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Abstract

Recent work has shown that convolutional neural networks (CNNs) trained on image recognition 

tasks can serve as valuable models for predicting neural responses in primate visual cortex. 

However, these models typically require biologically-infeasible levels of labeled training data, so 

this similarity must at least arise via different paths. In addition, most popular CNNs are solely 

feedforward, lacking a notion of time and recurrence, whereas neurons in visual cortex produce 

complex time-varying responses, even to static inputs. Towards addressing these inconsistencies 

with biology, here we study the emergent properties of a recurrent generative network that is 

trained to predict future video frames in a self-supervised manner. Remarkably, the resulting 

model is able to capture a wide variety of seemingly disparate phenomena observed in visual 

cortex, ranging from single-unit response dynamics to complex perceptual motion illusions, even 

when subjected to highly impoverished stimuli. These results suggest potentially deep connections 

between recurrent predictive neural network models and computations in the brain, providing new 

leads that can enrich both fields.

The fields of neuroscience and machine learning have long enjoyed productive dialogue, 

with neuroscience offering inspiration for how artificial systems can be constructed, and 

machine learning providing tools for modeling and understanding biological neural systems. 

Recently, as deep convolutional neural networks (CNNs) have emerged as leading systems 

for visual recognition tasks, they have also emerged—without any modification or tailoring 

to purpose—as leading models for explaining the population responses of neurons in 

primate visual cortex [1, 2, 3, 4]. These results suggest that the connections between 

artificial deep networks and brains may be more than skin deep.
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However, while deep CNNs capture some important details of the responses of visual 

cortical neurons, they fail to explain other key properties of the brain. Notably, the level of 

strong supervision used to typically train CNNs is much greater than that available to our 

brain. To the extent that representations in the brain are similar to those in CNNs trained on, 

e.g., ImageNet [5], the brain must be arriving at these representations by different, largely 

unsupervised routes. Another key difference is that the majority of CNNs optimized for 

image recognition and subsequently used to predict neural responses are feedforward and 

thus fundamentally static, lacking recurrence and a notion of time (with notable recent 

exceptions [4, 6, 7]). Neuronal systems, in contrast, are highly dynamic, producing 

responses that vary dramatically in time, even in response to static inputs.

Here, inspired by past success in using “out-of-the-box” artificial deep neural networks as 

models of visual cortex, we explore whether modern predictive recurrent neural networks 

built for unsupervised learning can also explain critical properties of neuronal responses and 

perception. In particular, we consider a deep predictive coding network (“PredNet”; [8]), a 

network that learns to perform next-frame prediction in video sequences. The PredNet is 

motivated by the principle of predictive coding [9, 10, 11, 12]; the network continually 

generates predictions of future sensory data via a top-down path, and it sends prediction 

errors in its feedforward path. At its lowest layer, the network predicts the input pixels at the 

next time-step, and it has been shown to make successful predictions in real-world settings 

(e.g. car-mounted camera datasets [13]). The internal representations learned from video 

prediction also proved to be useful for subsequent decoding of underlying latent parameters 

of the video sequence, consistent with the suggestion of prediction as a useful loss function 

for unsupervised/“self”-supervised learning [14, 15, 16, 17, 18, 19, 20, 21, 22].

Self-supervised learning through video prediction has a rich history in machine learning 

literature and is a highly active area of current research [23, 24, 25, 26, 27, 28, 29, 30, 31, 

32, 33]. Early implementations of spatiotemporal predictive learning include the work of 

Elman [20], Softky [14], and Hawkins [21]. Recent approaches have incorporated 

adversarial [23, 15, 16, 25] and variational [26, 24, 27] techniques, as well as novel recurrent 

units [34, 28]. With use cases including anomaly detection [35, 36] and robotic planning [37, 

29], state-of-the-art models are capable of successful predictions in datasets ranging from 

action recognition [28, 24] to robotic arm movement [19, 31].

In the neuroscience community, predictive coding also has a rich history [38, 39, 40, 41, 42, 

43, 44, 45, 46]. Rao and Ballard helped popularize the notion of predictive coding in 

neuroscience in 1999, proposing that spatial predictive coding could explain several extra-

classical receptive field effects in primary visual cortex (V1), such as end-stopping [9]. 

Predictive coding has been proposed as an explanatory framework for phenomena in a 

variety of sensory systems [47, 48, 49]. The PredNet formulates temporal and spatial 

predictive coding principles in a deep learning framework to work on natural sequences, 

providing an opportunity to test a wide range of neuroscience phenomena using a single 

model.

Below, we show that despite being trained only to predict next frames in natural sequences, 

the PredNet captures a wide array of seemingly unrelated fundamental properties of 
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neuronal responses and perception, even when probed with synthetic stimuli. We begin by 

demonstrating that the PredNet can mimic neuronal response properties at multiple levels of 

the visual hierarchy, including both spatial properties (end-stopping/length suppression) and 

temporal properties (on/off firing rate dynamics, temporal sequence learning effects). We 

then demonstrate that the PredNet can also capture aspects of perception, even under 

conditions where subjective interpretation is dissociated from visual input, such as the 

spatial completion in illusory contours and the dynamic illusion of the flash-lag effect.

RESULTS

The deep predictive coding network proposed in Lotter et al. (2017) [8] (“PredNet”) consists 

of repeated, stacked modules where each module generates a prediction of its own 

feedforward inputs, computes errors between these predictions and the observed inputs, and 

then forwards these error signals to subsequent layers (Figure 1, see also Methods). The 

residual errors from a given layer thus become the prediction targets for the layer above. The 

model consists of four components: targets to be predicted (Al), predictions (Âl), errors 

between predictions and targets (El), and a recurrent representation from which predictions 

are made (Rl). On an initial time step, the feedforward pass can be viewed as a standard 

CNN, consisting of alternating convolutional and pooling layers. Because of the pooling 

operation, the feedforward receptive field becomes twice as large at each successive layer. 

The pooling output of each layer is set as the prediction target for that layer, with the target 

at the lowest layer set to the actual input image itself, corresponding to the next frame in the 

input video sequence. Predictions are made in a top-down pass via convolutions over the 

representational units, which are first updated using the representational units from the layer 

above and errors from the previous time step as inputs. The error modules, El, are calculated 

as a simple difference between the targets (Al) and predictions (Âl), followed by splitting 

into positive and negative error populations. The network is trained to minimize the 

activations of the error units across the training set using (truncated) backpropagation 

through time, with the error units at each layer contributing to the total loss. Similar to the 

original work [8], the results presented here use a model trained for next-frame prediction on 

a car-mounted camera dataset (KITTI; [13]). Thus, the model is trained in a unsupervised or 

“self”-supervised manner which does not require any external labels or other forms of 

supervision. The model consists of four layers and, with 0-indexing used here, layer 1 would 

be analogous to primary visual cortex (V1).

PredNet can capture spatial and temporal single unit response properties

We begin by comparing the response properties of units in the PredNet to established single 

unit response properties of neurons in the primate visual system, which have been studied 

extensively using microelectrode recordings. We investigate both spatial and temporal 

properties, first illustrating that the spatiotemporally-trained PredNet can reproduce effects 

dependent on spatial statistics akin to the spatially-trained model of Rao and Ballard [9]. We 

then examine temporal aspects of responses in the network, demonstrating both short-term 

(“inference mode”) and long-term (“training mode”) properties that are consistent with 

biology. Throughout, we primarily compare responses in the PredNet’s error (“E”) units, the 

output units of each layer, to neuronal recordings in the superficial layers of cortex. In each 
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comparison, we show that the PredNet qualitatively exhibits the effect and then provide a 

quantitative comparison to biology, primarily using the metrics defined in the original 

biological studies. For completeness, response properties of other units in the PredNet (e.g., 

the “R” units) are included in the Extended Data, and would likely map onto other parts of 

the cortical circuit (see Discussion).

End-stopping and length suppression.—One of the earliest non-linear effects 

discovered in recordings of visual cortex is the property of end-stopping [52]. End-stopping, 

or length suppression, is the phenomenon where a neuron tuned for a particular orientation 

becomes less responsive to a bar at this orientation, when the bar extends beyond its 

classical receptive field. The predictive coding explanation is that lines/edges tend to be 

continuous in nature, and thus the center of a long bar can be predicted from its flanks [9, 

45]. A short, discontinuous bar, however, deviates from natural statistics, and responding 

neurons signal this deviation. One potential source for conveying the long range predictions 

in the case of an extended bar could be feedback from higher visual areas with larger 

receptive fields. This hypothesis was elegantly tested in Nassi et al. [53] using reversible 

inactivation of secondary visual cortex (V2), paired with V1 recordings in the macaque. As 

illustrated in the left side of Fig. 2, cryoloop cooling of V2 led to a significant reduction in 

length suppression, indicating that feedback from V2 to V1 is essential for the effect.

The right side of Fig. 2 demonstrates that length suppression, and its mediation through top-

down feedback, are also present in the PredNet. The upper left panel contains the mean 

normalized response for units in the E1 layer to bars of different lengths and the remaining 

panels contain exemplar units. The red curves correspond to the original network (trained on 

the KITTI dataset, [13]) and the blue curves correspond to zero-ing the feedback from R2 to 

R1. Quantifying percent length suppression (%LS) as 100 *
rmax − rlongest bar

rmax
, with r 

indicating the response, the mean decrease in %LS upon removing top-down signaling was 

16 ± 7% (mean ± s.e.m.) for E1 units (p = 0.014, Wilcoxon signed rank test, one-sided, z = 

2.2), which is similar to the 20% decrease observed in the V1 population upon cooling V2 

by Nassi et al. [53].

On/off temporal dynamics.—Prediction in space and prediction in time are inextricably 

intertwined. A particular core temporal aspect of the visual cortical response that has a 

predictive quality is the on/off response trajectory to static stimuli. Figure 3a shows a typical 

response profile of a visual cortical neuron to a static input [54]. The neuron, recorded in the 

secondary visual cortex (V2) of a macaque monkey, produces a brief transient response to 

the onset of the visual stimulus, followed by near total suppression of that response. When 

the stimulus is removed, the neuron responds again with a transient burst of activity (known 

as an “off” response). The unpredictability of the stimulus and its precise onset correlate to 

the “on” response, which decays as the image remains fixed, consistent with the common, 

slow-moving or static nature of real-world objects. Finally, the sudden and unexpected 

disappearance of the object drives the “off” response. Fig. 3b shows the average response of 

PredNet E units in different layers over a set of 25 naturalistic objects appearing on a gray 

background. The on/off dynamics are apparent on the population average level, for all four 

layers of the network. One time step after image onset, the decay in average response ranges 

Lotter et al. Page 4

Nat Mach Intell. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from 20% (E1) to 49% (E3). As a point of reference, macaque inferior temporal cortex (IT) 

data from Hung et al. [55] exhibits a 44% reduction in population response 100ms after 

post-onset peak of a static image on a gray background. This decay rate is thus of the same 

magnitude observed in the PredNet, given that one time step in the model is loosely 

analogous to 100ms, since the model was trained at a rate of 10 Hz. As the E units are the 

input drive to much of the rest of the network, it might be expected that the on/off dynamics 

are also present in the A and R layers, and indeed this is the case, as illustrated in Extended 

Data Figure 2.

Sequence learning effects in visual cortex.—While the on/off dynamics of visual 

cortical responses may indeed reflect learned statistics of the natural world, there are 

perhaps even more striking examples of the sensitivity of neural responses to the long range 

temporal structure in the visual world. For instance, Meyer and Olson [56] demonstrated that 

neurons in IT could be strongly modulated by prior experience with sequences of presented 

images. After repeated presentations of arbitrary images with predictable transition statistics 

(e.g. “image B always follows image A”), neurons appeared to learn the sequence statistics, 

responding robustly only to sequence transitions that were unexpected. Fig. 4a shows the 

mean response of 81 IT neurons for predicted and unpredicted pairs. Fig. 4b demonstrates a 

similar effect in the PredNet after an analogous experiment. Initialized with the weights after 

training on the KITTI car-mounted camera dataset, the model was then trained on five image 

pairs for 800 repetitions, matching the number of trials in the Meyers & Olson experiment. 

The lower proportion of Fig. 4 contains an example sequence and the corresponding next-

frame predictions before and after training on the image pairs. The model, prior to exposure 

to the images in this experiment (trained only on KITTI, [13]), settles into a noisy, copy-last-

frame prediction mode. After exposure, the model is able to successfully make predictions 

for the expected image pair (row 2). Since the chosen image pair is unknown a priori, the 

initial prediction is the constant gray background when the first image appears. The model 

then rapidly copies this image for the ensuing three frames. Next, the model successfully 

predicts the transition to the second object (a stack of tomatoes in this case). In row 3, a 

sequence that differs from the training pair is presented. The model still makes the 

prediction of a transition to tomatoes, even though a chair is presented, but then copies the 

chair into subsequent predictions. Fig. 4b shows that the unexpected transitions result in a 

significantly larger average response in the final E layer of the network (E3; p = 0.002, 

paired t-test, one-sided, t(4) = 6.0). The PredNet E3 units and the IT neurons in Meyer and 

Olson [56] both, in fact, exhibit over a 2X increase in response to unpredicted vs. predicted 

stimuli (158% increase for IT, 108% increase for E3). In the PredNet, there is indeed a larger 

response to the unpredicted images in all layers and all unit types (E, A, R; Extended Data 

Figure 3).

PredNet can capture spatial and temporal illusory aspects of visual perception

Visual illusions can provide powerful insight into the underpinnings of perception. Building 

upon the spatial and temporal single-unit response properties reproduced by the PredNet, we 

ask if the model can also capture complex aspects of visual perception when probed with 

spatial and temporal visual illusions. We examine the PredNet’s responses to illusory 

contours, a primarily spatially-predictive phenomenon, and the flash-lag illusion, which has 
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aspects of both spatial and temporal prediction. We note also that the PredNet has recently 

been shown to predict the illusory motion perceived in the rotating snakes illusion [57]. In 

the following experiments, the network again has only been trained on the KITTI dataset and 

is evaluated in inference mode (i.e., there is no additional training for the specific stimuli 

used in this section).

Illusory contours.—Illusory contours, as in the Kanizsa figures [58], elicit perceptions of 

edges and shapes, despite the lack of enclosing lines. An example of such a figure is 

displayed at the bottom of Fig. 5. Importantly, the percept of the illusion is highly dependent 

on the spatial configuration of the components of the figure, as rotating these components 

lessens the effect (e.g., the “Rotated J” figure in the bottom of Fig. 5). Neural correlates of 

these illusions have been discovered in the responses of visual neurons. Lee and Nguyen 

[59] found that neurons in monkey V1 are responsive to illusory contours, albeit at a reduced 

response and increased latency compared to physical contours. Fig. 5a contains an example 

of such a neuron. The stimuli in the experiment consisted of sequences starting with an 

image of four circles, which then abruptly transitioned to one of numerous test images, 

including the illusion. Illustrated in Fig. 5b, the population average of 49 superficial V1 

neurons responded more strongly to the illusion than similar, but non-illusory stimuli. This 

preference was also apparent in V2, with a response that was, interestingly, of a shorter 

latency compared to V1 (Fig. 5c).

Fig. 5d–f demonstrate that the core effects discovered by Lee and Nguyen [59] are also 

largely present in the PredNet. In the population average of E1 units, there is indeed a 

response to the illusory contour, with an onset at an increased latency compared to the 

physical contours (Fig. 5d). Additionally, Fig. 5e illustrates that the average E1 response was 

moderately higher for the illusory contour than the response to the similar control images. 

This was also the case for E2 units, with a peak response one time step before E1 (Fig. 5f). 

Indeed, the size of the stimuli was chosen such that it was larger than the feedforward 

receptive field of the layer 1 neurons, but smaller than that of the layer 2 neurons (matching 

the protocol of [59]). Using metrics proposed by Lee and Nguyen [59] to quantify the 

preference of the illusion to the amodal and rotated images for each individual unit, we find 

that the average is positive (higher response to the illusion) for both comparisons and all 

tested layers in the PredNet (E1, E2, A1, A2, R1, R2), though not all statistically significant 

(see Extended Data Fig. 5).

The flash-lag effect.—Another illusion for which prediction has been proposed as having 

a role is the flash-lag effect. Fundamentally, the flash-lag effect describes illusions where an 

unpredictable or intermittent stimulus (e.g. a line or dot) is perceived as “lagging” behind the 

percept of a predictably moving stimulus nearby, even when the stimuli are, in fact, precisely 

aligned in space and time [60, 61, 62]. These illusions are sometimes interpreted as evidence 

that the brain is performing inference to predict the likely true current position of a stimulus, 

even in spite of substantial latency (up to hundreds of milliseconds) in the visual system [63, 

64]. The version of the illusion tested here consists of an inner, continuously rotating bar and 

an outer bar that periodically flashes on. Fig. 6 contains example next-frame predictions by 

the PredNet on a sample sequence within the flash-lag stimulus. The model was again only 
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trained on the KITTI car-mounted camera dataset, and then evaluated on the flash-lag 

stimulus in inference mode. The rotation speed of the inner bar in the clip was set to 6 

degrees per time step. The first feature of note is that the PredNet is indeed able to make 

reasonable next-frame predictions for the inner rotating bar. If the model simply copied the 

last seen frame at every timestep instead of making an actual prediction, the angle between 

the inner rotating bar in the outputted “predicted” frame would be 6° behind the bar in the 

actual next frame. Instead, the inner bar in the PredNet predictions is on average only 

1.4±1.2°(s.d.) behind the actual bar (see Methods for quantification of bar angle). As the 

model was trained on real-world videos, generalization to this impoverished stimulus is non-

trivial. Second, the post-flash predictions made by the model tend to resemble the perceived 

illusion. In the PredNet next-frame predictions, the outer and inner bars are not co-linear, 

similar to the illusory percept (see additional post-flash predictions in Extended Data Fig. 6). 

As opposed to being aligned with a 0° difference in the actual image when the outer bar 

appears, the inner bar in the PredNet predictions lags the predicted outer bar by an average 

of 6.8±2.0°(s.d.). For rotation speeds up to and including 25 rotations per minute, we find 

that the average angular difference between the predicted bars in the PredNet aligns well 

with perceptual estimates (Extended Data Figure 8). Considering that the model was trained 

for next-frame prediction on a corpus of natural videos, this suggests that our percept 

matches the statistically predicted next frame (as estimated by the PredNet) more than the 

actual observed frame. These results thus support an empirical, natural statistics 

interpretation of the flash-lag illusion [65].

DISCUSSION

We have shown that a recurrent neural network trained to predict future video frames can 

explain a wide variety of seemingly unrelated phenomena observed in visual cortex and 

visual perception. These phenomena range from core properties of the responses of 

individual neurons, to complex visual illusions. Critically, while prior models have been 

previously used to explain subsets of the described phenomena, we illustrate that a single 

core PredNet model trained on natural videos can reproduce all the phenomena without 

being explicitly designed to do so (see Extended Data Figure 7). Our work adds to a growing 

body of literature showing that deep neural networks exclusively trained to perform relevant 

tasks can serve as surprisingly good models of biological neural networks, often even 

outperforming models exclusively designed to explain neuroscience phenomena.

A particular conceptual advantage of the PredNet training scheme, compared to typical 

supervised neural network training, is that it does not involve large amounts of supervision 

in the form of paired inputs and labels, which are neither required for biological learning nor 

are typically found in real life. Prediction is a learning signal is that comes for “free;” that is, 

it is a form of unsupervised or self-supervised learning. A prediction can be compared to the 

actual observed state of the world, and the errors in that prediction can drive learning 

directly. In addition, there is also intrinsic behavioral value in the ability to predict—both in 

time and in space. Temporal prediction enables more effective planning of actions and can 

also help mitigate lags found in the relatively slow processing pipeline of visual cortex, 

while spatial prediction, for instance, can help fill in information lost due to occlusion.
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Analysis of model components in producing observed effects.

While the PredNet reproduces a diverse range of phenomena observed in the brain, we 

would not claim that the PredNet is a perfect or exact model of the brain, or that its precise 

architecture per se is required for the observed effects. Thus, it is useful to ask which 

features and components of the model are necessary to reproduce the biological phenomena 

described above. For instance, one key feature of the PredNet is recurrent connectivity, both 

within layers (intrinsic recurrent connections), and between layers (feedback connections). It 

is straightforward to see that some form of recurrence is required in order to observe 

temporal dynamics (such as “on” and “off” responses), since a strictly feedforward version 

of the PredNet would lack temporal dynamics altogether. Likewise, recurrent connections 

are essential for the PredNet to demonstrate phenomena such as length suppression and end-

stopping in early layers. While it is possible that a strictly feedforward, nonlinear network 

could show end-stopping and surround suppression-like effects in higher layers, where 

receptive fields are large enough to include both the “center” and “surround,” such 

suppression is not possible in lower layers of the network without recurrence.

Related to recurrence, it is also clear that depth, with an associated increase in feedforward 

receptive field size over layers is necessary to produce the observed phenomena. For 

instance, the larger “classical” receptive field of the E2 layer vs. the E1 layer in the PredNet, 

combined with feedback, facilitates the effects observed in the illusory contour experiment, 

where both layers produce a response to the illusory figure, but the E2 response is earlier.

While recurrence, depth, and non-linearity can be seen to be essential from a “first 

principles” analysis of the PredNet, the necessity of other specific features of the PredNet is 

less obvious. One notable feature of the PredNet, motivated by predictive coding principles 

[9], is that it explicitly computes an error representation in a population of neurons, wherein 

predicted inputs are explicitly subtracted from actual inputs, and the activity of these “error” 

units is what is passed from layer to layer in a feedforward manner. One key feature that this 

kind of explicit representation and propagation of errors induces is a force that drives the 

activity of subpopulations of neurons towards zero. That is, with errors represented by the 

activity of explicit error-coding units, and a training objective based on reducing these 

errors, there is an explicit mechanism to encourage unit activity to go to zero. From a 

machine learning perspective, it is straightforward to design a version of the PredNet that is 

still trained to predict future inputs, but for which “errors” are not passed (Extended Data 

Fig. 9). Biologically, this could still correspond to a loss/errors being instantiated by 

neurons, but where these neurons do not serve as a core drive for activity in the rest of the 

network. Upon training a version of the PredNet with removal of the error passing in the 

network, we find that it generally less faithfully reproduces the neural phenomena presented 

here (Extended Data Fig. 10). For example, it might be expected that the decay in unit 

activity after an “on” response would be less dramatic in this control network than in the 

original PredNet and neural data, and indeed that is the case. Additionally, the control 

network actually exhibits enhanced length suppression upon the removal of top-down 

feedback and a decrease in response upon presentation of the illusory contours stimulus. 

However, some qualitative effects, such as a larger response to unexpected vs. expected 

stimuli in the sequence learning experiment are still present in this control network, 
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suggesting that explicit error activity passing may or may not be essential to explain these 

phenomena. We note that as the explicit error passing in the PredNet seems to improve 

overall biological faithfulness here, it was also demonstrated to improve next-frame 

prediction performance in the original work [8]. Specifically, compared to a network with a 

similar architecture to the PredNet except for lacking layer-wise error computations, the 

PredNet performed better in next-frame prediction for both synthetic and natural stimuli. 

The biologically-inspired splitting of positive and negative errors at each layer was 

additionally illustrated to improve prediction performance.

Because the reduction of network activity induced by error propagation has some correlation 

with the observed effects in the PredNet, one might wonder whether other means of 

minimizing activity are sufficient to produce the effects, without necessarily requiring 

temporal prediction. For instance, sparse coding-style networks also tend to minimize 

overall activity, and sparse coding has been invoked as a possible explanation for phenomena 

such as end-stopping [66]. Sparse coding models are typically trained with a reconstruction 

loss, that is, a loss function based on representing the current stimulus, and critically, they 

impose an L1 penalty on activations. For static stimuli, it might be expected that 

reconstructive and predictive models will behave similarly. However, the predictive “what 

will appear next” nature of the sequence learning and flash-lag effect experiments described 

above lack an obvious explanation in the context of a purely static reconstructive loss. 

Nonetheless, it is certainly conceivable that various timeframes of sensory input estimation, 

from past to present (reconstruction) and future, are utilized as a learning signal and 

encoding strategy in the brain [67, 68].

Comparison of model components to biology.

Many of the core features of the PredNet architecture—recurrent connectivity, depth with 

increasing receptive field size, and activity minimization through explicit computation of 

errors— are central to reproducing the presented phenomena, but also correspond well with 

the known constraints of biological circuits. However, we note that the PredNet also contains 

elements that are not biologically plausible, or for which the mapping to biological 

implementation is not yet clear. Chief among these deviations from biology is the fact that 

the model uses scalar valued (“rate”) activations, rather than spiking, and that the model uses 

backpropagation for training. The extent to which these deviations matter is unclear. Some 

efforts have been made to show that rate-based models can be converted to spiking models 

[69], though there are numerous compelling computational proposals for ways that spike-

based computation may be qualitatively different from rate-based computation [70, 71]. The 

backpropagation algorithm used to train the PredNet requires updating neuronal connections 

with non-local information, and thus, it is often cited as a key biologically-implausible 

element of artificial neural networks. However, recent work has suggested several avenues 

by which backpropagation-like computations might be implemented with biological neurons 

[72, 73].

To the extent that the PredNet might mimic the architecture of cortex, it is interesting to 

consider how the elements of the model might map onto the elements of real cortical 

microcircuits. Indeed, it has been suggested that there is a tight correspondence between the 
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canonical microcircuit and the connectivity pattern implied by predictive coding [40]. The 

structure of a layer in the PredNet could also be seen as consistent with this mapping. In this 

view, the Al units in the PredNet would correspond to granular (L4) layer neurons in cortex, 

which largely serve as targets for feedforward inputs. The El units would correspond to 

superficial (L1/2/3) layers, which receive input from the Al/L4 neurons. The El (superficial) 

neurons then serve as outputs of the circuit, passing information to subsequent, higher areas. 

These neurons also output to deep (L5/6) layers within the same microcircuit, which would 

correspond to the Rl units in the PredNet. Finally, completing the circuit, the deep (Rl) units 

input onto the granular (Al/Âl) layer. Interestingly, we find that there is some variation in the 

response characteristics amongst the unit types in the PredNet; specifically, the average R 
response does not exhibit length suppression (Extended Data Fig. 1) and also shows a 

smaller “surprise” response compared to the A and E units (Extended Data Fig. 3). This 

raises an intriguing and testable question of whether such differences also exist between 

deep and superficial units in the brain. Lastly, we note that in the PredNet at least, it is partly 

notation whether it is said that the “activations” (Al) or the “errors” (El) are passed between 

layers, and the effects observed here in the E units are also present in the A units (Extended 

Data Figures 1, 2, 4, 3, 5). Overall, we do not intend to claim that there are precise 

classifications of “error” vs. “activation/feature” neurons per se, rather that both of these 

types of computation are important and could map to the canonical microcircuit, with 

potentially even individual neurons providing a combination of both computations.

Conclusion.

Neuroscience has been a longstanding inspiration for machine learning, where a core goal is 

to develop models with brain-like abilities. Conversely, developing computational models 

that reproduce and explain neural phenomena is a central aim in neuroscience. Here, we 

present an example of this cyclical dialogue, showing that a deep learning model inspired by 

theories of brain computation can reproduce a wide array of phenomena observed in visual 

cortex and visual perception. Importantly, the model was trained purely with a self-

supervised, predictive loss. An especially salient motivation for pursuing such unsupervised/

self-supervised methods is the ability of humans to excel in these regimes. Despite 

tremendous progress, AI systems today still lag well behind humans in critical properties 

including extrapolation across domains, few shot learning, and transfer learning. Thus, the 

ability of a self-supervised model to generalize from training on car-mounted camera videos 

to testing on impoverished, synthetic stimuli provides further inspiration for incorporating 

cognitive and neural constraints in designing AI models. In particular, that a simple 

objective-prediction-can produce such a wide variety of observed neural phenomena as 

demonstrated here underscores the idea that prediction may be a central organizing principle 

in the brain.

METHODS

PredNet background.

The original description of the PredNet can be found in Lotter et al. (2017) [8]. Briefly, the 

PredNet consists of a hierarchical stack of modules, where each module contains four 
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different unit types: representational units (Rl) from which predictions are generated (Âl), 

targets to be predicted (Al), and error units (El); where l indicates the layer in the network. 

At each time step, the Rl units are first updated via a top-down pass, receiving input from 

both the error units at the same level (El) and the representational units from the layer above 

(Rl+1), which are first spatially upsampled (nearest-neighbor) to match the spatial size of 

layer l. The Rl units are implemented as convolutional long short-term memory (LSTM) 

units [50, 51]. After updating the Rl units, a bottom-up pass is made where first the predicted 

next frame is generated (Â0) via a convolution of the R0 units. The actual input frame, A0, is 

compared to Â0 via unit-wise subtraction, followed by the splitting into positive and 

negative error populations, forming E0. The splitting of the error populations is motivated by 

the existence of on-center/off-surround and off-center/on-surround neurons in the early 

visual system. E0 becomes the input into the next layer of the network, from which A1 is 

generated via a convolution over E0, followed by a 2×2 max-pooling operation. A prediction 

at this layer is generated via a convolution over R1, and then this process is repeated forward 

in the network until errors are calculated at each level. A summary of the computations 

performed by each unit is contained in equations Equations (1) to (4) below.

Given an input sequence of images, xt, the units at each layer l and time step t are updated 

according to:

Al
t =

xt if l = 0

MAXPOOL RELU CONV El − 1
t l > 0

(1)

Al
t = RELU CONV Rl

t (2)

El
t = RELU Al

t − Al
t ; RELU Al

t − Al
t (3)

Rl
t = CONVLSTM El

t − 1, Rl
t − 1, UPSAMPLE Rl + 1

t (4)

The only modification to the original PredNet that we make here, for the sake of biological 

interpretability, is replacing the tanh output activation function for the LSTMs with a relu 
activation (relu(x) = max(x,0)), enforcing positive “firing rates”. On the KITTI dataset this 

leads to a marginally (8%) worse prediction mean-squared error (MSE) than the standard 

formulation, but it is still 2.6 times better than the MSE that would be obtained by simply 

copying the last frame seen (compared to 2.8 for tanh).

The loss function of the PredNet is implemented as the weighted sum of the error unit 

activations at each layer and time step. The model is thus “generative” in the sense that it 

generates predictions of future input data given previous input data, but not in the sense of 

an explicit probabilistic formulation, though future work could explore incorporating 

generative adversarial [74] or variational [75] components. We use the “Lall” version of the 

model here, placing a non-zero loss weight on each layer in the network. For model training, 
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weights are updated via backpropagation [76] (through time) using the Adam optimizer [77]. 

The dataset used for training is the KITTI dataset [13], a collection of videos obtained from 

a car-mounted camera while driving in Germany. The same training and pre-processing 

procedures were used as in the original PredNet paper, including training using sequences of 

10 frames, with each frame center-cropped and downsampled to 128×160 pixels. The 

number of filter channels (e.g. convolutional kernels) per layer for both the A and R modules 

are 3, 48, 96, and 198, from layers 0 to 3, respectively. Given a 128×160 image, this means 

that there are 128
2 * 160

2 * 48 = 245760 units in the A1 and R1 layers, for instance, given the 

2×2 max-pooling between each layer. There are thus 122880 and 61440 units in the A2/R2 

and A3/R3 layers, respectively. For each layer of the hierarchy, there are twice as many E 
units, given the splitting into positive and negative errors. Code for the PredNet, including 

training on the KITTI dataset, is contained at https://github.com/coxlab/prednet.

End-stopping and length suppression.

For each convolutional kernel in the PredNet, length suppression was evaluated at the central 

receptive field, with input images of size 128×128 pixels. We follow Nassi et al. [53] by first 

determining each unit’s preferred orientation, implemented by measuring responses to 

Gabor filters at different orientations. Filters with a wavelength and envelope standard 

deviation of 5 pixels were used and responses were summed over the presentation of 10 time 

steps, after the presentation of a gray background for 5 time steps. Given the preferred 

orientation for each unit, bars of width 1 pixel and varying length were presented at this 

orientation. For each bar, a gray background was again presented for 5 time steps and then 

the bar was presented for 10 time steps, with the total response quantified as the sum of the 

response over the 10 time steps. A population average over all units was quantified by 

following the procedure above and then normalizing each unit to have a maximum response 

of 1, followed by averaging. Removal of feedback was implemented by setting the 

connection weights from R2 to R1 to zero. Statistical analysis comparing the original 

network to the removal of feedback was performed using units that had a non-constant 

response in both conditions, which amounted to 28 out of 96 units in E1, 21 out of 48 units 

in A1, and 30 out of 48 units in R1 (see Extended Data Fig. 1 for A1 and R1 results).

On/off temporal dynamics.

The stimuli for the temporal dynamics experiment consisted of objects appearing on a gray 

background with images of size 128×128 pixels. A set of 25 objects were used, with 

examples displayed in Fig. 4. The input sequences consisted of a gray background for 7 time 

steps, followed by an object on the background for 6 time steps. For comparing response 

decay rates in the PredNet to the macaque IT data from Hung et al. [55], the population 

average of single unit activity in the IT data was used.

Sequence learning effects in visual cortex.

Stimuli for the sequence learning experiments in the PredNet consisted of 5 randomly 

chosen image pairs from a set of 25 images of objects appearing on a gray background of 

128×128 pixels. Each image appeared in only one set of pairs. The training portion of the 

experiment (starting from the KITTI-trained weights) consisted of presenting each pair 800 
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times, matching the number of trials in the Meyer and Olson experiment [56]. Each trial 

consisted of a gray background for 4 time steps, followed by the first image for 4 time steps, 

then the second image for 4 time steps, and finally the gray background again for 4 time 

steps. For model updates, the Adam [77] optimizer was used with default parameters. For 

testing, unpredicted pairs were created by randomly permuting the second images across the 

pairs. The population response in Fig. 4 was quantified by averaging across all units and 

image pairs (5 predicted and unpredicted pairs), and normalizing this response to have a 

maximum of 1 across the duration of the trial. The difference between predicted and 

unpredicted responses was assessed at the peak of the response for the second image.

Illusory contours.

PredNet responses in the illusory contours experiment were evaluated using units at the 

central receptive field for each convolutional kernel, using input images of size 128×128 

pixels. Similar to the neural experiments by Lee and Nguyen [59], the preferred orientation 

for each unit was first determined using a short bar stimulus, specifically a 1 pixel wide bar 

with a length of 8 pixels. Responses to the bar at different orientations were quantified as the 

sum of the response over a presentation of 10 time steps, after the presentation of a gray 

background for 5 time steps. Responses to the test stimuli were then evaluated when 

presenting at the optimal orientation for each unit, meaning that, for instance, one edge of 

the “line square” (see Fig. 5) was centered around the unit’s receptive field and oriented at 

the unit’s preferred orientation. The test sequences consisted of a gray background for 5 time 

steps, followed by the “four circles” image for 10 time steps, and finally one of the test 

images for 10 time steps. For the stimuli involving circles, the radius of the circles was set to 

4 pixels with the distance between the centers of adjacent circles (or equivalently, the length 

of a side in the square stimuli) set to 16 pixels. These sizes were chosen because 4 pixels is 

twice the size of the feedforward receptive field in the E1 layer. The radius used in the Lee 

and Nguyen [59] experiments was also approximately twice as large as the mapped receptive 

fields in V1. In Fig. 5d–f, the population response was calculated as an average over the 

responses of individual units, where the response of each unit was first normalized by 

division of the unit’s max response over all stimuli. To be included in the population 

response as well as the statistical calculations of ICa and ICr (defined in main text), a unit 

had to have a non-zero response to the bar stimulus (at any orientation) and a non-zero 

response to at least one of the test sequences. The number of units meeting this criteria was 

37 (out of 96) for E1, 32 (out of 192) for E2, 27 (out of 48) for A1, 32 (out of 96) for A2, 31 

(out of 48) for R1, and 54 (out of 96) for R2 (see Extended Data Figures 4 and 5 for A and R 
results).

The flash-lag effect.

The flash-lag stimulus was created with a rotation speed of 6° per time step, with a flash 

every 6 time steps for 3 full rotations and an input size of 160×160 pixels. Angles of the bars 

in the predictions were quantified over the last two rotations to allow a “burn-in” period. The 

angles of the predicted bars were estimated by calculating the mean-squared error between 

the prediction and a probe bar generated at 0.1° increments and a range of centers, and 

taking the angle with the minimum mean-squared error.
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Data Availability

The primary dataset used in this work is the KITTI Dataset [13], which can be obtained at: 

http://www.cvlibs.net/datasets/kitti/raw_data.php. All other data may be obtained via request 

to the authors.

Code Availability

Code for the PredNet model is made available at: https://github.com/coxlab/prednet. All 

other code may be obtained via request to the authors.

Extended Data

Extended Data Figure 1: 
Length suppression analysis for A1 and R1 units. The average (± s.e.m) response of A1 and 

R1 units and exemplars are shown (expanding upon Fig. 2 in main text). Red: Original 

network. Blue: Feedback weights from R2 to R1 set to zero. The average A1 response 

demonstrates length suppression, whereas the average R1 response does not show a strong 

effect, with some units overall showing length suppression (e.g., unit 15 - bottom right 

panel) and other units showing an opposite effect (e.g., unit 33 - bottom middle panel). The 

removal of feedback led to a significant decrease in length suppression in A1, with a mean 
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(± s.e.m) decrease in percent length suppression %LS = 100 *
rmax − rlongest bar

rmax
 of 31 ± 7% 

(p = 0.0004, Wilcoxon signed rank test, one-sided, z = 3.3). The R1 units exhibited a mean 

%LS decrease of 5 ± 6% upon removal of feedback, which was not statistically significant 

(p = 0.18, z = 0.93).

Extended Data Figure 2: 
Temporal dynamics in the A and R units in the PredNet. The average response of A and R 
units to a set of naturalistic objects on a gray background, after training on the KITTI car-

mounted camera dataset [13] is shown (expanding upon Fig. 3 in the main text). The A and 

R layers seem to generally exhibit on/off dynamics, similar to the E layers. R1 also seems to 

have another mode in its response, specifically a ramp up between time steps 3 and 5 post 

image onset. The responses are grouped per layer and consist of an average across all the 

units (all filters and spatial locations) in a layer. The mean responses were then normalized 

between 0 and 1. Given the large number of units in each layer, the s.e.m. is O(1%) of the 

mean. Responses for layer 0, the pixel layer, are omitted because of their heavy dependence 

on the input pixels for the A and R layers. Note that, by notation in the network’s update 

rules, the input image reaches the R layers at a time step after the E and A layers.

Extended Data Figure 3: 
Response differential between predicted and unpredicted sequences in the sequence learning 

experiment. The percent increase of population peak response between predicted and 

unpredicted sequences is quantified for each PredNet layer. Positive values indicate a higher 

response for unpredicted sequences. *p < 0.05, **p < 0.005 (paired t-test, one-sided)
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Extended Data Figure 4: 
Illusory contours responses for A and R units in the PredNet. The mean ± s.e.m. is shown 

(expanding upon Fig. 5 in the main text). Averages are computed across filter channels at the 

central receptive field.

Extended Data Figure 5: 
Quantification of illusory responsiveness in the illusory contours experiment. Units in the 

monkey recordings of Lee and Nguyen [59] are compared to units in the PredNet. We follow 

Lee and Nguyen [59] in calculating the following two measures for each unit: ICa =
Ri − Ra
Ri + Ra

and ICr =
Ri − Rr
Ri + Rr

, where Ri is the response to the illusory contour (sum over stimulus 

duration), Ra is the response to amodal stimuli, and Rr is the response to the rotated image. 

For the PredNet, these indices were calculated separately for each unit (at the central 
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receptive field) with a non-uniform response. Positive values, indicating preferences to the 

illusion, were observed for all subgroups. Mean ± s.e.m.; *p < 0.05 (t-test, one-sided).

Extended Data Figure 6: 
Additional predictions by the PredNet model in the flash lag experiment. The images shown 

consist of next-frame predictions by the PredNet model after four consecutive appearances 

of the outer bar. The model was trained on the KITTI car-mounted camera dataset [13].

Extended Data Figure 7: 
Comparison of the PredNet to prior models. The models under comparison are a (non-

exhaustive) list of prior models that have been used to probe the phenomena explored here. 

The top section indicates if a given model (column) exhibits each phenomenon (row). The 

bottom section considers various learning aspects of the models. From left to right, the 

models considered correspond to the works of Rao and Ballard (1999) [9], Adelson and 

Bergen (1985) [78], McIntosh et al. (2016) [79], Spratling (2010) [45], Jehee and Ballard 

(2009) [46], and Dura-Bernal et al. (2012) [80]. Additionally, traditional deep CNNs are 

considered (e.g. AlexNet [81], VGGNet [82], ResNet [83]). The PredNet control (second 

column from right) refers to the model in Extended Data Figures 9 and 10.
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Extended Data Figure 8: 
Comparison of PredNet predictions in the flash-lag illusion experiment to psychophysical 

estimates. The psychophysical estimates come from Nijhawan, 1994 [60]. With the frame 

rate of 10 Hz used to train the PredNet as a reference, the average angular difference 

between the inner and outer bars in the PredNet predictions was quantified for various 

rotation speeds. The results are compared to the perceptual estimates obtained using two 

human subjects by Nijhawan [60]. Mean and standard deviation is shown. For rotation 

speeds up to and including 25 rotations per minute (RPM), the PredNet estimates align well 

with the psychophysical results. At 35 RPM, the PredNet predictions become noisy and 

inconsistent, as evidenced by the high standard deviation.
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Extended Data Figure 9: 
PredNet control model lacking explicit penalization of activity in “error units.” An 

additional convolutional block A0
frame

 is added that generates the next-frame prediction 

given input from R0. The predicted frame is used in direct L1 loss, with the removal of the 

activity of the E units from the training loss altogether. Thus, in this control model, the E 
units are unconstrained and there is no explicit encouragement of activity minimization in 

the network.
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Extended Data Figure 10: 
Results of control model with the removal of explicit minimization of “error” activity in the 

PredNet. Overall, the control model less faithfully reproduces the neural phenomena 

presented here. a) The control network E1 units exhibit enhanced length suppression when 

feedback is removed (opposite of the effect in biology and the original PredNet). b) The 

responses in the control network still peak upon image onset and offset, however the decay 

in activity after peak is non-monotonic in several layers and less dramatic overall than the 

results shown in Fig. 3. As opposed to the 20–49% decrease in response after image onset 

peak in the original PredNet and the 44% decrease in the Hung et al. [55] macaque IT data, 

the control network exhibited a 5% (E1) to 30% (E2) decrease. c) Response of the control 

network E3 layer in the sequence pairing experiment. The unpredicted images actually elicit 

a higher response than the first image in the sequence and the predicted images hardly elicit 

any response, both effects which are qualitatively different than the macaque IT data from 

Meyer and Olson [56] and the original PredNet. d,e) The average E1 response in the control 

network demonstrates a decrease in activity upon presentation of the illusory contour.
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Figure 1: 
Deep Predictive Coding Networks (PredNets) [8]. Left: Each layer l consists of 

representation neurons (Rl), which output a layer-specific prediction at each time step (Âl), 

which is compared against a target (Al) to produce an error term (El), which is then 

propagated laterally and vertically in the network. Right: Module operations for case of 

video sequences. The target at the lowest layer of the network, A0, is set to the actual next 

image in the sequence. CONV: convolution; CONV LSTM: convolutional long short-term 

memory [50, 51]); POOL: 2×2 max-pooling; RELU: rectified linear unit activation.
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Figure 2: 
Length suppression. Left: Responses of example macaque V1 units to bars of different 

lengths before (red), during (blue), and after (green) inactivation of V2 via cryoloop cooling 

[reproduced from Nassi et al. [53]; dashed lines indicate spontaneous activity]. Right: 

PredNet after training on the KITTI car-mounted camera dataset [13] - Mean over E1 filter 

channels (± s.e.m.) and examples. Red: Original network. Blue: Feedback weights from R2 

to R1 set to zero. We note that, in the PredNet, the “after” inactivation response (green trace 

in neural data) would be equivalent to the “before” inactivation response (blue). See 

Extended Data Fig. 1 for responses of A and R units.
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Figure 3: 
On/off temporal dynamics. Left: Exemplar macaque V2 neuron responding to a static image 

[adapted from Schmolesky et al. [54]]. Right: PredNet response to a set of naturalistic 

objects appearing on a gray background, after training on the KITTI car-mounted camera 

dataset [13]. Responses are grouped by layer for the E units, and averaged across all units 

(all receptive fields and filter channels) and all stimuli, per layer. The average response trace 

is then normalized to have a range from 0 to 1. The average response peaks upon image 

appearance and disappearance. Given the large number of units in each layer, the s.e.m is 

O(1%) of the mean. Responses of A and R units are contained in Extended Data Figure 2.
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Figure 4: 
Image sequence learning effects. Top: Population responses to predicted vs. unpredicted 

image transitions. a) Mean of 81 neurons recorded in macaque IT [reproduced from Meyer 

and Olson [56]]. b) Mean (± s.e.m.) across all PredNet E3 units (all spatial receptive fields 

and filter channels). Bottom: Next-frame predictions by the PredNet. c) Predictions of a 

KITTI-trained PredNet model on an example sequence. d) PredNet predictions after 

repeated “training” on the sequence. e) PredNet predictions for an unpredicted image 

transition.
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Figure 5: 
Illusory contours. Top: Data from electrophysiological recordings in the rhesus monkey 

[reproduced from Lee and Nguyen [59], Copyright (2001) National Academy of Sciences, 

U.S.A.]. Below: PredNet responses. a) An exemplar V1 neuron which exhibits a response to 

the illusory contour, at an increased latency compared to stimuli with true contours. b) V1 

population average demonstrates a larger response to the illusory stimuli, compared to 

similar, control stimuli. c) V2 population average response is also larger for the illusory 

stimuli, and demonstrates an earlier latency than the V1 average. d) The PredNet E1 average 

activity also demonstrates a response to the illusory contour, at an increased onset latency 

compared to true contours. e) The E1 average response is moderately larger for the illusory 

contour than the control stimuli. f) The PredNet E2 response is also moderately larger for the 

illusory stimuli, with an earlier latency than E1. PredNet averages were computed across 

filter channels at the central receptive field. Error bars represent s.e.m. Bottom: Illustration 

of the stimuli and the presentation paradigm, using the nomenclature proposed by Lee and 

Nguyen [59]. For each trial in the monkey and PredNet experiments, the “four circles” 

stimuli is first presented, followed by one of the test stimuli (in brackets). See Extended Data 

Fig. 4 for the responses of the A and R units.

Lotter et al. Page 28

Nat Mach Intell. Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
The flash-lag effect. Top: A segment of the stimulus clip inputted to the PredNet. Bottom: 

PredNet predictions after training on the KITTI car-mounted camera dataset [13]. Each 

column represents the actual next frame in the sequence (above) and the outputted next 

frame prediction from the model (Â0; below). At the time step indicated as t0, the outer bar 

flashes on in the actual sequence and is co-linear with the inner bar. The PredNet’s post-

flash prediction (corresponding to t+1) displays the two bars as not co-linear, similar to the 

perceptual illusion. Additional post-flash predictions are contained in Extended Data Fig. 6.
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