Skip to main content
. 2021 Jul 7;27(25):3734–3747. doi: 10.3748/wjg.v27.i25.3734

Table 4.

Applications of artificial intelligence in primary small intestinal tumor

Ref.
Diagnostic method
AI technology
Training set
Testing set
Outcomes
Inoue et al[88] EGD CNN 531 images 1080 images Accuracy: 94.7%-100%
Liu et al[90] CE SVM 89 patients - Sen: 97.8%, Spe: 96.7%
Vieira et al[89,91] CE SVM 29 patients (936 images) - This SVM outperforms others by more than 5%
Barbosa et al[93] CE CNN Ep: 104, Cp: 100 Ep: 92, Cp: 100 Sen: 98.7%, Spe: 96.6%
Panarelli et al[94] MicroRNA sequencing ML 84 samples - Accuracy (Ts: 98.5%, Vs: 94.4%)
Drozdov et al[95] Gene expression profiling ML 73 samples - Differentiated from normal cells (Sen: 100%, Spe: 92%), metastases prediction (Sen: 100%, Spe: 100%)
Kjellman et al[96] Plasma protein multibiomarker Random forestmodel Ep:135, Cp: 143 - AUCs: 0.97
Yan et al[97] CT Random forestmodel 213 patients - AUCs: 0.943

AI: Artificial intelligence; AUCs: Area under the curves; CE: Capsule endoscopy; CNN: Convolutional neural network; CT: Computed tomography; Cp: Control group; EGD: esophagogastroduodenoscopy; Ep: Experimental group; ML: Machine learning; SVM: Support vector machine; Sen: Sensitivity; Spe: Specificity; Ts: Training set; Vs: Validating set.