS sequencing. Standard BWA alignment was used for
extracting alignment information from the post-run FASTA file. One alignment
could pass the filter if no fewer than 90 out of the 150 bases were a perfect match.

Here, we describe the experimental methods used to perform the fluorescence
characterization of hybridization kinetics. The data fitting and modeling methods
of strand displacement are described in later sections.

Fluorescence studies

Oligonucleotide synthesis and formulation. All DNA oligonucleotides were ordered
from Integrated DNA Technologies in 100 uM LabReady format, pre-suspended in
Tris EDTA buffer. Target T, Complementary probe C, and protector P oligonu-
cleotides were ordered as standard desalted oligos at the 25 nanomole scale.
Fluorophore F and quencher Q oligonucleotides were ordered as HPLC purified
oligos at the 250 nanomole scale. All oligonucleotide stock solutions were quan-
titated by Nanodrop to determine concentration.

Working secondary stocks of the oligonucleotides were prepared at the
following concentrations: 5 uM for C, 10 uM for T, 10 uM for P, 5 uM for F, and
25 uM for Q. Stocks of QT for Hybridization were prepared for each target T by
mixing 10 uL Q, 15 uL T, and 75 pL 5x PBS. Similarly, hybridization stocks of FP
were prepared for each probe by mixing 10 uL F, 15 uL C, and 75 pL 5x PBS. Stocks
of QPFC complex were prepared for each target by mixing 10 uL Q, 15 pL P, 10 uL
F, 15uL C, and 50 uL 5x PBS.

These secondary stocks were then thermally annealed, cooling from 95 °C to 20°C
over the course of 75 min. Unless otherwise specified, all the annealing processes
mentioned below occurred over 75 min, cooling from 95 °C to 20 °C.

Fluorescence observation of hybridization and strand displacement kinetics. Fluor-
escence experiments were performed using two Horiba Fluoromax-4 instruments,
and a 4-sample changer. The slit sizes used for the excitation and emission
monochromators were 8 nm and 8 nm. For each 50 s time point, each cuvette’s
fluorescence was measured for 9s.

For each hybridization experiment, an appropriate amount of FP stock was
pipetted into each cuvette at the beginning of the experiment, and the fluorescence
was allowed to stabilize over the course of 5 to 30 min (fluorescence was observed
during this time). Subsequently, the cuvettes were removed from the instruments,
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and an appropriate amount of the QT stock was added to the cuvette, following
which the cuvette was placed back into the instrument.

For each strand displacement experiment, an appropriate amount of the QPFC
solution was pipetted into each cuvette at the beginning of the experiment, and the
fluorescence was allowed to stabilize over the course of 5 to 30 min (fluorescence
was observed during this time). Subsequently, the cuvettes were removed from the
instruments, and an appropriate amount of the target T was added to the cuvette,
following which the cuvette was placed back into the instrument.

As shown in Fig. S3a, for each hybridization experiment, positive and negative
control experiments were performed to allow mathematical conversion of observed
fluorescence values into instantaneous hybridization yields. Negative control
experiments included only the FP species, and show the high fluorescence
corresponding to 0% yield. Positive control experiments included the FP and QT
species thermally annealed (at the hybridization experiment concentrations), and
show the low fluorescence corresponding to 100% yield.

As shown in Fig. S3b, for each strand displacement experiment, positive and
negative control experiments were performed to allow mathematical conversion of
observed fluorescence values into instantaneous reaction yields. Negative control
experiments included only the QPFC species, and show the low fluorescence
corresponding to 0% yield. Positive control experiments included the QPFC and T
species thermally annealed (at the strand displacement experiment concentrations),
and show the high fluorescence corresponding to 100% yield.

All control experiments were performed under the same reaction temperature,
using the same machine and same cuvette position, in order to avoid system
inconsistency.

The yield calculation of each experimental data point can be described as the
following equation:

Fluon - FluoNegalive Ctrl

n
Fluopggiive ot — FliONegative cu

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sequences of the DNA oligos used for the manuscript, the read depth and GC
content of NGS probes, the oligo concentrations used for fluorescence experiments, the
best-fit rate constants, and the values of the manually-constructed features for the WNV
model are included in Supplementary Data 1-6. The original raw fluorescence data from
our single-plex kinetics experiments and the raw NGS data for measuring read depth can be
found at https://figshare.com/articles/dataset/A_Deep_LearningModel_for_Predicting Next-
Generation_Sequencing Depth_from_DNA_Sequence/14462103.

Code availability

We provide our DLM software code and installation/usage instructions at https://github.
com/XiangjiangWang/A-Deep-Learning-Model-for-Predicting-Next-Generation-
Sequencing-Depth-from-DNA-Sequence.
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