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Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-
liver diseases, and they have been ascribed antimicrobial, immune regulatory, 
protective, and pathogenic roles. The goals of this review are to describe their 
biological properties, indicate their involvement in chronic liver disease, and 
encourage investigations that clarify their actions and therapeutic implications. 
English abstracts were identified in PubMed by multiple search terms, and biblio-
graphies were developed. MAIT cells are activated by restricted non-peptides of 
limited diversity and by multiple inflammatory cytokines. Diverse pro-inflam-
matory, anti-inflammatory, and immune regulatory cytokines are released; 
infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are 
hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver 
disease. This phenotype lacks disease-specificity, and it does not predict the 
biological effects. MAIT cells have presumed protective actions in chronic viral 
hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing 
cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic 
actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. 
Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived 
bacterial antigens, and metabolic by-products) may modulate their response in 
individual diseases. Investigational manipulations of function are warranted to 
establish an association with disease severity and outcome. In conclusion, MAIT 
cells constitute a disease-nonspecific, immune response to chronic liver inflam-
mation and infection. Their pathological role has been deduced from their 
deficiencies during active liver disease, and future investigations must clarify this 
role, link it to outcome, and explore therapeutic interventions.

Key Words: Innate-like lymphocytes; Antimicrobial; Immune regulatory; Pathogenic; 
Mucosal-associated invariant T cell

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i25.3705
http://orcid.org/0000-0002-5024-3065
http://orcid.org/0000-0002-5024-3065
http://orcid.org/0000-0002-5024-3065
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:czaja.albert@mayo.edu


Czaja AJ. MAIT cells in chronic liver disease

WJG https://www.wjgnet.com 3706 July 7, 2021 Volume 27 Issue 25

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: December 19, 2020 
Peer-review started: December 19, 
2020 
First decision: February 11, 2021 
Revised: March 22, 2021 
Accepted: June 15, 2021 
Article in press: June 15, 2021 
Published online: July 7, 2021

P-Reviewer: Misra SP, Ratnasari N 
S-Editor: Gao CC 
L-Editor: A 
P-Editor: Yuan YY

Core Tip: Circulating mucosal-associated invariant T cells are depleted in chronic liver 
disease, and they have a disease-nonspecific, hyper-activated, immune exhausted, and 
dysfunctional phenotype. Antimicrobial, immune regulatory, pro-inflammatory, and 
anti-inflammatory actions are established biological functions of these innate-like 
lymphocytes, and each function has been invoked to understand the pathogenesis of 
chronic hepatitis and cholestatic liver disease. Future investigations must establish their 
pathological role in each form of chronic liver disease, determine the factors that direct 
function in the hepatic microenvironment, associate deficient functionality with disease 
severity and outcome, and explore therapeutic manipulations.
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INTRODUCTION
Mucosal-associated invariant T (MAIT) cells are a subset of lymphocytes that engage 
in innate and adaptive immune responses[1]. MAIT cells react rapidly to pathogens. 
They can be activated by cytokine stimulation in an antigen-independent manner, and 
they can eliminate infected or altered cells by releasing pro-apoptotic granzyme B and 
perforin[2-4]. These features of an innate immune response are complemented by 
features of an adaptive immune response[1,5]. MAIT cells express a semi-invariant T 
cell antigen receptor (TCR) that is specific for a limited, but enlarging, array of 
antigens[6-10]. Furthermore, they can rapidly develop as effector memory cells[11,12].

MAIT cells can recognize riboflavin metabolites or other non-peptide antigens. 
These antigens are presented by the major histocompatibility complex (MHC) class I-
related protein, MR1, which is expressed on antigen-presenting cells (APCs)[13-16]. 
Antigen-dependent MAIT cell activation can result in chemokine-directed tissue infilt-
ration and release of diverse pro- and anti-inflammatory cytokines[11,12,15,17]. The 
complex functional phenotype of MAIT cells justifies their inclusion in the family of 
innate-like lymphocytes[1]. This family includes gamma delta cells (γδ cells)[18-20], 
natural killer T cells (NKT cells)[21-25], and innate-like B cells (B1 cells, marginal zone 
B cells, and regulatory B cells)[26-29].

MAIT cells can enhance the adaptive immune response to microbial antigens[2,3]. 
Bacteria and fungi engaged in riboflavin biosynthesis can trigger the release of pro-
inflammatory cytokines and pro-apoptotic molecules that eliminate infected cells[13,
14]. Furthermore, the engagement of highly selected microbial antigens with the semi-
invariant TCR of the MAIT cells can generate a cytotoxic CD8+ T cell response[2,30]. 
MAIT cell activation has been ascribed a protective antimicrobial role in several 
bacterial (Salmonella typhimurim, Mycobacterium tuberculosis, Escherichia coli, and Klebsie-
lla pneumoniae)[2,3,31] and viral [dengue virus, influenza virus, and hepatitis C virus 
(HCV)] infections[32-34].

MAIT cells have now been assessed in chronic hepatitis B[35-39], chronic hepatitis C
[40-44], chronic hepatitis D[45], alcoholic liver disease (ALD)[46-48], non-alcoholic 
fatty liver disease (NAFLD)[49-51], autoimmune hepatitis[52,53], primary biliary 
cholangitis (PBC)[54,55], primary sclerosing cholangitis (PSC)[56,57], and decompen-
sated cirrhosis[58]. The pathological role of MAIT cells in these diverse forms of 
chronic liver disease remains unclear. They may be disease-nonspecific perpetrators or 
facilitators of inflammatory activity[59-62]. MAIT cells may stimulate hepatic fibrosis
[52,63] and protect against microbial infection in decompensated cirrhosis[58]. They 
may modulate the cellular immune response[17,64-66] or limit the immune stimula-
tory effects of bacterial antigens from the intestinal microbiome[46,67-70].

MAIT cells are emerging as pivotal mediators of chronic liver disease[61,62], and 
clarification of their pathological role may lead to improved management strategies
[71]. The goals of this review are to describe the biological properties of MAIT cells, 
present evidence of their critical involvement in chronic liver disease, and identify 
investigational opportunities to clarify their disease-associated roles and therapeutic 
implications.

https://www.wjgnet.com/1007-9327/full/v27/i25/3705.htm
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METHODOLOGY
English abstracts were identified in PubMed using the primary search words, “MAIT 
cells”, “MAIT cells and chronic liver disease”, “MAIT cells and chronic viral hepatitis”, 
MAIT cells and chronic alcoholic liver disease”, “MAIT cells and fatty liver disease”, 
and “MAIT cells and autoimmune liver disease”. Abstracts judged pertinent to the 
review were identified; key aspects were recorded; and full-length articles were 
selected from relevant abstracts. A secondary bibliography was developed from the 
references cited in the selected full-length articles, and additional PubMed searches 
were performed to expand the concepts developed in these articles. The discovery 
process was repeated, and a tertiary bibliography was developed after reviewing 
selected articles from the secondary bibliography. Eight hundred and fifty-three 
abstracts and 134 full length articles were reviewed through November 2020.

CANONICAL MAIT CELLS
Defining features
MAIT cells are defined by a semi-variant α-chain within the TCR that is encoded in 
humans as Vα7.2-Jα33 by the TRAV1-2/TRAJ33 gene[3,7,72,73] (Table 1). The TCR α-
chain associates with a constrained number of TCR β-chains. Vβ6 and Vβ20[61,73] are 
the principal β-chains associated with the TCR of MAIT cells, and they are encoded by 
the TRBV6 and TRBV20-1 genes in humans[6,8,74] (Figure 1). Together, the α- and β-
chains form a TCR that can accommodate a limited number of chemical structures[8,
10]. Human MAIT cell TCRs have hypervariable complementarity-determining 
regions (CDRs) in the TCRα-[75] and TCRβ-[8] chains that have restricted lengths. 
CDR3β of the TCR Vβ chain is stable between individuals, has a length of 11-14 amino 
acids, and accommodates 80% of the TCRβ repertoire of MAIT cell antigens[8].

Antigen-presentation to MAIT cells is limited to the class 1b antigen-presenting 
molecule, MR1[2,7,76]. This restriction of antigen-activation is another defining aspect 
of MAIT cells (Table 1). The high surface expression of the C-type lectin, CD161[77-
79], cytokine receptors for interleukin (IL)-7, IL-12, IL-18, and IL-23[62,77,80,81], and 
the chemokine receptors, CCR5, CCR6, CCR9, and CXCR6 are other phenotypic 
features[59,62,77,82] (Figure 1).

Key attributes
Most MAIT cells express the multidrug resistance protein 1 (also called the multidrug 
ABCB1 transporter)[11,62,83]. They also possess the nuclear receptor transcription 
factors, promyelocytic leukemia zinc finger (PLZF) (also known as ZBTB16)[61,84,85], 
retinoic acid-related orphan receptor gamma t (RORγt)[86], and T-box transcription 
factor (T-bet)[87-91] (Figure 1). The ATP binding cassette sub-family B member 1 gene 
(ABCB1) renders MAIT cells more resistant to cytotoxic drugs, chemotherapeutic 
agents, and gut-derived xenobiotics than other lymphocytes[11]. The ABCB1 trans-
porter does not protect MAIT cells from immunosuppressive drugs such as tacrolimus 
and mycophenolic acid which are used in the treatment of autoimmune hepatitis[83,
92].

The diverse nuclear transcription factors, PLZF, RORγt, and T-bet, are involved in 
the lineage development of T helper 1 (Th1) cells[87,88,93], memory cells[91], Th17 
cells[86], NKT cells[84], and MAIT cells[84,85] (Table 1). PLZP controls the phenotype 
and functionality of MAIT cells, and it directs the development of an effector memory 
phenotype[85,94-96]. These memory cells typically have the molecular signature, 
CD44hiCD95hiCD45RO+CD62Llo[11,12,15,94,97]. They can be activated without prior 
clonal expansion in response to IL-7[82,98].

PLZP also controls the fate of MAIT cells by activating intracellular caspases and 
rendering MAIT cells sensitive to apoptotic stimuli[99]. This sensitivity to apoptosis 
can be counterbalanced by the X-linked inhibitor of apoptosis protein (XIAP)[100]. The 
counterbalancing effects of PLZP and XIAP may account in part for the variable 
numbers of MAIT cells detected in the circulation and tissue sites during active inflam-
mation[99].

Activated MAIT cells rapidly secrete interferon-gamma (IFN-γ), tumor necrosis 
factor-alpha (TNF-α), IL-17A, and IL-22[11,17,81,101,102]. These cytokines have pro-
inflammatory and antiviral effects (Figure 1). Stimulation of human MAIT cells in 
culture for 7-10 d can induce the robust release of the anti-inflammatory cytokine, IL-
13[64,66]. IL-4 and IL-5 are also released but to a lesser extent[65,66]. IL-4 and IL-13 can 
induce an immunosuppressive phenotype in macrophages[66,103-105], and their 
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Table 1 Mucosal-associated invariant T cell characteristics and clinical implications

Feature Characteristics Clinical implications

Semi-invariant 
TCR

Semi-invariant α-chain in the TCR[3,7,72]; Canonical Vα7.2-Jα33 α-chain[3,7]; 
TRAV1-2/TRAJ33 encodes Vα7.2-Jα33[3]; Vβ6 and Vβ20 most common β-chains
[61]; TRBV6, TRBV20-1 encode Vβ6, Vβ20[8,74]; Restricted length of CDRs[8,
75]; CDR3β key to antigen recognition[10]

Limited number of antigens recognized[8,10]; Antigen 
diversity still possible[10]

MR1-restricted 
antigens

Class 1b antigen-presenting molecule[2,7]; Expressed on surface of APC[3] MR1 limits antigens presented by APCs[10,114]

CD161 High surface expression[77-79] Shared phenotypic marker with other T cells[78]

Cytokine 
receptors

IL-7, IL-12, IL-18, IL-23 receptors[80] Multiple cytokines can activate MAIT cells[80,81]

Chemokine 
receptors

CCR5, CCR6, CCR9, CXCR6[59,62,77,82] Chemokine-directed tissue migration[77]

Nuclear 
transcription 
factors

PLZF (also known as ZBTB16)[61,84,85]; RORγt[86]; T-bet[87,88,90,91]; ABCB1
[11,62,83]

Control phenotype and functionality[84-88]; Direct 
development of memory phenotype[91]; Activate 
caspases and induce apoptosis[99]; Increase resistance 
to drugs, xenobiotics[11]

Cytokine 
production

IFN-γ, TNF-α, IL-17A, IL-22[11,17,81,102]; IL-13, IL-4, IL-5 (anti-inflammatory)
[64,66]; IL-10 (mainly in adipose tissue)[106]

Pro-inflammatory and antiviral effects[17,81,102]; 
Anti-inflammatory effects[66,106]; Cross regulation of 
immune responses[64,65]

Effector 
phenotype

Granzyme B[4,107,108]; Perforin[4,74,108] Antimicrobial and pro-apoptotic actions[4]; 
Eliminates infected or altered cells[4,107,108]

Subsets Mostly CD8αα cells in liver and blood[101] More IFN-γ and TNF-α than CD8αβ subset[101]

ABCB1: Multidrug resistance protein 1; APCs: Antigen presenting cells; CDRs: Complementarity-determining regions; IL: Interleukin; IFN-γ: Interferon-
gamma; MAIT: Mucosal-associated invariant T cell; MR1: Major histocompatibility complex I-related molecule; PLZF: Promyelocytic leukemia zinc finger; 
T-bet: T-box transcription factor; TCR: T cells antigen receptor; t RORγt: Retinoic acid-related orphan receptor gamma t; TNF-α: Tumor necrosis factor-
alpha.

production in inflammatory liver disease may cross-regulate the pro-inflammatory 
type 1 immune response[64,65] (Table 1). Little or no IL-10 is produced by activated 
human MAIT cells in the circulation, but 14% of resident MAIT cells in human adipose 
tissue produce IL-10[17,106]. Activated MAIT cells also secrete granzyme B and 
perforin which can have an antimicrobial effect by eliminating infected or altered cells
[4,107,108] (Figure 1).

MAIT cell subsets
Most MAIT cells in the liver and peripheral circulation are CD8+ T cells[61,109]. They 
can be further characterized by the expression of the cell surface glycoproteins CD8α 
and CD8β[110,111] (Table 1). CD8α can exist as a disulfide-linked homodimer 
(CD8αα) or as a heterodimer (CD8αβ) on the MAIT cell surface[111]. Most MAIT cells 
in humans are CD8αα-positive, and most CD8αα-positive T cells in humans are MAIT 
cells[101] (Figure 1). Other subsets account for less than 10% of the MAIT cell popula-
tion[101], and they exist as CD8αβ-positive, CD8-CD4- double-negative, and CD4-
positive MAIT cells[61,112].

The CD8αα-positive subset produces more IFN-γ and TNF-α than the CD8αβ 
subset, and it may be more active in inflammatory and immune-mediated diseases
[101]. Expansion and maturation of the CD8αα-positive subset of MAIT cells occur 
after exiting the thymus. The CD8αα-positive MAIT cells are probably driven by 
antigens encountered in the periphery, including the intestinal microbiome[101,113].

NON-CANONICAL MAIT CELLS AND MAIT-LIKE CELLS
T cell populations other than the typical Vα7.2-Jα33 MAIT cells have a semi-invariant 
TCR, reactivity to non-peptide antigens presented by a restricted MHC class I-like 
molecule, and responses that have innate and adaptive immune features. These 
populations include MAIT cell variants[8,10,74,114], MR1-restricted non-MAIT cells 
(MR1T cells)[114], and invariant NKT (iNKT) cells[115-119].
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Figure 1 Mucosal-associated invariant T cell activation and actions. Mucosal-associated invariant T (MAIT) cells are activated by MR1-dependent and 
cytokine-dependent mechanisms. The major histocompatibility complex class I-related protein, MR1, is expressed on the surface of the antigen presenting cell after 
stimulation. Riboflavin (vitamin B) metabolites synthesized by bacteria and fungi are presented by the MR1 molecule as are select drug metabolites. The T cell 
antigen receptor of the MAIT cell consists of a semi-invariant alpha (α) chain and restricted beta (β) chain with antigen selectivity influenced by short length 
complementarity-determining regions. MR1-dependent activation results in MAIT cell production of multiple cytokines as well as granzyme B and perforin. The 
cytokines can have pro-inflammatory, pro-fibrotic and antiviral effects (lower right panel) and anti-inflammatory and immune regulatory effects (lower right panel). The 
granzyme B and perforin can have antimicrobial activity and eliminate infected cells by apoptosis (lower left panel). Cytokine-dependent stimulation is activated by 
phagocytic macrophages and monocytes resident in the liver or circulation and by injured hepatocytes. Multiple cytokines can activate MAIT cells, especially 
interleukin 18, after virus infection. Chemokine receptors help direct the activated MAIT cells to the site of inflammation, and CXCR6 is the principal chemokine that 
directs MAIT cells to the liver. MAIT cells contain diverse nuclear transcription factors that influence phenotype and function, especially promyelocytic leukemia zinc 
finger, retinoic acid- related orphan receptor gamma t, and T-bet. The nucleus also contains the ABCB1 that affects resistance to gut-derived xenobiotics and certain 
drugs. The principal subset of activated MAIT cells consists of CD8αα-positive T cells. APC: Antigen presenting cell; TCR: T cell antigen receptor; CDR: 
Complementarity-determining region; IL: Interleukin; IFN-γ: Interferon-gamma; TNF-α: Tumor necrosis factor-alpha; MAIT: Mucosal-associated invariant T.

MAIT cell variants
MAIT cell variants have semi-invariant TCR α-chains that are encoded by non-classical 
genes or paired with different TCR β-chains. MAIT cells can have TCR α-chains 
encoded as Vα7.2-Jα12 by the TRAV1-2/TRAJ12 gene or Vα7.2-Jα20 encoded by the 
TRAV1-2/TRAJ20 gene[8,73]. These MAIT cell variants have fundamental traits that 
are identical to the Vα7.2-Jα33 MAIT cell population. They are activated by riboflavin 
metabolites in a MR1-dependent manner and by cytokine production. They differ only 
in homing characteristics. The Vα7.2-Jα12 MAIT cells seem to predominate in solid 
tissues[8]. A MAIT cell variant that is TRAV1-2neg retains the fundamental properties 
of MAIT cells and warrants inclusion in this variant category[74].

MR1-restricted non-MAIT cells
MR1-restricted T cells (MR1T cells) lack the fundamental characteristics of MAIT cells
[114]. MR1T cells have diverse TCRα and TCRβ chains, and they fail to respond to 
microbial vitamin B metabolites. They produce a wide range of cytokines, and they 
recognize monocyte-derived dendritic cells as APCs[114]. MR1T cells have specificity 
for cell-derived antigens that can polarize their function after antigen stimulation
[114]. They may thereby influence adaptive immune responses and immune tolerance 
of self-antigens. MR1T cells represent 1:2500-1:5000 of circulating T cells in healthy 
individuals, and they can be activated by a wide array of antigens presented in an 
MR1-binding groove. This MR1-restricted binding groove is larger and less restrictive 
than the MR1 of MAIT cells[114].

iNKT cells
iNKT cells are similar to MAIT cells in that they have a semi-invariant TCR and react 
to non-peptide antigens presented by an MHC class I-like molecule[5,81,120]. They 
express the natural killer (NK) antigen, NK1.1, which is known as CD161 on MAIT 
cells, and they secrete pro-inflammatory cytokines, including IFN-γ, TNF-α, IL-17, and 
IL-22[120-122]. iNKT cells differ from MAIT cells in that their TCR α-chain is encoded 
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as Vα24-Jα18 in humans and paired mainly with the TCR β-chain, Vβ11[120,123]. The 
antigen-restricted molecule that activates iNKT cells is CD1d (cluster of differentiation 
1d) rather than MR1, and the activating antigens are lipid-based, including glycosyl-
ceramides (primarily, α-galactosylceramide), glycosphingolipids, and phospholipids
[120,124-127]. Furthermore, iNKT cells are rare in the peripheral circulation (0.01%-
0.1%)[120,122,128] and liver (0.5%)[120,122,129]. Unlike circulating MAIT cells[17], 
iNKT cells in the peripheral circulation secrete the anti-inflammatory cytokine, IL-10
[130], and participate in the differentiation of regulatory T cells (Tregs)[23].

MAIT CELL DEMOGRAPHICS
Frequency
MAIT cells constitute 0.1%-10% of the circulating CD3+ T lymphocytes in healthy 
individuals[61,131], and they are a resident population in the intestine (2%-20%), lung 
(1%-10%), and liver (10%-40%)[11,61,81,132] (Table 2). Their predominance in the liver
[11,43,82,133] and paucity in lymphoid tissue (< 1%)[11] suggest that they are 
positioned to react with microbial antigens in the portal circulation or metabolic by-
products within the liver or biliary circulation[133].

Intrahepatic distribution
MAIT cells are localized mainly in the intrahepatic bile ducts, portal tracts, and 
sinusoids, and the nature of the liver disease may affect their distribution[55,133] 
(Table 2). MAIT cells have the ability to migrate based on the expression of tissue-
homing chemokine receptors and the location of transmembrane adhesion molecules 
(integrins)[77]. MAIT cells can be directed to the bile ducts by CCR6, CXCR6, and 
integrin αEβ7 or to the hepatic sinusoids by CXCR3 and the integrins, LFA-1 
(lymphocyte function-associated 1 protein) and VLA-4 (very late antigen 4)[133,134].

Age-related changes
The number of circulating MAIT cells increases from birth to adulthood (ages, 20-40 
years) in healthy individuals[135]. Maximum circulating levels are in the third and 
fourth decades[136] (Table 2). The number of circulating MAIT cells declines after the 
age of 60 years in association with a gradual increase in MAIT cell apoptosis[135]. It is 
ten-fold less than in young adulthood after the age of 80 years[136]. The annual decline 
in the circulating level has been estimated as 3.2% in men and 1.8% in women[131].

Gender differences in the frequency of MAIT cells [131,136] and age-related 
differences in the phenotype and function of MAIT cells have been described but not 
established[131,135-137] (Table 2). Advancing age has been associated with an increa-
sing proportion of CD4+ MAIT cells and decreasing proportion of CD8+ MAIT cells in 
some[131,136,137], but not all[135], ethnic cohorts. The pattern of cytokine production 
by MAIT cells has also changed to a less inflammatory profile with advancing age in 
one Asian cohort[131] but not in another[135]. The inconsistent phenotypic and 
functional age-related alterations may reflect ethnic and environmental factors[135], 
and they have yet to be ascribed an impact on specific pathological states[136].

MAIT cells are absent in germ-free animals (unlike NKT cells)[7], and their numbers 
can be reconstituted by intestinal colonization with various microbial organisms[30]. 
Diverse antigenic encounters during aging may explain the increasing numbers of 
MAIT cells that are detected in individuals as they enter adulthood[131,135,136].

MAIT CELL ACTIVATION
MAIT cells are activated by MR1-dependent mechanisms that are antigen-mediated 
and by MR1-independent mechanisms that are mainly cytokine-mediated[71]. 
Superantigens produced by certain bacteria (mainly, Staphylococcus aureus) can also 
activate MAIT cells without involvement of MR1[138,139].

MR1-dependent activation
The MR1 molecule is sequestered in the endoplasmic reticulum within the APC[140], 
and it may be undetectable on the APC surface until antigen exposure[141-146] 
(Figure 1). The antigen binding groove of the MR1 molecule has two pockets, and it 
can only bind small molecules[13,147]. The development of murine MAIT cells in the 
thymus requires exposure to microbial riboflavin metabolites[113]. Most bacteria and 
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Table 2 Mucosal-associated invariant T cell demographics and clinical implications

Feature Demographics Clinical implications

Frequency (based 
on percentage of 
CD3+ T cells)

Circulation, 0.1%-10%[11,61,81,131]; Intestine, 2%-20%[11,61,102,132]; Lung, 1%-10%
[11,15,61,81]; Liver, 10%-40%[11,43,61,82,133]; Lymph nodes, < 1%[11,61]

Liver is most MAIT cell enriched tissue
[61]; MAIT cells can react with microbial 
antigens and metabolites in portal 
circulation and in bile[133]

Hepatic 
distribution

Present in bile ducts, portal tracts, sinusoids[55,133]; Chemokine-directed migrations
[77]; CCR6, CXCR6, integrin αEβ7 to bile ducts[77,133]; CXCR3, LFA-1, VLA-4 to 
sinusoids[77,133]

Nature of the liver disease may direct 
MAIT cell migration to key site of 
inflammation[77,133,134]

Age-related 
changes

Numbers in blood increase up to age 40 yr[135]; Numbers in blood decline after age 60 
yr[135]; MAIT cell apoptosis increases with age[135]; Depletion nadir after age 80 yr
[136]; Depletion may be faster in men than women[131]; Shift from CD8+ to CD4+ cells 
with aging[131,137]; May be less pro-inflammatory with aging[131]

Ethnic and environmental factors possible
[135]; Uncertain effect on severity and 
outcome[136]; Consider in design of 
clinical investigations

LFA-1: Lymphocyte function-associated-1 protein; MAIT: Mucosal-associated invariant T cell; VLA-4: Very late antigen 4.

fungi synthesize riboflavin and generate riboflavin metabolites that can bind to MR1 
and activate MAIT cells[30,148].

The principal ligands of MR1 are riboflavin (vitamin B2)-based metabolites 
designated as ribityllumazines[13] (Table 3). These ligands are characterized by a 
ribityl tail that can dock with MR1[13,14,74,149]. They are derived from the biosyn-
thetic pathway for riboflavin which is present in most bacteria and yeast[13] (Figure 1). 
Folic acid (vitamin B9) derivatives, including 6-formylpterin (6-FP), can also be 
captured by MR1[13], but they lack the ribityl component and are unrecognizable by 
MAIT cells[74,143]. The synthetic folate derivative, acetyl-6-formylpterin, inhibits 
MAIT cell function by competing with other bacterial products for MR1 ligation. Its 
therapeutic value in modulating MAIT cell activity warrants further investigation[143,
150].

Antigen diversity: The antigenic repertoire that binds to MR1 and activates MAIT cells 
has expanded beyond the ribityllumazines. Transitory neo-antigens have been 
described that are generated by the interaction of 5-amino-6-d-ribitylaminouracil, an 
early intermediate in the bacterial synthesis of riboflavin[151], with the metabolic by-
products, glyoxal and methylglyoxal[152] (Table 3). Chemically unstable pyrimidine 
intermediates, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) and 5-(2-
oxoethylideneamino)-6-d-ribitalaminouracil (5-OE-RU), are formed, and these 
lumazine precursors can activate MAIT cells[9]. The unstable 5-OP-RU and 5-OE-RU 
molecules have diverse bacterial origins, and they are trapped in the antigen binding 
groove of the MR1 molecule by a reversible covalent Schiff base[9].

The antigen-binding groove of the MR1 molecule can also accommodate the 
structurally distinct compounds associated with the metabolism of drugs[153] 
(Figure 1). Salicylates and diclofenac can generate small molecules that bind with MR1 
and exert a stimulatory (salicylates) or inhibitory (diclofenac) effect (Table 3). The 
findings indicate that diverse ligands outside the riboflavin and folic acid metabolites 
can be recognized by MAIT cells. They support the prospect that additional antigens 
will be discovered that modulate MAIT cell function[10,74].

Modulation of MAIT cell response: The MAIT cell response reflects mainly ligand-
specific MR1 dependencies and TCR β-chain biases for a particular antigen[148] 
(Table 3). Different microbial species may produce different riboflavin metabolites and 
generate a selective MAIT cell response[3] or trigger the memory of a previous 
microbial exposure[154]. Conformational changes within the CDR3β segment may 
alter TCR flexibility and modulate antigen recognition within individual MAIT cell 
populations[143].

MAIT cell activation may also be modulated by the cytokine milieu created by the 
cells at the site of inflammation (Table 3). IL-7 produced by hepatocytes during inflam-
mation can up-regulate MAIT cell production of Th1 cytokines and IL-17A[82]. Factors 
that regulate the cell surface expression of MR1 could also influence MAIT cell 
activation[144]. The non-microbial ligand, 3-([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-
yl]formamido) propanoic acid, down-regulates cell surface expression of MR1 and 
prevents antigen recognition[155].

The generation of MAIT cell antigens from bacterial and host-derived metabolic by-
products constitute a rapidly responsive mechanism by which to target particular 
microbial pathogens under prescribed circumstances[9].
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Table 3 Mucosal-associated invariant T cell activation and clinical implications

MAIT cell 
activation Features Clinical implications

MR1-dependent 
stimulation

Adaptive immune response[1,5]; Antigen-triggered MAIT cell activation[8,10,
114]; MR1 undetectable before antigen exposure[140,144]; MR1 binds only small 
non-peptide molecules[147]; Riboflavin metabolites are main MR1 ligands[13]; 
Ribityllumazines are main riboflavin metabolites[13]; Bacterial and metabolic by-
products can activate[9]; Drugs and drug metabolites can bind to MR1[153]

Antigens for presentation restricted[8,10]; Most 
microbes metabolize riboflavin[148]; Neo-antigens 
diversify MR1 repertoire[9]; Can develop effector 
memory cells[11]; Drugs can modulate MR1 
signaling[153]; MR1 expression can be inhibited
[155]

Modulation of 
MAIT cell 
response

Response biased by ligand and TCR β-chain[148]; Riboflavin metabolites differ 
among microbes[3]; CDR3β rearrangements alter antigen recognition[143]; IL-7 
and non-microbial molecules can regulate[155]

Response differs among microbes[154]; TCR 
plasticity can affect response[143]; Local milieu 
modulates response[82,155]

Cytokine-
dependent 
stimulation

Innate immune response[1,5]; Activates MAIT cells without TCR ligation[156]; 
Receptors for IL-7, IL-12, IL-18, IL-23, IFN-γ[81]; IL-18 is main MAIT cell 
activator[157,158]; IL-18 usually with other mediators[82,157,158]; IL-7, IL-18 
produced by hepatocytes[81,158]; IL-1β, IL-18, IL-23 produced by monocytes[81,
158]; IL-15 acts on MAIT cells directly and indirectly[158]; Bacteria elicit TLR8-
induced cytokines[160]

Initiates rapid antimicrobial response[156]; 
Response affected by local mediators[81]; Effective 
against viral infections[32,33,159]; Anti-bacterial 
monocyte response[160]

Superantigen 
stimulation

Rapid powerful response to severe infection[138,163]; Bacterial exotoxins activate 
T cell populations[161]; Foregoes MR1 antigen activation[138,161]; Direct 
activation by binding to TCR Vβ[71,138,165]; Indirect activation by released IL-
12, IL-18[71,138]; Generates robust release of cytokines[138]

MAIT cells are major responders[138]; May result in 
toxic shock[162]; Causes immune exhaustion[138,
139,163]; May exacerbate autoimmune disease[168]; 
Induces pathogenic autoantibodies[166]

CDR3β: Complementarity-determining region 3-beta; IFN-γ: Interferon-gamma; IL: Interleukin; MAIT: Mucosal-associated invariant T; MR1: Major 
histocompatibility complex I-related molecule; TCR: T cell antigen receptor; TLR8: Toll-like receptor 8.

Cytokine-dependent activation
MAIT cells can be activated directly by cytokine stimulation in the absence of TCR 
ligation[156] (Table 3). MAIT cells express cytokine receptors for IL-7, IL-12, IL-18, and 
IFN-γ, and they can express the receptor for IL-23 after activation[81] (Figure 1). 
Cytokine activation of MAIT cells is mainly dependent on IL-18 in association with 
other inflammatory mediators (IL-1β, IL-7, IL-12, IL-15, and the type 1 interferons)[32,
33,82,157,158]. These inflammatory mediators are derived from different cell types at 
the site of inflammation, and they can modulate the MAIT cell reaction in different 
combinations[81].

Hepatic inflammation can release IL-7 and IL-18 from hepatocytes, and activated 
monocytes can produce IL-1β, IL-23, and IL-18 after stimulation with IL-15[81,158] 
(Figure 1). Combinations of IL-1β, IL-7, IL-12, and IL-23 can affect MAIT cell 
production of IFN-γ and IL-17A[11,81,82]. IL-15 can directly stimulate MAIT cell 
production of IFN-γ or indirectly induce MAIT activation by stimulating monocyte 
production of IL-18[81,158].

MAIT cell activation in viral infections (dengue virus, influenza virus, and HCV 
infections) is dependent on IL-18 production[32]. The antimicrobial protection 
afforded by MAIT cells against influenza infection is based on the anti-viral activity of 
IFN-γ. MAIT cells release IFN-γ after stimulation with IL-18 alone[159] or in synergy 
with IL-12[33,157,160]. Intrahepatic monocytes are activated to produce IL-12 and IL-
18 after stimulation of Toll-like receptor 8 (TLR8)[160]. The cytokine milieu at the site 
of inflammation is a key modulator of MAIT cell activity, and it can tailor or finely 
tune the MAIT cell response to the disease process.

Superantigen activation
Superantigens are bacterial exotoxins that activate large numbers of T cells without 
undergoing the conventional route of activation by antigen-presenting MHC class I or 
class II molecules[70,138,161-163]. The superantigens bind to the lateral surfaces of 
class II MHC molecules expressed on APCs[164] or to Vβ regions within the TCR of T 
lymphocytes[70,165]. The massive simultaneous activation of exposed T cells can 
generate a robust release of cytokines, precipitate a toxic shock syndrome, and result 
in immune cell exhaustion and anergy[162,166]. Staphlococcus aureus, Streptococcus 
pyogenes, gram negative bacteria, mycoplasma, and viruses are key producers of 
superantigens[163].

MAIT cells are major responders to microbial infection and superantigens[138] 
(Table 3). MAIT cells can be activated directly by binding superantigens to their TCR 
Vβ region[71,138,139,165]. They can also be activated indirectly by the release of IL-12 
and IL-18 from superantigen-activated T cells[71,138]. MAIT cell activation may in 
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turn induce T cell exhaustion and immunosuppression that prevent adequate control 
of infection[138].

The impact of MAIT cell activation by superantigens on the occurrence and course 
of chronic inflammatory or immune-mediated disease is unclear. By activating large 
numbers of T cells, bacterial superantigens may enhance the proliferation of autore-
active T cells as well as MAIT cells[167,168]. Superantigens may also facilitate 
production of pathogenic autoantibodies by previously primed B cells[166,169,170]. 
These consequences could exacerbate an autoimmune disease. Alternatively, superan-
tigens could promote immunosuppression by T cell exhaustion and prevent or 
ameliorate immune-mediated disease[168]. The actual impact may reflect the timing 
and intensity of MAIT cell activation[168].

MAIT CELLS IN CHRONIC NON-HEPATIC INFLAMMATORY DISEASES
MAIT cells have been evaluated in diverse chronic non-hepatic inflammatory diseases
[15], including systemic lupus erythematosus (SLE)[171], rheumatoid arthritis[171,
172], multiple sclerosis[120,173-176], inflammatory bowel disease[132,177,178], celiac 
disease[179], and infection with the human immunodeficiency virus (HIV)[109,180]. 
The findings have commonly demonstrated reduced frequencies of circulating MAIT 
cells[171,176,178-180], increased numbers of MAIT cells infiltrating the involved tissue 
(synovium, central nervous system, and ileum)[132,171,173,176], and uncertainties 
about the pathological role of the infiltration[15,120,181,182]. Furthermore, the studies 
have been complicated by disparities in the methodology to detect MAIT cells[12,73,
183,184] and difficulties in separating treatment-associated from disease-related 
findings[15,177,185].

MAIT cell depletion in the circulation has been attributed to tissue migration during 
inflammation[132,176], apoptosis[99], activation-induced cell death (AICD)[109], 
exhaustion[186], and concurrent therapy with glucocorticoids[15,177,185]. MAIT cell 
determinations based on cell surface expression of CD161 have been faulted since 
chronic inflammation can down-regulate CD161 expression[12,73], and the preferred 
assay for MAIT cell recognition based on antigen-loaded MR1 tetramers has been used 
inconsistently[12,73,184,187]. The clinical investigations of MAIT cells in chronic non-
hepatic inflammatory diseases provide insights, justifications, comparisons, and 
caveats that can strengthen and extend the investigations of MAIT cells in chronic liver 
disease.

MAIT CELLS IN CHRONIC HEPATITIS
The investigations of MAIT cell involvement in chronic hepatitis have been broad, 
mainly descriptive, and generally consistent with findings demonstrated in other 
chronic inflammatory diseases. They have positioned MAIT cells at the interface of 
inflammation and tissue injury, and they have confirmed their lack of disease-
specificity. They have also expanded their possible roles as pathogenic, protective, and 
immune regulatory agents. Furthermore, they have indicated that in some liver 
diseases MAIT cells have contradictory effects.

MAIT cells may represent a primary, albeit defective, host-directed anti-viral 
response in chronic viral hepatitis[32,43,45,188]. They may constitute a hyperactive, 
immune exhausted, and depleted antibacterial defense in alcoholic hepatitis[46,47]. 
They may be a source of regulatory cytokines that reduce liver injury in NAFLD[51], 
and they may promote pro-inflammatory responses that enhance tissue injury and 
hepatic fibrosis in autoimmune hepatitis[52,53]. The MAIT cell investigations in 
chronic hepatitis provide foundational knowledge that should incentivize further 
studies and impact on future management strategies.

MAIT cells and chronic viral hepatitis
The number of MAIT cells has been assessed in the blood and liver of patients with 
chronic hepatitis B[35-39] and chronic hepatitis C[40-44], and the functionality of 
circulating MAIT cells has been determined in both patient populations[36,39-42].

Reduced frequency of circulating MAIT cells: Five of six studies that have evaluated 
the frequency of circulating MAIT cells in patients with chronic hepatitis B have found 
reduced numbers compared to healthy individuals[35-39,45] (Figure 2). In one of these 
studies, patients with concurrent infection with hepatitis delta virus had more severe 
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Figure 2 Mucosal-associated invariant T cell responses and associations with chronic liver disease. Mucosal-associated invariant T (MAIT) cells 
have anti-viral, anti-bacterial, anti-inflammatory, and pro-inflammatory responses that can affect the occurrence, severity, and outcome of diverse chronic liver 
diseases, including chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease (NAFLD), autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), 
and primary sclerosing cholangitis (PSC). Impairments in the anti-viral and anti-bacterial responses of MAIT cells (indicated by an “X” across each activation pathway) 
may promote chronic viral hepatitis, PBC, PSC, and alcoholic hepatitis. Hyperactivity of the anti-inflammatory and pro-inflammatory cytokine responses of MAIT cells 
(indicated by a “+” next to each activation pathway) may affect NAFLD and AIH. Increased release of interleukin 4 (IL-4) and IL-17 may contribute to the modulation of 
these responses. MAIT: Mucosal-associated invariant T; NAFLD: Non-alcoholic fatty liver disease; AIH: Autoimmune hepatitis; PBC: Primary biliary cholangitis; PSC: 
Primary sclerosing cholangitis; IL: Interleukin.

depletion than patients with mono-infection[45] (Table 4). Similar findings of a 
reduced number of circulating MAIT cells relative to other T cells have been reported 
in 6 studies that have evaluated this issue in patients with chronic hepatitis C[32,40-
44].

Reduced frequency of intrahepatic MAIT cells: The number of intrahepatic MAIT 
cells was reduced in three of four studies in chronic hepatitis B[35,38,39,45] (Figure 2). 
Of two studies evaluating the number of intrahepatic MAIT cells in chronic hepatitis 
C, one disclosed reduced numbers[43] and another failed to associate the marked 
depletion in blood with an increased accumulation in liver[44] (Table 4). The lack of 
hepatic accumulation weakens the possibility that hepatic migration of MAIT cells 
explains the reduced peripheral count. The liver-homing chemokine, CXCR6[189], was 
also down-regulated on circulating MAIT cells in patients with chronic hepatitis B[39].

Impaired functionality of MAIT cells: Circulating MAIT cells in patients with chronic 
hepatitis B and chronic hepatitis C have impaired function (Figure 2). This impairment 
has been manifested mainly by reduced production of granzyme B[36,39,188], IFN-γ
[36,39,188], and IFN-α[38] in patients with chronic hepatitis B and by reduced TCR-
dependent antigen activation and IFN-γ production in patients with chronic hepatitis 
C[40,43] (Table 4). In patients with chronic hepatitis B, IFN-γ production has been 
reduced mainly in patients with serum conjugated bilirubin levels > 10-fold the upper 
limit of the normal range (ULN). This deficiency has been corrected by TCR-mediated 
stimulation[39].

In patients with chronic hepatitis C, receptor-mediated, but not cytokine-mediated, 
activation has been impaired[40,43]. Despite this deficiency, MAIT cells from the liver 
have had higher levels of activation and cytotoxicity than MAIT cells from the 
peripheral circulation (P < 0.0001). Furthermore, the frequency of MAIT cells in the 
liver has correlated inversely with histological inflammation (r = -0.5437, P = 0.0006) 
and fibrosis (r = -0.5829, P = 0.0002)[43]. The findings suggest that deficiencies in the 
number and function of intrahepatic MAIT cells in chronic hepatitis C contribute to the 
pathological process or are consequences of it.
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Table 4 Mucosal-associated invariant T cells in chronic hepatitis and clinical implications

Liver disease MAIT cell features Clinical implications

Chronic 
hepatitis B

Reduced frequency circulating MAIT cells[37,38]; Depletion increased by 
delta infection[45]; Depleted intrahepatic MAIT cells[38,39,45]; Less granzyme 
B, IFN-γ, IFN-α release[36,188]; Conjugated bilirubin linked to dysfunction
[39]; Increased PD-1 and CTLA-4 on MAIT cells[36]; Exhaustion correlates 
with HBV DNA level[36]

Chronic activation and exhaustion[36,39]; Less antiviral 
action[36,39,188]; Increased MAIT cell death[99]; 
Presumed defective protective role[36]

Chronic 
hepatitis C

Reduced frequency circulating MAIT cells[41,42]; Depleted intrahepatic MAIT 
cell[43]; Increased histologic indices reflect depletion[43]; Less TCR-activation 
and IFN-γ production[40,43]; Increased PD-1 and CTLA-4 on MAIT cells[41]

Hyper-activation and exhaustion[40,41,43]; Increased 
MAIT cell death[43,61,99]; Antiviral therapy not 
restorative[40,42,43]; Presumed defective protective role
[43]

Alcoholic 
hepatitis

Reduced frequency in blood and liver[46,47,133]; Decreased granzyme B and 
IL-17 production[46]; Circulating bacterial products[46,47]; Increased 
percentage PD-1+ MAIT cells[47]; Abundant circulating stimulatory cytokines
[47]; Myofibroblasts stimulated and pro-fibrotic[63]

Hyper-activation and dysfunctional[46,47]; Immune 
exhaustion[46,47]; Impaired intestinal mucosal barrier
[46,47]; Increased MAIT cell death[47]; Diminished anti-
bacterial function[133]; Presumed defective protective 
role[46,47]

NAFLD Circulating MAIT cell frequency decreased[51]; Circulating cells express PD-1 
and CD69[51]; Increased intrahepatic MAIT cell frequency[51]; Frequency 
correlates with NAFLD score[51]; Decreased IFN-γ and TNF-α production
[51]; IL-4 induced polarization to M2 macrophages[51]

Activated and immune exhausted[51]; Increased hepatic 
migration[51]; Recruited by inflammatory activity[51]; 
Reduced functionality[51]; Promotes anti-inflammatory 
milieu[51]; Presumed defective protective role[51]

Autoimmune 
hepatitis

Circulating MAIT cell frequency decreased[52,53]; Reduced granzyme B and 
IFN-γ secretion[52,53]; Variable intrahepatic frequency[52,53]; Increased IL-
17A and HSC stimulation[52]; Increased expression of PD-1 and TIM-3[52]

Activated and immune exhausted[52,53]; Reduced 
functionality[52,53]; Pro-inflammatory cytokine milieu
[52]; Progressive fibrosis[52]; Presumed active 
pathogenic role[52]

CTLA-4: Cytotoxic T lymphocyte antigen 4; HBV: Hepatitis B virus; HSC: Hepatic stellate cell; IFN-α: Interferon-alpha; IFN-γ: Interferon-gamma; MAIT: 
Mucosal-associated invariant T; NAFLD: Non-alcoholic fatty liver disease; PD-1: Programmed cell death 1; PBC: Primary biliary cholangitis; PSC: Primary 
sclerosing cholangitis; TIM-3: T cell immunoglobulin and mucin domain 3; TNF-α: Tumor necrosis factor-alpha.

MAIT cell exhaustion: Circulating MAIT cells in patients with chronic hepatitis B[36,
39] and chronic hepatitis C[41] have expressed surface markers indicative of immune 
exhaustion, especially programmed cell death protein 1 (PD-1), cytotoxic T lympho-
cyte antigen 4 (CTLA-4), CD39, T cell immunoglobulin mucin protein 3 (TIM-3), CD57, 
CD38, CD69, and HLA-DR (Table 4). The expression of PD-1 and CTLA-4 and the 
percentage of MAIT cells expressing these markers have been higher in patients with 
chronic hepatitis B and viremia than in patients without viremia[36]. Furthermore, the 
expression of PD-1 and CTLA-4 on MAIT cells has correlated positively with the level 
of viremia as assessed by plasma levels of hepatitis B virus deoxyribonucleic acid 
(HBV DNA)[36].

Similar findings have been described in patients with chronic hepatitis C (Table 4). 
Circulating MAIT cells in patients with chronic hepatitis C have expressed higher 
levels of surface markers for immune exhaustion (HLA-DR, CD38, PD-1 TIM-3, and 
CTLA-4) and immunosenescence (CD57) than healthy controls[41]. Chronic immune 
stimulation and exhaustion could account for MAIT cell dysfunction in chronic viral 
hepatitis[39] (Figure 2).

Consequences of MAIT cell exhaustion and dysfunction: The consequences of MAIT 
cell exhaustion and dysfunction in chronic viral hepatitis may include depletion of 
circulating and intrahepatic MAIT cells and reduced suppression of virus replication
[39] (Figure 2). An inverse correlation between the percentage of circulating MAIT 
cells and the expression of HLA-DR rather than viral load suggests that MAIT cell 
depletion is a consequence of chronic immune stimulation and exhaustion in chronic 
hepatitis B[36] (Table 4). MAIT cells have a pro-apoptotic propensity that may 
contribute to their peripheral depletion in the exhausted state and reduce their 
accumulation in the liver[43,99].

The positive association of exhausted MAIT cells with plasma HBV-DNA levels in 
chronic hepatitis B[36] attest to the potential value of MAIT cells as protective agents 
in chronic viral hepatitis[43]. This association is also supported by the inverse 
relationship between the number of intrahepatic MAIT cells and the severity of liver 
inflammation and fibrosis in patients with chronic hepatitis C[43]. The reduced 
number of intrahepatic MAIT cells in chronic viral hepatitis differs from experiences in 
non-hepatic chronic inflammatory diseases. In inflammatory bowel disease, rheuma-
toid arthritis, and multiple sclerosis, MAIT cell numbers are increased in the inflamed 
tissue consistent with active recruitment[132,171,173,176]. In chronic viral hepatitis, 
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hepatic recruitment may be less or their intrahepatic destruction more robust[43,61].
Successful antiviral therapy with direct-acting agents does improve the number of 

intrahepatic MAIT cells[43], but it does not restore the number and function of 
circulating MAIT cells in patients with chronic hepatitis C[40,42,43] (Table 4). Immune 
exhaustion is a reversible state in most instances[190-192]. Failure to normalize the 
circulating MAIT cell population after virus eradication may reflect the low frequency 
of circulating MAIT cells in healthy individuals, the high density of other immune 
cells in the circulation, and the long lag time before full restoration[43]. Normalization 
of the serum conjugated bilirubin level and administration of the mitogen, IL-2, have 
expanded MAIT cells under experimental conditions in chronic hepatitis B[39]. This 
observation has not been investigated further.

Conjugated hyperbilirubinemia: The frequencies of circulating and intrahepatic 
MAIT cells have correlated inversely with the serum conjugated and total bilirubin 
levels in patients with chronic hepatitis B[39]. Serum conjugated bilirubin levels > 10-
fold ULN in chronic hepatitis B have been associated with a reduced number of 
circulating MAIT cells and a high rate of apoptosis. Surface markers for activation and 
exhaustion have been present; cytokine production has been variable; and MAIT cell 
proliferation and expansion have been impaired[39] (Table 4).

Concentrations of conjugated bilirubin equivalent to serum levels > 10-fold ULN 
have induced apoptosis in MAIT cells obtained from healthy donors, but other direct 
effects of conjugated bilirubin on MAIT cell function remain unclear[39]. Therapeutic 
strategies directed at reducing the serum concentration of conjugated bilirubin may be 
effective because of overall improvement in liver inflammation and function rather 
than elimination of a prime pathogenic factor[39].

MAIT cells and alcoholic hepatitis
The frequencies of circulating and intrahepatic MAIT cells have been decreased in 
most studies evaluating patients with alcoholic hepatitis[46-48,63,133] (Figure 2). 
Furthermore, the residual MAIT cells have been hyper-activated and dysfunctional in 
a manner similar to patients with chronic viral hepatitis[46,47] (Table 4). MAIT cell 
expression of transcription factors, RORγt, PLZF, T-bet, and eomesodermin (eomes), 
has been weak and associated with peripheral MAIT cell depletion and reduced 
secretion of granzyme B and IL-17[46]. Bacterial products, including endotoxin, D-
lactate, and lipopolysaccharide (LPS), have been present in the circulation. 
Furthermore, macrocyte/monocyte activation by bacterial LPS has been implied by 
the presence of the soluble receptor for LPS (sCD14)[46,47]. These findings have 
suggested that bacterial translocation from the intestine is a basis for chronic MAIT cell 
stimulation in alcoholic hepatitis.

Gut-derived MAIT cell stimulation: Chronic MAIT cell stimulation can impair the 
expression of nuclear transcription factors that are critical for maintaining antibacterial 
activity[107]. In alcoholic hepatitis, chronic exposure to gut-derived bacterial products 
may be a basis for impairing the antibacterial function of MAIT cells and creating a 
detrimental feedback loop[46] (Table 4). Moreover, fecal extracts from the stools of 
patients with alcohol-related liver disease have induced MAIT cell depletion in the 
absence of marked apoptosis or immune exhaustion[46] in a manner suggestive of 
AICD[46,193].

The presence of gut-derived bacterial markers in the peripheral circulation has also 
been demonstrated in another study of patients with alcoholic hepatitis[47]. An 
increased frequency of PD-1-positive MAIT cells has indicated immune exhaustion, 
and the frequency of exhausted MAIT cells has correlated inversely with the 
percentage of circulating MAIT cells[47]. Furthermore, there has been a shift in the 
MAIT cell phenotype from CD8+ to CD4+. The findings suggest that chronic bacterial 
stimulation contributes to MAIT cell hyper-activation, immune exhaustion, and 
depletion[47].

Cytokine-mediated MAIT cell stimulation: The hyper-activation of MAIT cells in 
alcoholic hepatitis could also be ascribed to increased circulating levels of cytokines 
associated with MAIT cell activation, including IL-7, IL-15, IL-17, IL-18, IL-23, IFN-γ, 
and TNF-α[47] (Table 4). Most of these cytokines have subsided after 6 mo of alcohol 
abstinence, but circulating levels of IL-18, IL-23, and IFN-γ have remained elevated for 
at least 12 mo[47]. Persistence of these cytokines could continue to stimulate and 
exhaust the MAIT cells. Future investigations must evaluate factors contributing to 
this sluggish improvement in MAIT cell numbers and function during alcohol 
abstinence. Persistent permeability of the intestinal mucosal barrier and protracted 
gut-derived bacterial translocation to the peripheral circulation are key aspects that 
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require further evaluation.

MAIT cells and hepatic fibrosis: Activated human MAIT cells stimulate the prolif-
eration of hepatic myofibroblasts in co-cultures[63] (Figure 2). The direct contact of 
activated MAIT cells with myofibroblasts obtained from patients with alcohol-related 
cirrhosis promotes their proliferation in an MR1-dependent manner (Table 4). The 
activated MAIT cells release TNF-α which can in turn increase the production of IL-6 
and IL-8 by the hepatic myofibroblasts[63]. Under these circumstances, mitigation of 
MAIT cell activity could have a beneficial effect by reducing the release pro-inflam-
matory cytokines and the propensity for hepatic fibrosis.

Principal MAIT cell role in alcoholic hepatitis: The principal role of MAIT cells in 
alcoholic hepatitis appears to be protective. IL-17, which is a product of activated 
MAIT cells, is pivotal in initiating a cascade of antibacterial responses[194], and 
activated MAIT cells can eliminate MR1-positive infected cells[133]. MAIT cell 
dysfunction in alcoholic hepatitis may weaken these defense mechanisms and 
contribute to a high frequency of bacterial infection (49%)[195] and sepsis (13%)[196]. 
It may also account for the increased risk of mortality (hazard ratio, 2.33, P < 0.001) in 
severe alcoholic hepatitis[195].

The pathogenic association between MAIT cell dysfunction and adverse outcomes 
in alcoholic hepatitis remains conjectural, and it awaits studies that establish the 
protective value of enhanced MAIT cell function. The major therapeutic challenge of 
investigational MAIT cell manipulation is to promote the antibacterial properties of 
MAIT cells over their potential pro-inflammatory and pro-fibrotic effects.

MAIT cells and NAFLD
The frequency of circulating MAIT cells is also decreased in patients with NAFLD, and 
the frequency is inversely correlated with serum concentrations of gamma glutamyl 
transferase (γ-GGT) and triglycerides[51] (Table 4). Unlike patients with chronic viral 
hepatitis or alcoholic hepatitis, patients with NAFLD have an increased number of 
intrahepatic MAIT cells, and this number correlates directly with the NAFLD activity 
score[51] (Figure 2). Furthermore, the expression of the liver-homing chemokine, 
CXCR6[189], is increased as is the expression of CCR5 in the circulating MAIT cells
[51]. CCR5 promotes MAIT cell migration to areas of hepatic steatosis by interacting 
with CCL5 (also known as RANTES)[197]. In patients with NAFLD, MAIT cells 
congregate around degenerating fat-laden hepatocytes in sinusoidal areas[51]. These 
observations suggest that MAIT cells are actively recruited from the circulation to the 
liver in response to inflammatory stimuli and hepatic steatosis.

As in chronic viral hepatitis and alcoholic hepatitis, the circulating MAIT cells are 
activated and immune exhausted. CD69 and PD-1 are expressed on the circulating 
MAIT cells, and the MAIT cells are functionally altered[51] (Table 4). The production 
of IFN-γ and TNF-α is decreased, and the release of IL-4 is increased (Figure 2). IL-4 
has anti-inflammatory properties which can be manifested in NAFLD as a polarization 
of Kupffer cells into an M2 phenotype[198].

Macrophages can have a pro-inflammatory M1 phenotype in response to IFN-γ[199] 
or an anti-inflammatory M2 phenotype stimulated by IL-4[198,199]. A high percentage 
of monocytes/macrophages co-cultured with activated MAIT cells from patients with 
NAFLD display the M2 phenotype, and the ratio of M2:M1 macrophages is increased
[51] (Figure 2). M2 macrophages can induce the apoptosis of M1 macrophages by a 
mechanism mediated by IL-10 produced by the M2 macrophages[198]. M2 
polarization is a pathway that could reduce inflammatory activity in NAFLD, and it 
may be influenced by MAIT cells[51].

Free fatty acids increase the surface expression of MR1 in monocyte-derived 
macrophages[51], and they can also activate macrophages by signaling through TLR4 
on the macrophage surface[200]. Free fatty acids could thereby increase macrophage 
activity and stimulate Kupffer cell expression of MR1. They could also increase TCR-
mediated activation of MAIT cells and alter MAIT cell function by immune 
exhaustion. The net pathological consequence would depend on the balance between 
MAIT cell production of IL-4, the level of Kupffer cell polarization to the M2 
phenotype, the pro-inflammatory effects of free fatty acids, and the extent of MAIT cell 
exhaustion. Clarification of the sequence and pivotal interactions of these pathological 
events could identify key targets for therapeutic intervention.

MAIT cells in obesity and diabetes: Obesity and diabetes are conditions that may 
accompany NAFLD, and MAIT cells can affect these co-morbidities. The frequency of 
circulating MAIT cells is decreased in obese patients and in obese and non-obese 
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patients with type 2 diabetes[49] (Table 4). The decreased frequency is accompanied by 
increased activation (high expression of CD69) of the residual circulating MAIT cells 
and impaired production of IFN-γ and TNF-α[49]. The frequency of circulating MAIT 
cells that produce IL-17 is increased with obesity, and the expression of PD-1 is up-
regulated, suggesting functional exhaustion[106]. Similar changes have been described 
in children with type 1 diabetes[50].

Adipose tissue from the omentum of obese patients has a higher frequency of MAIT 
cells than the peripheral blood (0.59% vs 0.06%) consistent with active recruitment, and 
the percentage of omental MAIT cells producing IL-17 is greater than the percentage in 
lean persons (26.9% vs 7.5%, P = 0.0009)[49]. IL-17 induces insulin resistance in 
adipocytes and hepatocytes[201,202], and the dysfunctional MAIT cells in adipose 
tissue and peripheral circulation may be a link between obesity and insulin resistance
[106].

MAIT cells in human adipose tissue also produce IL-10[106] and IL-4[49]. MAIT 
cells from obese individuals produce less IL-10 and more IL-17 than MAIT cells from 
non-obese individuals, and the counterbalance between IL-10 and IL-17 production 
may modulate insulin resistance[106]. MAIT cells from obese individuals also express 
less of the anti-apoptotic molecule, B cell lymphoma 2 (Bcl-2)[49]. A shortened survival 
within the MAIT cell population may be another factor that alters the cytokine milieu.

In a murine model of obesity, MAIT cell frequency has been reduced in blood, 
epididymal adipose tissue, and ileum compared to lean mice[203]. The MAIT cells in 
the epididymal adipose tissue of obese mice have produced more IL-17A and TNF-α 
than in the lean mice, and the MAIT cells in the ileum have produced more IL-17A. 
The pro-inflammatory cytokine milieu has polarized the macrophages to an M1 
phenotype in the epididymal adipose tissue of the obese mice, and it has been 
associated with an intestinal dysbiosis[203]. Treatment with the folic acid metabolite 
and TCR-blocking ligand, acetyl-6-formylpterin, decreased IL-17A production in the 
adipose tissue and ileum, prevented dysbiosis, and improved insulin sensitivity and 
glucose intolerance[203]. This mouse model of obesity has supported the clinical 
observations in obese individuals by implicating pro-inflammatory MAIT cells in 
adipose tissue as a potentially treatable factor contributing to insulin resistance and 
diabetes risk.

MAIT cell role in NAFLD, obesity, and diabetes: MAIT cells may have a protective 
role in patients with NAFLD by creating an anti-inflammatory cytokine milieu that 
polarizes M2 macrophages[51] (Figure 2). This protective role has been supported by 
animal studies that have demonstrated the development of severe hepatic steatosis[51] 
or exacerbated diabetes[50] in MAIT cell-deficient mice. MAIT cells may also have a 
pro-inflammatory effect that contributes to insulin resistance. This possibility has been 
supported by studies in obese patients[106], diabetic patients[50], and murine models 
of obesity[203] and diabetes[50]. The clinical and experimental studies in NAFLD, 
obesity, and diabetes underscore the diversity of MAIT cell activities and the need to 
better understand the factors that influence these activities within the involved tissue. 
This understanding is essential before considering targeted therapeutic manipulations.

MAIT cell deficiencies do improve as obesity and diabetes are successfully treated
[49,50]. However, the relationship between correction of the MAIT cell deficiency and 
improvement of the metabolic disease remains conjectural. Bariatric surgery and 
subsequent weight loss have not normalized MAIT cell frequency or decreased IL-17 
production[49]. Furthermore, insulin treatment of type 1 diabetes has not normalized 
the MAIT cell phenotype in children[50]. The possibility of a genetic predisposition for 
MAIT cell deficiency or a disease-acquired impairment that persists long-term has not 
been excluded. Future investigations of MAIT cells in NAFLD and its metabolic co-
morbidities will need to define more fully the disease response as a function of MAIT 
cell activity.

MAIT cells and autoimmune hepatitis
The MAIT cell abnormalities described in untreated autoimmune hepatitis mirror 
those recognized in other forms of chronic hepatitis. Circulating MAIT cells are 
activated but depleted[52,53], and they are functionally altered in a manner consistent 
with immune exhaustion (reduced production of granzyme B and IFN-γ)[52,53] 
(Figure 2). The number of intrahepatic MAIT cells varies from low[52] to high[53], and 
the bases for this variation remain uncertain (Table 4). The key insight has been the 
recognition of MAIT cells as pivotal pro-inflammatory and pro-fibrotic agents.

The frequency of circulating, activated MAIT cells has been significantly higher (P = 
0.009) in patients with autoimmune hepatitis and advanced hepatic fibrosis (fibrosis 
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score, F3-F4) than in patients with little or no fibrosis (fibrosis score, F0-F2)[53]. 
Furthermore, blood levels of IL-17 have been increased in patients with autoimmune 
hepatitis[204]. IL-17A, which is a product of activated MAIT cells, is a recognized pro-
inflammatory and pro-fibrotic cytokine[11,101]. This production has been robust 
despite features of MAIT cell exhaustion in autoimmune hepatitis[52].

MAIT cells stimulate proliferation of hepatic stellate cells and increase the 
expression of genes that regulate the production of pro-fibrotic (collagen 1, lysyl 
oxidase, and tissue inhibitor of metalloproteinase 1) and pro-inflammatory (IL-1β, IL-
6, IL-8 and CCL2) molecules[52]. These deleterious actions could help explain 
progressive hepatic fibrosis in autoimmune hepatitis. They have also been implicated 
in ALD[63].

MAIT cells have been associated mainly with detrimental pro-inflammatory and 
pro-fibrotic effects in autoimmune hepatitis[52,53] (Figure 2). Glucocorticoids have 
decreased the frequency of circulating MAIT cells by 23% in asthmatic patients[177], 
and they have altered MAIT cell populations in other autoimmune diseases[15,177,
185]. Studies that explore the effects of glucocorticoids on MAIT cell numbers and 
function in patients with autoimmune hepatitis could clarify their pathogenic role and 
further validate or improve current corticosteroid-based management strategies[92].

MAIT CELLS IN CHRONIC CHOLESTATIC LIVER DISEASE AND  
DECOMPENSATED CIRRHOSIS
MAIT cells have been evaluated in patients with chronic cholestatic liver disease[54-
57] and patients with decompensated cirrhosis[58] (Figure 2). The findings strengthen 
perceptions already developed in the various forms of chronic hepatitis. MAIT cells 
are common components of the host response to liver injury independent of etiology 
or clinical phenotype, and they may be protective, pathogenic, or both protective and 
pathogenic. The modifiable factors that direct these actions remain unclear and 
warrant further investigation.

MAIT cells and PBC
MAIT cells in PBC have abnormalities reminiscent of the findings in chronic hepatitis. 
Circulating MAIT cells are decreased in frequency compared to control subjects[54,
55]; intrahepatic MAIT cells are reduced[54] or increased[55] in number; expression of 
the liver-homing chemokines, CXCR6 and CCR6, are up-regulated; and cytokine 
production is altered[54] (Table 5). Immune exhaustion has been invoked as a basis for 
aberrant MAIT cell function[54,55]. Apoptosis, attributable to AICD, has been 
proposed as a reason for MAIT cell depletion[54,55]. The key insight has been the 
recognition of MAIT cells as a pivotal immune regulatory population with complex 
and possibly contradictory actions.

MAIT cells may have a protective effect in PBC. The frequency of circulating MAIT 
cells has correlated negatively with the serum alkaline phosphatase level, suggesting 
that the loss of a protective MAIT cell function may permit worsening cholestasis[55] 
(Table 5). MAIT cell production of IL-17 is increased, and the production of IFN-γ is 
reduced[55]. IFN-γ is a cytokine that can impair hepatic stellate cell activation[205-
207], and the reduced production of IFN-γ by MAIT cells could favor the pro-fibrotic 
actions of IL-17 in PBC[55,207]. MAIT cells preferentially infiltrate the portal tracts in 
PBC, and the expression of MR1 is up-regulated in hepatocytes, injured biliary 
epithelial cells, and inflammatory cells[55]. MR1-mediated stimulation of MAIT cells, 
possibly by bacterial ligands derived from the intestinal microbiome, could be a 
protective antimicrobial mechanism in PBC[55].

MAIT cells may also have a pro-inflammatory effect in PBC. The association of 
MAIT cell activation with elevated serum alanine aminotransferase levels suggests 
that the MAIT cell response could enhance inflammatory activity[54]. Furthermore, IL-
7 stimulates the production of inflammatory cytokines and granzyme B by MAIT cells
[55], and IL-7 is increased in the plasma and liver tissue of patients with PBC[55] 
(Table 5). The bile acid, cholic acid, up-regulates the expression of IL-7 in hepatocyte 
lines, and the intrahepatic MAIT cells in PBC may develop a pro-inflammatory 
phenotype[55]. Circulating MAIT cells have reduced expression of receptors for IL-7 
(IL-7R) and IL-18 (IL-18R) in PBC, possibly because of immune exhaustion, and it is 
unclear how this observation might affect the intrahepatic MAIT cell response to IL-7
[54].
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Table 5 Mucosal-associated invariant T cells in cholestatic liver disease and decompensated cirrhosis

Liver disease MAIT cell features Clinical implications

PBC Circulating MAIT cells decreased[54,55]; Intrahepatic MAIT cells variable
[54,55]; Upregulated liver-homing CXCR6, CCR6[54]; Aberrant MAIT cell 
function[55]; Depletion associated with increased AP[55]; Low IFN-γ 
unable to impair HSC activation[55]; Preferential portal tract distribution
[55]; Activation associated with increased ALT[54]; Cholic acid-induced 
hepatocyte IL-7[55]; IL-7-induced pro-inflammatory cytokines[55]; 
Limited expression of IL-7R and IL-18R[54]

Immune exhaustion[54,55]; Apoptosis-based depletion 
(AICD)[54,55]; Unable to prevent cholestasis[54,55]; 
Unable to inhibit hepatic fibrosis[55]; Defective barrier to 
gut-derived ligands[55]; Pro-inflammatory cytokine milieu
[54,55]; UDCA improves but not restorative[54,55]; 
Presumed defective protective role[54,55]; Presumed active 
pathogenic role[54,55]

PSC Circulating MAIT cell frequency reduced[57]; Intrahepatic MAIT cell 
frequency less[56]; CD69, CD56, PD-1, and CD39 expressed[57]; Impaired 
response to bacteria[57]; Abundant extrahepatic bile duct MAIT cells[57]

Activated and immune exhausted[57]; Depleted in 
circulation and liver tissue[56,57]; Less anti-bacterial 
protection[57]; Abundant migration to bile ducts[57]; 
Presumed defective protective role[57]

Decompensated 
cirrhosis

Circulating MAIT cell frequency reduced[58]; High expression of 
activation markers[58]; MAIT cell frequency increased in ascites[58]; 
Increased cytokines from peritoneal cells[58]; Increased granzyme B from 
peritoneal cells[58]; Increased frequency in SBP ascites[58]; Homing 
chemokine CXCR3 on MAIT cells[58]; Abundant CXCL10 ligand in ascites
[58]

Activated and recruited to ascites[58]; Anti-microbial 
protective response[58]; Protective role of uncertain 
efficacy[58]

AICD: Activation-induced cell death; ALT: Serum alanine aminotransferase level; AP: Serum alkaline phosphatase level; HSC: Hepatic stellate cells; IFN-γ: 
Interferon-gamma; IL-7: Interleukin 7; IL-7R: Interleukin 7 receptor; IL-18R: Interleukin 18 receptor; MAIT: Mucosal-associated invariant T; PBC: Primary 
biliary cholangitis; PD-1: Programmed cell death 1; PSC: Primary sclerosing cholangitis; SBP: Spontaneous bacterial peritonitis; UDCA: Ursodeoxycholic 
acid.

Therapy with ursodeoxycholic acid (UDCA) for at least 6 mo in 24 patients with 
PBC has increased the frequency and absolute number of circulating MAIT cells in 
those patients whose liver tests had improved[55]. The expression of the activation 
marker, CD25, has decreased; the percentage of apoptotic MAIT cells has diminished; 
and the frequency of MAIT cells producing IL-17A and granzyme B has decreased. 
Similar improvements in the frequency and absolute number of MAIT cells have also 
been demonstrated in 7 patients who had normalized liver enzymes after 6 mo of 
UDCA therapy[54]. In this series, the frequency of MAIT cells and the expression of IL-
7R and IL-18R did not fully recover.

MAIT cells and PSC
Studies of MAIT cells in PSC have been limited, and the findings have been familiar 
(Figure 2). The frequency of circulating MAIT cells has been dramatically reduced in 
PSC, and the reduction has been similar to that encountered in patients with inflam-
matory bowel disease or PBC[57] (Table 5). The MAIT cell depletion has not been 
associated with particular clinical characteristics, and the MAIT cells have expressed 
markers of activation (CD69 and CD56) and immune exhaustion (PD-1 and CD39)[57]. 
The MAIT cell response to bacteria has been reduced, and the cytokine-dependent 
response has also been impaired[57]. MAIT cells have localized mainly to fibrotic areas 
in liver samples, and the overall intrahepatic population has been less than in donor or 
resected liver specimens[56].

The key finding in these studies has been the demonstration of abundant MAIT cells 
within the biliary tract by brushings obtained at endoscopic retrograde cholan-
giography[57] (Table 5). The proportion of MAIT cells in the biliary brush samples has 
been four-fold greater than in matched peripheral blood samples, and the MAIT cell 
accumulation at the site of inflammation has been consistent with a chronic protective 
response against intestinal pathogens in the biliary mucosa[57]. Patients with PSC 
have a high frequency of bacteria in bile cultures, especially with dominant strictures
[208-210], manifest intestinal dysbiosis[211,212], and improve clinically after antibiotic 
therapy[213-216]. These observations have supported the concept that bacterial by-
products from the intestinal microbiome stimulates immune-mediated damage to the 
biliary tree and liver and that MAIT cells have a protective, antimicrobial function in 
PSC[67,210].

MAIT cells and decompensated cirrhosis
The protective, anti-microbial role of MAIT cells in chronic liver disease has been 
supported by studies of MAIT cell frequency and function in patients with cirrhosis 
and hepatic decompensation (Table 5). The frequency of circulating MAIT cells has 
been reduced in these patients, and the MAIT cells have had an activated phenotype 
(high levels of HLA-DR, CD25, CD38, CD56)[58]. The frequency of MAIT cells has 



Czaja AJ. MAIT cells in chronic liver disease

WJG https://www.wjgnet.com 3721 July 7, 2021 Volume 27 Issue 25

been increased in the ascites, and the highly activated peritoneal MAIT cells have 
produced higher levels of IFN-γ and granzyme B than the MAIT cells in matched 
blood samples[58].

MAIT cell frequency and total number have also been significantly increased in the 
ascites of patients with spontaneous bacterial peritonitis compared to patients with 
uninfected ascites[58] (Table 5). The peritoneal MAIT cells have lacked markers of 
tissue residency, and they have not been actively proliferating[58]. These features have 
suggested that the MAIT cells have migrated to the ascites from the circulation. The 
expression of the homing chemokine, CXCR3, by the peritoneal MAIT cells and the 
presence of high levels of CXCL10 in the ascites have also supported this conjecture.

MAIT cells in decompensated cirrhosis may have a protective function in uninfected 
ascites and a critical antimicrobial function in infected ascites. Studies that evaluate 
interventions to expand and strengthen the MAIT cell population in ascites might 
improve the control of bacterial infection in patients with decompensated cirrhosis. 
Investigations in a murine model have already demonstrated that IL-23 combined with 
the MR1-ligand, 5-OP-RU, can protect against pulmonary infection with Legionella
[217], and they encourage similar evaluations in models of advanced liver disease.

INCORPORATING MAIT CELLS INTO THE PATHOGENESIS OF CHRONIC 
LIVER DISEASE
The incorporation of MAIT cells into the pathogenesis of chronic liver disease requires 
clarification of the role of MAIT cells in each type of chronic liver disease and 
demonstration that MAIT cell manipulation can affect disease severity and outcome.

Clarification of the disease-related role of MAIT cells
MAIT cells have been proposed as the new guardians of the liver[17], and patients 
with chronic viral hepatitis, alcoholic hepatitis, PSC, and decompensated cirrhosis 
could be protected by the antimicrobial actions of fully functioning MAIT cells[2-4,30,
218]. Similarly, patients with NAFLD might be protected by the anti-inflammatory 
cytokines (IL-4, IL-5, IL-10, and IL-13) generated by MAIT cells in the liver[51] and in 
adipose tissue[49,106]. Conversely, patients with autoimmune hepatitis could be 
disadvantaged by abundant MAIT cell production of pro-inflammatory and pro-
fibrotic cytokines[52,53], and patients with PBC could be either disadvantaged by 
MAIT cell production of pro-inflammatory cytokines[55] or benefited by antibacterial 
actions against products from the intestinal microbiome[55].

The variability of the presumed consequences of MAIT cell depletion or dysfunction 
in the different liver diseases suggests that local factors in the hepatic microenvir-
onment modulate the nature of the MAIT cell response. These factors may include 
local inflammatory cues (cytokine milieu)[219], bile acids (cholic acid)[55], gut-derived 
bacterial products (LSP, endotoxin, antigens)[46,47,69], and metabolic by-products 
(riboflavin metabolites, glyoxal, methylglyoxal)[9,13,14,151,152].

MAIT cells have different activation thresholds which can modulate their response 
to non-commensal antigens. Inflammatory signals derived from IL-12, IL-15, or IL-18 
elicit robust antiviral (IFN-γ) and antibacterial (granzyme B) responses from MAIT 
cells[219], whereas direct TCR stimulation induces a brief, less robust release of IFN-γ 
and TNF-α and a less vigorous effector response[219]. The most potent effector 
function is elicited when both the inflammatory (cytokine-mediated) and TCR (anti-
gen-mediated) signals are delivered concurrently to the MAIT cells[219]. Conditions at 
the site of inflammation could modify the activation thresholds for various MAIT cell 
functions and elicit antimicrobial, anti-inflammatory, or pro-inflammatory actions that 
are situation-specific[219,220]. Clarification of the conditions that drive the MAIT cell 
response toward a protective or pathogenic nature are needed to develop targeted, 
disease-appropriate, therapeutic interventions[220].

Manipulating MAIT cells to assess effects on disease severity and outcome
MAIT cell manipulations are necessary to establish the impact of MAIT cells on 
disease severity and outcome. Animal studies have demonstrated that genetically 
manipulated mice without MR-1 and MAIT cells exacerbate experimental NAFLD
[51], whereas studies that demonstrate the effect of restoring the MAIT cell population 
are lacking. These studies would validate a critical pathogenic relationship that is 
necessary before considering therapeutic manipulations of MAIT cells in clinical trials.
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MAIT cells can be up-regulated and down-regulated by several interventions that 
could help determine their pathogenic role in animal models. MAIT cells are immune 
exhausted in chronic liver disease, and they may be less responsive to MR1-dependent 
stimulation[82]. Cytokine-mediated stimulation may be the preferred method of 
restoring immune exhausted MAIT cells, and recombinant IL-7 has the potential to 
improve MAIT cell proliferation, cytokine production, effector (granzyme B) function, 
and MR1-mediated activation[82,107]. Furthermore, the administration of recombinant 
IL-7 to patients with chronic HIV infection has restored the integrity of the intestinal 
mucosal barrier[221]. Protection from gut-derived bacterial products by the adminis-
tration of recombinant IL-7 might have a particular advantage in experimental models 
of alcoholic hepatitis[46,47], PBC[55], or PSC[57]. IL-15, IL-1β and IL-23 are other 
cytokines that can activate MAIT cells, but they have less potency than IL-7[82,158,
222]. Cytokines of less potency or in various combinations may achieve the desired 
result without generating opposite or adverse effects.

Drugs and drug-like molecules can also modulate the function of MAIT cells as 
ligands that bind to MR-1[153]. Diclofenac metabolites can promote MAIT cell activity, 
and salicylates can inhibit this activity. Drugs have the promise of achieving the MAIT 
cell response appropriate for the individual disease as an agonist or antagonist of 
MAIT cell activity. Other therapeutic possibilities are ex vivo re-programming of MAIT 
cell function with select cytokines[82,107], vaccination with IL-23 in combination with 
5-OP-RU[217], and re-programming and re-differentiating MAIT cells using induced 
pluripotent stem cells derived from MAIT cells[223]. Glucocorticoids reduce MAIT cell 
frequency in certain immune-mediated diseases[15,177,185], and they also may have a 
role in modulating MAIT cell activity.

Specific molecular interventions that could down-regulate MAIT cell activity are 3-
([2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-yl]formamido) propanoic acid which can 
impair cell surface expression of MR1 and prevent antigen recognition[155] and acetyl-
6-formylpterin, which can inhibit MAIT cell function by competing with other 
bacterial products for MR1 ligation[143,150]. These molecular interventions have the 
potential to clarify mechanisms of MR1 expression and function and possibly emerge 
as experimental agents by which to modulate MAIT cell activity.

MAIT cell manipulation will be an important experimental method to establish the 
protective and pathogenic importance of MAIT cells in chronic liver disease. This 
laboratory experience will be essential before considering MAIT cell intervention as a 
therapeutic strategy in patients.

CONCLUSION
MAIT cells are innate-like T lymphocytes with antimicrobial and immune regulatory 
properties that are activated, immune exhausted, and dysfunctional in the different 
types of chronic liver disease. The similarity of findings in diverse liver and non-liver 
diseases of an infectious or non-infectious nature suggests that MAIT cells are a 
disease-nonspecific, T cell response to chronic inflammation.

MAIT cells may have a protective function in chronic viral hepatitis, alcoholic 
hepatitis, NAFLD, and PSC, exert pro-inflammatory and pro-fibrotic actions in 
autoimmune hepatitis, and have protective and pathogenic effects in PBC. The 
variable effects of MAIT cells despite their similar clinical phenotype suggests that 
disease-related factors in the hepatic microenvironment (inflammatory cues, bile acids, 
gut-derived bacterial products, and metabolic by-products) influence MAIT cell 
function.

Future investigations must establish the role of MAIT cells as critical determinants 
of disease severity and outcome in chronic liver disease, identify the local disease-
related factors that drive their particular functions, and evaluate interventions that 
modulate their protective and pathogenic properties in a disease-appropriate manner.
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