Table 4.
Applications of artificial intelligence in primary small intestinal tumor
Ref.
|
Diagnostic method
|
AI technology
|
Training set
|
Testing set
|
Outcomes
|
Inoue et al[88] | EGD | CNN | 531 images | 1080 images | Accuracy: 94.7%-100% |
Liu et al[90] | CE | SVM | 89 patients | - | Sen: 97.8%, Spe: 96.7% |
Vieira et al[89,91] | CE | SVM | 29 patients (936 images) | - | This SVM outperforms others by more than 5% |
Barbosa et al[93] | CE | CNN | Ep: 104, Cp: 100 | Ep: 92, Cp: 100 | Sen: 98.7%, Spe: 96.6% |
Panarelli et al[94] | MicroRNA sequencing | ML | 84 samples | - | Accuracy (Ts: 98.5%, Vs: 94.4%) |
Drozdov et al[95] | Gene expression profiling | ML | 73 samples | - | Differentiated from normal cells (Sen: 100%, Spe: 92%), metastases prediction (Sen: 100%, Spe: 100%) |
Kjellman et al[96] | Plasma protein multibiomarker | Random forestmodel | Ep:135, Cp: 143 | - | AUCs: 0.97 |
Yan et al[97] | CT | Random forestmodel | 213 patients | - | AUCs: 0.943 |
AI: Artificial intelligence; AUCs: Area under the curves; CE: Capsule endoscopy; CNN: Convolutional neural network; CT: Computed tomography; Cp: Control group; EGD: esophagogastroduodenoscopy; Ep: Experimental group; ML: Machine learning; SVM: Support vector machine; Sen: Sensitivity; Spe: Specificity; Ts: Training set; Vs: Validating set.