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Abstract

Haptic feedback plays a key role in surgeries, but it is still a missing component in robotic 

Minimally Invasive Surgeries. This paper proposes a dynamic model-based sensorless grip force 

estimation method to address the haptic perception problem for commonly used elongated cable-

driven surgical instruments. Cable and cable-pulley properties are studied for dynamic modeling; 

grip forces, along with driven motor and gripper jaw positions and velocities are jointly estimated 

with Unscented Kalman Filter and only motor encoder readings and motor output torques are 

assumed to be known. A bounding filter is used to compensate for model inaccuracy and to 

improve method robustness. The proposed method was validated on a 10mm gripper which is 

driven by a Raven-II surgical robot. The gripper was equipped with 1-dimensional force sensors 

which served as ground truth data. The experimental results showed that the proposed method 

provides sufficiently good grip force estimation, while only motor encoder and the motor torques 

are used as observations.

Index Terms—

Sensorless Grasp Force Estimation; Dynamic Modeling; Unscented Kalman Filter; Elongated 
Cable Driven Instrument; Surgical Robot; Minimally Invasive Surgery

I. Introduction

Surgical robotic systems provide improved freedom of movement, decreased surgeon’s 

tremor, reduced motion and 3-dimensional images, greatly extend the applications of 

minimally invasive surgery(MIS)[1], [2]. Haptic perception plays a key role in surgery, 

because surgeons traditionally use tactile information for diagnosis. Besides the potential 

loss of diagnostic information, the lack of haptic feedback in current medical robotic 

systems may lead to poor force regulation and resulting damage to healthy tissues. In other 

contexts, for example grasping and suturing, lack of haptic feedback may result in 
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insufficient forces [3], [4], [5]. In current MIS systems, the surgeon’s ability to perceive 

valuable haptic information is severely impaired[4]. Researchers have proposed various 

methods to address the lack of haptic perception in robotic surgeries. The most direct 

approach is to use force sensors to measure the forces from instrument tips. However, due to 

the stringent size, cost, and environmental requirements of MIS, few force sensors can be 

directly used in operating rooms. Although various smart design of sensors broke the size 

limitation [6], [7], [8], due to the cost and the requirements of sterilization, they are still not 

widely available.

Force is measured through directly or indirectly measuring displacement change of the 

elastic element that is correlated with the force magnitude. A thorough discussion on force 

and tactile sensing techniques for MISs can be found in[4]. A completely sensorless way for 

grip force estimation is to utilize the fact that grip forces originate from motor torques in 

surgical instruments. Therefore, it is also possible to detect force by measuring motor 

outputs. This approach has advantages since it requires neither additional devices nor special 

design. Tholey et al. adopted the concept for 3-dimensional force estimation[9], and the 

disturbance observer was applied to sensorless force estimation [10]. However, the 

commonly used elongated cable driven surgical instruments are more complex in 

mechanics[11], and the long cable run through the mechanism introduces extra uncertainties 

such as cable stretch and cable-pulley friction.

In order to address this problem, both cable properties and cable-pulley properties have been 

thoroughly studied and modeled[12], [13], [14]; and the corresponding dynamic model was 

combined with Unscented Kalman Filter for surgical robotic manipulator positioning 

precision improvement[15]. In this paper, we focused on applying and extending these 

techniques to the elongated cable-driven surgical instruments for grip force estimation. The 

core contributions of the paper are:

• We propose a dynamic model, UKF, and bounding filter based sensor-less force 

estimation method for elongated cable driven surgical instruments;

• We implemented the proposed method and applied it to a 10mm gripper;

• We validated the proposed method on the Raven-II robot and the experimental 

results showed that the proposed method provides good grip force estimation;

The paper is organized as follows: Section II introduces the dynamic model we constructed 

for force estimation; Section III explains the method used for sensor-less force estimation in 

detail; Section IV shows the experiment setup and the experimental results. Conclusions are 

summarized in Section V.

II. Elongated Cable Driven Surgical Instrument Dynamic Modeling

A. Dynamic Model

Dynamic models of manipulators describe the relationship between joint position, velocity, 

acceleration and system input forces, including input torque and external interaction forces.

Surgical instruments can be modeled as following[16]:
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q̈ = A−1[Γ − H(q, q̇)] (1)

H(q, q̇) = C(q, q̇) + G + diag(q̇)Fv + diag(sign(q̇))Fc + JTFex

Where: A is the Inertia matrix of the manipulator; J is the Jacobian that projects external 

force into the reference coordinates; C(·) denotes the vector of Coriolis and centrifugal 

torques; G is the vector of Gravitational force; q, q̇, q̈ are the manipulator position, velocity 

and acceleration, respectively; Fv,Fc are viscous friction and coulomb friction parameters, 

respectively; Γ,Fex are joint input torque and external torque (which is the grip force in our 

application) respectively.

The model shows that the friction terms and Coriolis and centrifugal terms increase the 

nonlinearity of the system and the time-dependency. In surgical instruments, the inertia is 

expected to be small. The precise measurement and modeling of all these terms is difficult in 

real surgical environments. For example, body fluids permeating the instrument mechanism 

can temporarily act as a lubricant and change friction parameters. We are studying 

probabilistic filters such as Non-linear Kalman Filters to track such parametric variations 

and also to correct for resulting errors in state estimation.

B. Cable-Driven Mechanism Model

Elongated cable-driven surgical instruments can generally be modeled as shown in Fig. 2; 

and an example of such instruments can be seen in Fig. 3. The cable-driven mechanism 

ensures surgical robots meet requirements such as narrow aspect ratio and high temperature 

sterilization; meanwhile, it also increases the complexity of the dynamic model. To be more 

specific, the cable-driven mechanism not only introduces extra friction between cables and 

pulleys, but also increases the uncertainties on joint positions, velocities and accelerations, 

due to the stretch of cable and backlash.

The dynamic model describing the relationship between driven motors and joints is:

q̈m = 1/Am Γ − Fl − Fm
Fl = − rmγ
γ = ke eqmrm − qlrl − eqlrl − qmrm + 2be qm

. rm − q̇lrl
Fm = Cm qm, q̇m + Fcmsign q̇m + Fvmq̇m

(2)

Where: qm, q̇m, q̈m: denote motor position, velocity and acceleration, respectively; ql, q̇l: 

denotes link position and velocity; τ: denotes output torques from motors; Am: denotes the 

diagonal motor inertia matrix; Cm(·) denotes the vector of Coriolis and centrifugal torques of 

motor; Fvm,Fcm are viscous friction and coulomb friction parameters, respectively; rm, rl: are 

capstan radius of motor and link, respectively; γ: is the cable tension. The exponential 

spring-mass-damper model used here to depict cable properties is experimentally verified; 

and the cable stiffness and damping parameters ke,be can be measured by the equipment 

shown in Fig. 4. In this paper, ke = 2.2e4N/m,be = 950N · s/m.
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Eqn. 2 shows that the output torque from a motor is partially consumed by its friction, Fm. 

Net torque is then converted to kinetic energy and passed to the link through the cable. The 

joint input torque from the cable is:Γ = γrl (Eqn.1). Eqns. 1 and 2 are the dynamic model of 

the elongated cable-driven surgical instrument.

C. Friction Analysis

Friction is a very complicated phenomenon arising at the contact of surfaces, and 

experiments indicate a functional dependence upon a large variety of parameters, for 

example: sliding speed, acceleration, critical sliding distance, temperature, normal load, 

humidity, surface preparation, and material combination [17]. For both cable driven surgical 

robots (such as Raven-II, the one we used to verify the proposed method; Fig. 5) and 

elongated instruments, cables go through multiple pulleys and pass the torque to the end 

effector; therefore friction between cables and pulleys plays a key role [14], [5]. Our 

previous study showed that the cable-pulley friction model is a function of cable tension, 

average individual wrap angle, and type and number of pulleys employed; and both the 

function and the coefficients are experimentally defined in [14].

The motion axes in the instrument (the most distal axes in the manipulator’s serial chain) are 

qualitatively different from the more proximal axes near the base. In the base axes, large 

masses and cable low cable compliances (due to short cable runs) dominate the dynamics. In 

contrast, in the distal tool axes, the masses are very low and the cable runs much longer, 

therefore friction and compliance dominate the dynamics.

Although the friction model has been thoroughly studied and the coefficients were 

experimentally identified, system configuration and working environment constantly change 

in the surgical robotics scenario, which disturbs the coefficients. The ideal way of improving 

friction estimation precision is to dynamically estimate the coefficients. However, due to the 

fact that the observation dimensionality is much lower than the joint state dimensionality, it 

is difficult to online estimate the parameters without extra sensors. In order to improve the 

robustness and the precision of the proposed method, a bounding filter was applied to the 

grip force estimation (explained in Section. III-B in detail).

III. Dynamic Model Based Sensorless Grip Force Estimation

A. Unscented Kalman Filter for State Estimation

The Unscented Kalman Filter (UKF) was applied to the dynamic model for state estimation 

[18]. Although the computational complexity of UKF is as high as O(m3), where m is the 

size of the joint state vector; it is not a problem in the proposed method, because the size of 

the state vector is small and it does not grow with time. To be more specific, the state vector, 

x, can be stated as:

x : = qmi q̇mi qli q̇li fexi
T , i = 1, 2, 3, 4 (3)

where i = 1,2,3,4 corresponds to the four control degrees of freedom. Mechanical interfaces 

to the DoFs are shown in the green rectangle in Fig. 3. The roll axis is index 1; the wrist is 

index 2; and the external forces for 1 and 2 are always zero since only the grip forces are 
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estimated in the proposed method. The two grip jaws are index 3 and 4. Then the state space 

function of the system can be modeled as:

ẋ = f(x, u)
y = H(x) (4)

where f(·) corresponds to the dynamic model (Eqns. 1 and 2); H(x) = qm is the linear 

observation function since only the motor encoder is observable in the application.

The estimation process is visually explained in Fig. 6 as a Bayesian network: system states 

Xq, Xq̇ and Xf correspond to positions, velocities and grip forces, respectively; τ is the input 

torque from the motor; Xp is the parameters of the dynamic model and Z is the observation 

(motor position). Because many parameters in the dynamic model, such as friction 

coefficients, are changing with environmental changes, ideally, the parameters need to be 

estimated simultaneously in order to improve both precision and robustness. However, our 

experiments showed that jointly estimating both state variables and parameters does not 

easily converge. Therefore, in this study, the friction and cable parameters are considered 

constant. As explained in the previsou section, the friction and cable parameters do change 

in real surgical applications, we need to address this problem in our future work.

Because the dynamic model is in the form of differential equations, we used a fourth order 

Runge-Kutta integrator to solve the dynamic model in the time update process in UKF[19].

B. Bounding Filter for Robustness Improvement

Performance of the UKF is sensitive to the precision of both the state space function and the 

noise model. Although we have explicitly studied the properties of cable, and pulleys, in 

order to improve the accuracy of the dynamic model, both the precise identification of 

parameters and the exact knowledge of system process noise should not be assumed to be 

known in real-world applications, such as robotic surgery. More importantly, in the surgical 

instrument, motor and link position and velocity are “constrained” by cable stretch and 

inertias; but grip forces do not have such constraints. We also know that UKF propagates 

observation errors to state variables according to covariance estimation and the system state 

space function, therefore, system noise or measurement noise have much bigger impact on 

grip force estimation than on position and velocity estimations.

In order to improve the robustness and stability against noise, we used a bounding filter[20]. 

The bounding filter can improve estimation precision through exploiting the prior 

knowledge that while surgical instruments actively grip objects, the grip force does not 

exceed a value proportional to the output torque from the motors. The proposed bounding 

filter is mathematically explained as:

ẋt′ = ẋt,
ηΔut − ẋt

ηΔut
≤ ω

ẋt′ = ηΔut(1 − ω), otℎerwise
(5)

Li et al. Page 5

IEEE Int Conf Robot Autom. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where: ẋt = ẋt − ẋt − 1 denotes the estimation change from time point t −1 to t; ẋt denotes the 

estimation result on both system states and grip forces from UKF; η, ω are two constants; ẋt′: 
is the output from the bounding filter (Figure 7) applied to the grip force estimation. In our 

implementation, the UKF runs at 10Hz, η = 0.3, and ω = 0.75.

IV. Experimental Result and Discussion

The proposed method was verified with a 10mm diameter, cable-driven surgical gripper 

(Fig. 3) on the Raven-II surgical robot (Fig. 5). The Raven-II robot is fully driven by cables, 

including a kinematic cable coupling between the manipulator’s insertion axis and the four 

instrument degrees of freedom. However, not all surgical robot platforms share the same 

mechanical design; therefore, in the proposed method, we only focused on the dynamic 

modeling of the instrument and the estimation of the grip force. In the experiments reported 

here, the manipulator holds still and only the instrument moves.

In order to obtain the grip force ground truth, the gripper was equipped with two low profile 

force sensors (FSS015WNSB, Honeywell) (picture is showen in Fig. 3, and the schematic 

drawing is shown in Fig. 8). Two aprons that rotate with respect to the jaw joint were added 

to the gripper to couple grasping contact forces to the sensor’s contact point. Once the 

location of the sensor is fixed, the relationship between the grip force and the torque exerted 

on the jaw is also fixed.

The static calibration of the force sensor was performed with weights (Fig. 8) and results are 

shown in Fig. 9. The calibration weights ranged from 0mN to 1176mN; and the linear fit 

results are:

Fleft = 74.37V left + 37.3
Frigℎt = 72.26V rigℎt + 181.3 (6)

The coefficient of determination R2 for the force measurement was 0.9965 for the left jaw 

and 0.9963 for the right jaw.

A. Zero Grip Force Estimation

The proposed method was first verified in the zero grip force scenario: the jaws repeatedly 

open and close, without touching each other or any other objects. Therefore, the true grip 

forces should be near zero. The estimation result from the UKF and ground-truth from the 

grasp force sensors are shown in Fig. 10. Although the estimated forces are not exactly zero, 

an error histogram (Fig. 11) shows the magnitude of the estimation errors are small for both 

jaws. Although the static calibration results (Fig. 9) were highly repeatable and stable, the 

dynamic measurement from the sensors was noisy (Fig. 11). A Gaussian curve was fit to the 

sensor measurement in order to estimate the variance of the sensor noise. A smoothing filter 

adopted from [21][22] was applied to sensor measurements. The averaged errors, standard 

deviations, 99th percentile, and maximum values are compared in Table I. Although the 

averaged error from the sensor is much smaller than the estimated results, the estimated 

results are better on the other three parameters.
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B. Non-zero Grip Force Estimation

The proposed method was applied to the instrument with non-zero grip force (Fig. 1). The 

gripper moved repeatedly and gripped a flexible tube, which is used to simulate blood 

vessels (yellow tube in Fig. 1).

The proposed UKF method was tested against both sensor measurements, and another 

similar method, proposed in [5]. Because of the facts that our experiments do not meet the 

quasi-static condication and we are lack of instrument of identifying parameters for the 

quasi-static method, the experimental results from the method is not even close to the ground 

truth, therefore, the results is not showd here to avoid confusion.

The comparison between the sensor measurements and the proposed UKF method is shown 

in Fig. 12. The UKF method can relatively precisely estimate the grip force. However, in 

some of the grasp cycles (e.g. Fig. 12, Right Jaw, t = {725,950,1100}) the proposed UKF 

method has a delayed response while the grip force decreases. Our guess is when the grip 

forces disappeared, the estimator still tries to project the observation errors to the state 

variables and therefore “stored” energy, then gradually it “realizs” the grip forces have 

disappeared. If our guess is correct, then the independent observation of jaw velocity will 

address the problem. However, equipping velocity sensors to the jaws are not much easier 

than directly mounting force sensors in MISs. If endoscope based gesture estimations or 

contact detection are available, for example from a vision system[23], we may be able to 

further improve the estimation precision without mounting sensors.

The difference (blue line) between the sensor measurement and the UKF estimation results 

are compared with measured grip force (red line) in Fig. 13. The difference histograms are 

fitted with a χ2 distribution in order to give a sense of the estimation precision. The 

averaged, 99th percentile and maximum differences, as well as the standard deviation are 

shown in Table II. The figures and the table show that the proposed method has good 

precision on grip force estimation, even though no extra sensors or equipment are used. 

Although the peak difference between the estimated forces and the measured forces reached 

1N in Table II, the sensor measurements are not exactly the ground truth (see TableI). The 

experiment is also shown in the video attachment with the paper.

Significantly, the proposed method can be directly applied to existing elongated cable-driven 

instruments without extra sensors or hardware costs; it can also be easily combined with 

other estimation techniques, for example, vision based methods[24], in order to further 

improve estimation precision.

In this work, positions and velocities are also jointly estimated with grip forces, as they are 

critical components in grip force estimation. The estimation results are shown in Fig. 15. 

Although we do not have the ground truth for positions and velocities in this study, the 

dynamic model-based UKF for position estimation is reviewed in [15], [25].
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V. Conclusion

A dynamic model-based grip force estimator was proposed to replace force sensing in 

elongated cable-driven surgical instruments. In the proposed method, only motor output 

torques and motor encoder readings are needed for force perception and no extra hardware is 

required, in order to address the problem that force measurement schemes which require 

hardware modifications face significant adoption barriers due to sterilization and cost 

constraints.

A 10mm cable-driven gripper was equipped with 1-dimentional force sensors is used to 

validate the proposed method. Comparision between the estimation from the proposed 

method and the sensor measurement showed that the proposed method achieved good 

precision. If extra sensors, such as endoscopes, exists, a contact detector can easily correct 

the ”estimation lag” caused by insufficient observations in the proposed method. The 

proposed method still has limitations: it actually estimates the torqure on the jaw joint from 

the grip force, instead of the force; it is also sensitive to the dynamic model precision, which 

requires some tuning; and it does not consider the full 6-dimentional force or the cable-

coupling effect. Moreover, in clinic usage, surgeons desire the perception of pressure to 

improve surgical safety, however, the output of the proposed method, force, is still abstract 

for them, and the conversion between the force and the pressure depends on contact position 

and contact surface area, therefore, additional measurements are required to fulfill their 

requirements.

Next, we will study the uncertainty of the estimated force, so the proposed method can be 

easily combined with other force estimation techniques, such as estimations of contacted 

tissue deformation, under the Bayesian framework. The combination with these techniques 

are also the topic of future work.
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Fig. 1. 
Sensorless Force Estimation Experiment Setup. The gripper moved repeatedly and grasped a 

flexible tube simulating a blood vessel.
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Fig. 2. 
Elongated Cable Driven Surgical Instrument Model.
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Fig. 3. 
A 10mm Raven-II Gripper with Force Sensor. A Raven-II gripper was modified to equip 

force sensors on the jaws, as highlighted by the red rectangles; the gripper has four control 

degree of freedoms that correspond to roll, wrist pitch and two jaw pitches, respectively 

(highlighted by the green rectangles).
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Fig. 4. 
Cable Property Study Equipment. Different weights can be applied to cables for both static 

and dynamic property study.
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Fig. 5. 
Raven-II Surgical Robot Platform. Raven-II is a full cable-driven surgical robot; both 

manipulators and instruments are powered by cables.
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Fig. 6. 
Sensorless Grip Force Estimation as Bayesian Network. system states Xq, Xq̇ and Xf 

correspond to positions, velocities and grip forces, respectively; τ is the input torque from 

the motor; Xp is the parameters of the dynamic model and Z is the observation, motor 

position
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Fig. 7. 
Bounding Filter for Improving Grip Force Estimation Precision and Robustness. ẋt denotes 

the system states and grip forces estimation of from UKF; e−sΔt denotes the time delay, 

therefore, ẋt = ẋt − xt − 1˙  denotes the estimation changes from time point t − 1 to t; η, ω are 

two constant; ẋt′: is the output from the bounding filter.
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Fig. 8. 
Modification to Gripper for Force Measurement. The left figure shows the modification we 

made to incorporate force sensors into the jaws for force measurement; the right figure 

shows the static calibration of the force sensor.
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Fig. 9. 
Force Sensor Static Calibration Results. The red and the blue lines correspond to the right 

jaw and the left jaw of the instrument, respectively.
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Fig. 10. 
Sensor Measurement and Estimation Results Comparison. The jaws move without touching 

any objects, therefore, the grip force should be very near to zero all the time. The red and 

blue line showed the measured and the estimated force respectively.
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Fig. 11. 
Sensor Measurement and Estimation Results Histogram Comparison. The zero grip force 

histogram comparison showed that the measured forces have smaller averaged errors and the 

estimated forces have smaller deviations.
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Fig. 12. 
Comparison between Sensor Measured Force and Force Estimated by Proposed Method.
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Fig. 13. 
Sensor Measurement and Estimation Error Comparison. Difference between the estimated 

force and the sensor measured force are compared with sensor measured force, in order to 

show the ”delay phenomenon”.
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Fig. 14. 
Sensor Measurement and Estimation Difference Histogram Comparison. Histogram are 

compared with χ2 distribution to model the estimation precision.
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Fig. 15. 
Motor and Jaw Position Estimation.
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TABLE I

Estimated and Measured Zero Grip Force Error Comparison.

Averaged SD 99%Value Max

Left Jaw Estimated 0.0518N 0.0329N 0.1185N 0.1524N

Left Jaw Measured 0.0221N 0.0501N 0.1517N 0.5058N

Right Jaw Estimated 0.0412N 0.0278N 0.0935N 0.1580N

Right Jaw Measured 0.0236N 0.0527N 0.1573N 0.6012N

Note: SD: Standard Deviation; 99%value: the threshold of 99% of data
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TABLE II

Difference between Sensor Measurement and Estimation.

Averaged Standard Deviation 99%Value Max

Left Jaw 0.1882N 0.1991N 0.6564N 1.0589N

Right Jaw 0.2823N 0.3028N 0.8562N 1.1508N
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