RESEARCH ARTICLE

National Key
Laboratory for Novel

Software Technology,

Nanjing University,
Nanjing 210023,
China

*Corresponding
author. E-mail:
zhouzh@nju.edu.cn

Received 27 July
2018; Revised 18
September 2018;
Accepted 18
September 2018

National Science Review

6: 74-86, 2019

doi: 10.1093/nsr/nwy108

Advance access publication 8 October 2018

INFORMATION SCIENCE

Deep forest
Zhi-Hua Zhou™ and Ji Feng

ABSTRACT

Current deep-learning models are mostly built upon neural networks, i.e. multiple layers of parameterized
differentiable non-linear modules that can be trained by backpropagation. In this paper, we explore the
possibility of building deep models based on non-differentiable modules such as decision trees. After a
discussion about the mystery behind deep neural networks, particularly by contrasting them with shallow
neural networks and traditional machine-learning techniques such as decision trees and boosting machines,
we conjecture that the success of deep neural networks owes much to three characteristics, i.e.
layer-by-layer processing, in-model feature transformation and sufficient model complexity. On one hand,
our conjecture may offer inspiration for theoretical understanding of deep learning; on the other hand, to
verify the conjecture, we propose an approach that generates deep forest holding these characteristics. This

is a decision-tree ensemble approach, with fewer hyper-parameters than deep neural networks, and its
model complexity can be automatically determined in a data-dependent way. Experiments show that its
performance is quite robust to hyper-parameter settings, such that in most cases, even across different data
from different domains, it is able to achieve excellent performance by using the same default setting. This

study opens the door to deep learning based on non-differentiable modules without gradient-based

adjustment, and exhibits the possibility of constructing deep models without backpropagation.

Keywords: deep forest, deep learning, machine learning, ensemble methods, decision trees

INTRODUCTION

Deep learning [1] has become a hot topic in vari-
ous domains. However, what is deep learning? An-
swers from the crowd are very likely to be that ‘deep
learning is a subfield of machine learning that uses
deep neural networks’ [2]. Actually, the great suc-
cess of deep neural networks (DNNs) in tasks in-
volving visual and audio information led to the rise of
deep learning, and almost all current deep-learning
applications are built upon neural network models
or, more technically, multiple layers of parameter-
ized differentiable non-linear modules that can be
trained by backpropagation.

Though deep neural networks are powerful, they
have many deficiencies. First, DNNs have too many
hyper-parameters, and the learning performance de-
pends seriously on careful parameter tuning. Indeed,
even when several authors all use convolutional neu-
ral networks [3-5], they are actually using differ-
ent learning models due to the many different op-
tions such as convolutional layer structures. This fact
makes the training of DNNs very tricky, and theoret-

ical analysis of DNNs extremely difficult because of
too many interfering factors with almost infinite con-
figurational combinations. Second, it is well known
that the training of DNNs requires a huge amount
of training data, and thus DNNs can hardly be ap-
plied to tasks where only small-scale training data are
available. Note that even in the big data era, many
real tasks still have an insufficient amount of train-
ing data due to the high cost of labeling, leading to
inferior performance of DNNGs in these tasks. Third,
the network architecture has to be determined be-
fore training, and thus the model complexity is de-
termined in advance. Actually, deep models are usu-
ally more complicated than necessary, as verified by
the observation that recently there have been many
reports about DNN performance improvement by
adding shortcut connections [6,7], pruning [8,9], bi-
narization [10,11], etc., as these operations simplify
the original networks and actually decrease model
complexity. It might be better if the model com-
plexity could be determined automatically in a data-
dependent way. Furthermore, it is well known that

© The Author(s) 2017. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits non-commercial reuse, distribution, and reproduction in
any medium, provided the original work is properly cited. For commercial re -use, please contact journals.permissions@oup.com

mailto:zhouzh@nju.edu.cn
mailto:journals.permissions@oup.com

neural networks are black-box models whose deci-
sion processes are hard to explain. It is also notewor-
thy that, although DNNs have been well developed,
there are still many tasks on which DNNss are infe-
rior; for example, random forest [12] or XGBoost
[13] are winners on many Kaggle competition tasks.

In order to tackle complicated learning tasks,
learning models are likely to have to go deep. Cur-
rent deep models, however, are always built upon
neural networks. As discussed above, there are good
reasons to explore non-NN-style deep models or, in
other words, to consider whether deep learning can
be realized with other modules, as they have their
own advantages and may exhibit great potential if
they are able to go deep. In particular, considering
that neural networks are multiple layers of param-
eterized differentiable non-linear modules, whereas
not all properties in the world are differentiable or
best modeled as differentiable, in this paper we at-
tempt to address the question of whether deep learn-
ing can be realized with non-differentiable modules.

The answer to the question may help understand
important issues such as (1) do deep models have
to be DNNs, or must deep models be constructed
with differentiable modules? Note that there is re-
search involving non-differentiable activation func-
tions in DNNSs; however, it usually uses differen-
tiable functions that give an upper bound to the
non-differentiable ones for relaxation in the opti-
mization/learning process, and thus they actually
still work with differentiable modules. (2) Is it pos-
sible to train deep models without backpropaga-
tion? Note that backpropagation and gradient-based
adjustment require differentiability. (3) Is it possi-
ble to enable deep models to win tasks on which
other models such as random forest or XGBoost are
now superior? Actually, the machine-learning com-
munity has developed lots of learning modules, but
many of them are non-differentiable and can hardly
be tuned by gradient-based adjustment; it would be
interesting to know whether it is possible to con-
struct deep models based on these modules.

In this paper, we extend our preliminary research
[14], which proposes the gcForest (multi-grained
cascade forest) approach for constructing deep for-
est, a non-NN-style deep model. This is a novel
decision-tree ensemble, with a cascade structure that
enables representation learning by forest. Its repre-
sentational learning ability can be further enhanced
by multi-grained scanning, potentially enabling gc-
Forest to be contextually or structurally aware. The
cascade levels can be automatically determined such
that the model complexity can be determined in a
data-dependent way; this enables gcForest to work
well even with small-scale data, and enables users
to control training costs according to the computa-

tional resources available. gcForest has much fewer
hyper-parameters than DNNs do, and its perfor-
mance is quite robust to hyper-parameter settings;
our experiments show that in most cases, it is able to
get excellent performance by using the default set-
ting, even across different data from different do-
mains.

The section entitled ‘Ensemble learning and di-
versity’ briefly introduces ensemble learning and
‘What is crucial for deep models?” explains our de-
sign motivations by analyzing why deep learning
works. The section entitled “The gcForest approach’
proposes our approach, followed by experiments re-
ported in the section entitled ‘Experiments’. The sec-
tion entitled ‘Real application’ briefly presents a real
application and the following section discusses some
related work. The section entitled ‘Future issues’
raises some issues for future exploration, followed by
a section with some concluding remarks.

ENSEMBLE LEARNING AND DIVERSITY

Ensemble learning [15] is a machine-learning
paradigm where multiple learners (e.g. classifiers)
are trained and combined for a task. It is well
known that an ensemble can usually achieve better
generalization performance than single learners.

To construct a good ensemble, the individual
learners should be accurate and diverse. Combin-
ing only accurate learners is often inferior to com-
bining some accurate learners with some relatively
weaker ones, because the complementarity is more
important than pure accuracy. Actually, a beautiful
equation has been theoretically derived from error-
ambiguity decomposition [16]:

E=E—A, (1)

where E denotes the error of an ensemble, E de-
notes the average error of individual classifiers in
the ensemble, and A denotes the average ambigu-
ity, later called diversity, among the individual classi-
fiers. This offers general guidance for ensemble con-
struction; however, it cannot be taken as an objective
function for optimization, because the ambiguity is
mathematically defined in the derivation and can-
not be operated directly. Later, the ensemble com-
munity designed many diversity measures, but none
has been well accepted as the right definition for di-
versity [15], and ‘what is diversity?’ remains the holy
grail problem in this area.

In practice, diversity enhancement is based on
randomness injection during training. Roughly
speaking, there are four major categories of strate-
gies [15]. The first is data sample manipulation,
which works by generating different data samples

Output
(object identity)

3" hidden layer
(object parts)

2" hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Figure 1. lllustration of the layer-by-layer processing in deep neural networks: Features
of higher levels of abstract emerge as the layers build up.

for different individuals, e.g. bootstrap sampling for
bagging [17] and sequential importance sampling
for AdaBoost [18]. The second is input feature
manipulation, which works by generating different
feature subspaces for different individuals, e.g.
random subspace [19] randomly picks different
subsets of features for different individuals. The
third is learning parameter manipulation, which
works by using different parameter settings of
the base learning algorithm to generate different
individuals, e.g. different initial weights can be
used for different individual neural networks. The
fourth is output representation manipulation, which
works by using different output representations
for different individuals, e.g. ECOC [20] employs
error-correcting output codes, whereas flipping
output [21] randomly switches labels of training
instances. Different strategies can be used together.
No strategy is always effective, e.g. data sample ma-
nipulation does not work well with stable learners
whose performance does not significantly change
according to slight modification of training data.
More information about ensemble learning can
be found in [15]. Our gcForest can be viewed as
a decision-tree ensemble approach that utilizes
almost all categories of strategies for diversity
enhancement.

WHAT IS CRUCIAL FOR DEEP MODELS?

It is widely recognized that the representation learn-
ing ability is crucial for the success of deep neural

networks. What is crucial for representation learn-
ing in DNNs? We believe that the answer is layer-
by-layer processing. Figure 1 provides an illustra-
tion simulated from a figure in [1], where features
of higher levels of abstract emerge as the layers build
up.

Considering that, if other issues are fixed, large
model complexity (or more accurately, model capac-
ity) generally leads to strong learning ability, maybe
it sounds reasonable to attribute the successes of
DNNs s to the huge model complexity. This, how-
ever, cannot explain the fact that shallow networks
are not as successful as deep ones, as one can in-
crease the complexity of shallow networks to almost
arbitrarily high by adding a nearly infinite number
of hidden units. Consequently, we believe that the
model complexity itself cannot explain the success
of DNNs. Instead, we conjecture that the layer-by-
layer processing is one of the most important factors
behind DNNs because shallow networks, no matter
how large their complexity can be, cannot do layer-
by-layer processing. This conjecture offers important
inspiration for the design of gcForest.

Then, how do we explain the fact that traditional
learning models that can do layer-by-layer process-
ing, e.g. decision trees and boosting machines, are
not as successful as DNNs? We believe that the dis-
tinguishing factor lies in the fact that, in contrast
to DNNs where new features are generated as illus-
trated in Fig. 1, decision trees and boosting machines
always work on the original feature representation
during the learning process; in other words, there
is no in-model feature transformation. Moreover, in
contrast to DNNs that can be endowed with arbitrar-
ily high model complexity, decision trees and boost-
ing machines can only have limited model complex-
ity. Though model complexity itself does not give
rise to the successes of DNN, it is still important be-
cause large model capacity is needed if one wants to
exploit big training data.

Opverall, we conjecture that behind the mystery
of DNN s there are three crucial characteristics, i.e.
layer-by-layer processing, in-model feature transfor-
mation, and sufficient model complexity. To verify
our conjecture, in the next section we will try to en-
dow non-NN-style deep models with these charac-
teristics.

THE GCFOREST APPROACH
Cascade forest structure

To realize layer-by-layer processing, gcForest em-
ploys a cascade structure, as illustrated in Fig. 2,
where each level of the cascade receives feature in-
formation processed by the preceding level.

\Forest%

Input feature vector

Concatenate

i> Forestk
[Forest{-
Forest}-

- 00 OO0 000 OO0 |

o g
\Forest#% E Forest E
O] O c
Forest} E) E Forest g . g
[D o A3 :5 g o
Forest 'H g Forest "g Ave. Max ‘_i_
O B = c
Forestt- E E Forest E i
l 7!

Level 2 Level N

Figure 2. lllustration of the cascade forest structure. Suppose that each level of the
cascade consists of two random forests (black) and two completely random forests
(blue). Suppose that there are three classes to predict; thus, each forest will output a
3D class vector, which is then concatenated for re-representation of the input.

Forest

=)

—

0.5
0.3
0.2

—_
Class vector
of x

Ave.

(BR8]
[ggsl

Figure 3. lllustration of class vector generation. Different marks in leaf nodes imply
different classes; red highlights paths along which the concerned instance traverses

to leaf nodes.

Eachlevelis an ensemble of decision-tree forests,
i.e. an ensemble of ensembles. Here, we include dif-
ferent types of forests to encourage diversity. For
simplicity, suppose that we use two completely ran-
dom forests and two random forests [12]. Each com-
pletely random forest contains 500 completely ran-
dom trees [22], generated by randomly assigning
a feature for splitting at each node, and growing a
tree till pure leaf, i.e. each leaf node contains only
the same class of instances. Similarly, each random
forest contains 500 trees, by randomly picking Vd
number of features as candidates (d is the number of
input features) and selecting the one with the best
Gini value for splitting. The number of trees in each
forest is a hyper-parameter.

Given an instance, each forest can produce an es-
timate of class distribution, by counting the percent-
age of different classes of training examples at the leaf
node where the concerned instance falls, and then
averaging across all trees in the same forest, as illus-
trated in Fig. 3.

The estimated class distribution forms a class vec-
tor, which is then concatenated with the original
feature vector to input to the next level. For exam-
ple, suppose there are three classes; each of the four
forests will produce a 3D class vector; consequently,

the next level will receive 12 (= 3 x 4) augmented
features.

Note that here we take the simplest form of class
vectors, i.e. the class distribution at the leaf nodes
into which the concerned instance falls. It is evident
that such a small number of augmented features may
deliver very limited augmented information, and it
is very likely to be drowned out when the original
feature vectors are high-dimensional. We will show
in experiments that such a simple feature augmenta-
tion is already beneficial, and it is expected that more
profit can be obtained if more augmented features
are involved. Actually, it is apparent that more fea-
tures may be incorporated, such as class distribution
of the parent nodes, which express prior distribution,
the sibling nodes, which express complementary dis-
tribution, etc. We leave these possibilities for future
exploration.

To reduce the risk of overfitting, the class vec-
tor produced by each forest is generated by k-fold
cross validation. In detail, each instance will be used
as training data k — 1 times, resulting in k — 1 class
vectors, which are then averaged to produce the fi-
nal class vector as augmented features for the next
level of the cascade. After expanding a new level,
the performance of the whole cascade can be esti-
mated on the validation set, and the training proce-
dure will terminate if there is no significant perfor-
mance gain; thus, the number of cascade levels can
be automatically determined. Note that the training
error rather than cross-validation error can also be
used to control the cascade growth when the train-
ing cost is concerned or limited computation re-
sources are available. In contrast to most deep neural
networks whose model complexity is fixed, gcForest
adaptively decides its model complexity by terminat-
ing training when adequate. This enables it to be ap-
plicable to different scales of training data, not lim-
ited to large-scale ones.

Multi-grained scanning

Deep neural networks are powerful in handling
feature relationships, e.g. convolutional neural net-
works are effective on image data where spatial re-
lationships among the raw pixels are critical; recur-
rent neural networks are effective on sequence data
where sequential relationships are critical. Inspired
by this recognition, we enhance the cascade forest
with a procedure of multi-grained scanning,

As Fig. 4 illustrates, sliding windows are used to
scan the raw features. Suppose that there are 400 raw
features and a window size of 100 features is used.
For sequence data, a 100D feature vector will be gen-
erated by sliding the window for one feature; in total

Raw input features

301 feature vectors are produced. If the raw features
have spatial relationships, such as a 20 x 20 panel of
400 image pixels, then a 10 x 10 window will pro-
duce 121 feature vectors (i.e. 121 10 x 10 panels).
All feature vectors extracted from positive/negative
training examples are regarded as positive/negative
instances, which will then be used to generate class
vectors as in the section entitled ‘Cascade forest
structure’: instances extracted from the same size of
windows will be used to train a completely random
forest and arandom forest, and then the class vectors
are generated and concatenated as transformed fea-
tures. As illustrated in Fig. 4, for three classes, 301 3D
class vectors are produced by each forest, leading to
a 1806D transformed feature vector corresponding
to each 400D raw feature vector.

3 % 100 For sequence data
i SHHH:H |
€ £ = . .
3 J HHH|§¢>*«> - -dim
SlHe = B8 egﬁﬁﬁﬁ 903
g 301 instances E' . -dim
301 Concatenate
10-dim . For image-style data
Sliding
EN SRR B
o [ForestA]>&i00 0+ 0 |-dim
(FEEEEE A Rl e=el>S AR [e
= % I 0 -dim
£ "2, —r
2 20%20 input o

Concatenate

Figure 4. lllustration of feature re-representation using sliding window scanning. Sup-
pose that there are three classes, the raw features are 400-dim, and the sliding window

is 100-dim.

Raw input features
400-dim

Sliding <—"""

N O o
Sliding €<—"""~

200-dim

Sliding €<—
-
o
=
@
a
!
R

S00.dIy

Cascade of cascades

618-dim

Level N, i

For instances extracted from the windows, we
simply assign them with the label of the original
training example. Some label assignments are inher-
ently incorrect. For example, suppose that the orig-
inal training example is a positive image about ‘car’;
it is clear that many extracted instances do not con-
tain a car, and therefore they are incorrectly labeled
as positive. This is actually related to flipping output
[21], an approach for ensemble diversity enhance-
ment.

Note that when transformed feature vectors are
too long to be accommodated, feature sampling can
be performed, e.g. by subsampling the instances gen-
erated by sliding window scanning, as completely
random trees do not rely on feature split selection
whereas random forests are quite insensitive to fea-
ture split selection. The feature sampling process is
also related to random subspace [19], an approach
for ensemble diversity enhancement.

Figure 4 shows only one size of sliding window.
By using multiple sizes of sliding windows, multi-
grained feature vectors will be generated, as shown
in Fig. S.

Overall procedure and hyper-parameters

Figure S summarizes the overall procedure of gcFor-
est. Suppose that the original input is of 400 raw
features, and three window sizes are used for multi-
grained scanning. For m training examples, a window
with a size of 100 features will generate a data set of
301 x m 100D training examples. These data will be
used to train a completely random forest and a ran-
dom forest, each containing 500 trees. If there are
three classes to be predicted, a 1806D feature vector

1,818dim 1,218-dim 618-dim
g —
->10 “>H -->H ~->Forest [-= H
m] O [m} [m}
O] 0]
-»|0 ->|0 s e s
I8 > B > E >|Forest >E
° °
E>' O E:> . o o
|
x| *s|0 s L -5
Bl 8" FlFeesfd
O O
= =g *>[Forest->0

>[— OO0

> — OO

Level Ni Level N,

1,806-dim! !
E>“> 903-dim P 1,818-dim 1,218-dim
[Forest A -5 Hl003-dim Pl b---->{Forest -H -8 -s{H
L O O u}
dim 0 O O
1,206-dim Pl _Jo N5 _s|0
o] EI 3 NN
DForeted.» Bposan [|| | R
> i O e (O u]
I r---->{Forest| =30 ->0 ->|0
st o
606-dim P O o O
[Forest 1 --> Esosim s =0 g g
--> H{303-dim . I Ll
i i N H ~
! }l Level1,i Level1,i Level1,]

o |I7LE Final |
: prediction i

Figure 5. Overall procedure of gcForest. Suppose that there are three classes, the raw features are 400-dim, and three sizes of sliding windows are

used.

Table 1. Summary of hyper-parameters and default settings of gcForest. Bold font highlights hyper-parameters with relatively
larger influence; "?" indicates default value unknown, or a general requirement for different settings for different tasks.

Deep neural networks (e.g. convolutional neural networks)

gcForest

Type of activation functions:
Sigmoid, ReLU, tanh, linear, etc.
Architecture configurations:
No. hidden layers: 2
No. nodes in hidden layer: 2
No. feature maps: ?
Kernel size: ?
Optimization configurations:
Learning rate: ?
Dropout: {0.25/0.50}
Momentum: ?
L1/L2 weight regularization penalty: 2
Weight initialization: Uniform, glorot normal, glorot uni, etc.
Batch size: {32/64/128}

Type of forests:

Completely random forest, random forest, etc.
Forest in multi-grained scanning:

No. forests: {2}

No. trees in each forest: {500}

Tree growth: till pure leaf, or reach depth 100

Sliding window size: {|d/16], | d/8], |d/4]}
Forest in cascade:

No. forests: {8}

No. trees in each forest: {500}

Tree growth: till pure leaf

will be obtained as described in the section entitled
‘Cascade forest structure’. The transformed training
set will then be used to train the first grade of the cas-
cade forest.

Similarly, sliding windows with sizes of 200 and
300 features will generate 1206D and 606D fea-
ture vectors, respectively, for each original train-
ing example. The transformed feature vectors, aug-
mented with the class vector generated by the previ-
ous grade, will then be used to train the second and
third grades of the cascade forests, respectively. This
procedure will be repeated till convergence of vali-
dation performance. In other words, the final model
is actually a cascade of cascades, where each cascade
consists of multiple levels each corresponding to a
grain of scanning, e.g. the first cascade consists of
Level 1, to Level 1¢in Fig. 5. For difficult tasks, more
grains can be used when computational resources al-
low.

Given a test instance, the multi-grained scanning
procedure will be gone through to get the corre-
sponding transformed feature representation, and
then the cascade will be gone through till the last
level. The final prediction will be obtained by aggre-
gating the four 3D class vectors at the last level, and
the class with the maximum aggregated value will be
output.

Table 1 summarizes the hyper-parameters of typ-
ical DNNs and gcForest, where the default values of
gcForest used in our experiments are given.

EXPERIMENTS
Configuration

We compare gcForest with deep neural networks
and several other popular learning algorithms. The

implementations are based on Python, with neural
networks from Keras and traditional learning algo-
rithms from Sklearn.

In all experiments gcForest is using the same cas-
cade structure: Eachlevel consists of four completely
random forests and four random forests, each con-
taining 500 trees, as described in the section entitled
‘Cascade forest structure’. Three-fold cross valida-
tion is used for class vector generation. The number
of cascade levels is automatically determined. In de-
tail, we split the training set into two parts, i.e. a grow-
ing set and an estimating set. (Some experimental
datasets are given with training/validation sets. To
avoid confusion, here we call the subsets generated
from the training set the growing/estimating sets.)
Then we use the growing set to grow the cascade,
and the estimating set to estimate the performance.
If growing a new level does not improve the perfor-
mance, the growth of the cascade terminates and the
estimated number of levels is obtained. Then, the
cascade is retrained based on merging the growing
and estimating sets. For all experiments we take 80%
of the training data for the growing set and 20% for
the estimating set. For multi-grained scanning, three
window sizes are used. For d raw features, we use fea-
ture windows with sizes of |d/16], |d/8], |d/4]; if
the raw features have panel structure (such as im-
ages), the feature windows also have panel structure,
as shown in Fig. 4. Note that a careful task-specific
tuning will lead to better performance; here, to high-
light that the hyper-parameter setting of gcForest
is much easier than deep neural networks, we sim-
ply use the same setting for all tasks, whereas task-
specific tunings are conducted for DNNGs.

For deep neural network configurations, we use
ReLU for the activation function, cross-entropy for
the loss function, Adadelta for optimization, and a

dropout rate of 0.25 or 0.5 for hidden layers ac-
cording to the scale of the training data. The net-
work structure hyper-parameters, however, cannot
be fixed across tasks, otherwise the performance
will be embarrassingly unsatisfactory. For example,
a network attained 80% accuracy on the ADULT
dataset but achieved only 30% accuracy on YEAST
with the same architecture (only the numbers of in-
put/output nodes were changed to suit the data).
Therefore, for DNNs, we examine a variety of archi-
tectures on the validation set and pick the one with
the best performance, then re-train the network on
the training set and report the test accuracy.

Results

We run experiments on a broad range of tasks, with
data types of image, audio, time series, text, etc.

Image categorization

The MNIST dataset [3] contains 60 000 images of
size 28 x 28 for training (and validating),and 10 000
images for testing. Deep belief nets in [23] attained
an accuracy of 98.75%, a re-implementation of
LeNet-S (a modern version of LeNet with dropout
and ReLUs) attained an accuracy of 99.05%, SVM
(rbf kernel) 98.60%, and random forest 96.80%,
whereas gcForest attains 99.26% by simply using the
default settings in Table 1.

Face recognition

The ORL dataset [24] contains 400 grayscale
facial images taken from 40 persons. We randomly
choose five/seven/nine images per person for
training, and report the test performance on the
remaining images. Note that a random guess will
achieve 2.5% accuracy, since there are 40 possible
outcomes. We compare with a CNN consisting
of two convolutional layers (conv-layers) with 32
feature maps of 3 X 3 kernel, and each conv-layer
has a 2 X 2 max-pooling layer following it. A
dense layer of 128 hidden units is fully connected
with the convolutional layers and finally a fully
connected soft-max layer with 40 hidden units is
appended at the end. ReLU, cross-entropy loss,
a dropout rate of 0.25 and Adadelta are used for
training. The batch size is set to 10, and 50 epochs
are used. We have also tried other configurations
of CNN, but this one gives the best performance:
test accuracies of 86.50%/91.67%/95.00%, cor-
responding to five/seven/nine training images
per person. The kNN (k = 3) test accuracies
are 76.00%/83.33%/92.50%, SVM (rbf kernel)
80.50%/82.50%/85.00%, and random forest
91.00%/93.33%/95.00%, whereas gcForest attains

91.00%/96.67%/97.50% by simply using the default
settings.

Music classification

The GTZAN dataset [25] contains 10 genres of mu-
sic clips, each represented by 100 tracks 30 seconds
long. We split the dataset into 700 clips for train-
ing and 300 clips for testing. In addition, we use the
MECC feature to represent each 30-second music
clip, which transforms the original sound wave into
a 1280 x 13 feature matrix. Each frame is atomic
according to its own nature; thus, CNN uses a
13 x 8 kernel with 32 feature maps as the conv-
layer, each followed by a pooling layer. Two fully
connected layers with 1024 and 512 units, respec-
tively, are appended, and finally a soft-max layer is
added at the end. We also compare it with an MLP
with two hidden layers, with 1024 and 512 units, re-
spectively. Both networks use ReLU as the activa-
tion function and categorical cross-entropy as the
loss function. For random forest, logistic regression
and SVM, each input is concatenated into a 1280
X 13 feature vector. The test accuracies are: CNN
59.20%, MLP 58.00%, random forest 50.33%, logis-
tic regression 50.00%, and SVM (rbfkernel) 18.33%,
whereas gcForest attains 65.67% by simply using the
default settings.

Hand movement recognition

The sEMG dataset [26] consists of 1800 records
each belonging to one of six hand movements, i.e.
spherical, tip, palmar, lateral, cylindrical and hook.
This is a time-series dataset, where EMG sensors
capture 500 features per second and each record
is associated with 3000 features. In addition to an
MLP with input-1024-512—output structure, we
also evaluate a recurrent neural network, LSTM
[27], with 128 hidden units and a sequence length
of 6 (500-dim input vector per second). The test ac-
curacies are: LSTM 45.37%, MLP 38.52%, random
forest 29.62%, SVM (rbfkernel) 29.62%, and logistic
regression 23.33%, whereas gcForest attains 71.30%
by simply using the default settings.

Sentiment classification

The IMDB dataset [28] contains 25 000 movie re-
views for training and 25000 for testing. The re-
views are text data represented by tf-idf features.
These are not image data, and thus CNNs are not
directly applicable; CNNs facilitated with word em-
bedding achieved a test accuracy of 89.02% [29].
An MLP with the structure input-1024-1024-
512-256-output attains 88.04%, SVM (rbf kernel)
87.56%, random forest 85.32%, and logistic regres-
sion 88.62%. Considering that tf-idf features do not

convey spatial or sequential relationships, we use the
default setting for gcForest but skip multi-grained
scanning, and achieve a testaccuracy of 89.16%, even
better than CNN facilitated with word embedding.

Low-dimensional data

We also evaluate gcForest on UCI datasets [30] with
a relatively small number of features: LETTER with
16 features and 16 000/4000 training/test examples,
ADULT with 14 features and 32 561/16 281 train-
ing/test examples, and YEAST with only eight fea-
tures and 1038/446 training/test examples. Fancy
architectures like CNNs could not work on such
data as there are too few features without spatial re-
lationships. So, we compare with MLPs. Unfortu-
nately, although MLPs have fewer configuration op-
tions than CNNs, they are still very tricky to set up.
For example, an MLP with input-16-8-8—output
structure and ReLU activation achieves 76.37% ac-
curacy on ADULT but just 33% on LETTER. We
conclude that there is no way to have one MLP
structure that gives decent performance across all
datasets. Therefore, we report different MLP struc-
tures with the best performance: for LETTER the
structure is input—70-50—output with test accuracy
95.70%, for ADULT it is input-30-20—output with
test accuracy 85.25%, and for YEAST it is input-50—
30—output with test accuracy 55.60%. These results
are inferior to random forest: 96.50% on LETTER,
85.49% on ADULT, 61.66% on YEAST. In contrast,
gcForest achieves 97.40% on LETIER, 86.40% on
ADULT, 63.45% on YEAST, by simply using the de-
fault setting and abandoning multi-grained scanning
by considering that the features of these small-scale
data do not hold spatial/sequential relationships.

High-dimensional data

The CIFAR-10 dataset [31] contains 50 000 images
of 10 classes for training and 10 000 images for test-
ing. Here, each image is a 32 x 32 colored im-
age with eight gray-levels; thus, each instance is of
8192-dim. ResNet achieved test accuracy 93.57%
[7], AlexNet 83.00% [4], deep belief net 62.20%
[31], and MLP 42.20% [32]. The test accuracies of
non-DNN approaches are: random forest 50.17%,
logistic regression 37.32%, and SVM (linear kernel)
16.32%.

As we discussed in the section entitled “The gc-
Forestapproach’, currently we include only a 10-dim
augmented feature vector from each forest, and such
a small number of augmented features will be eas-
ily drowned out by the original long feature vector.
Nevertheless, though the test accuracy of gcForest
with the default setting, 61.78%, is inferior to state-
of-the-art DNN, it is already the best among non-
DNN approaches. Moreover, the performance of gc-

Forest can be further improved via task-specific tun-
ing, e.g. by including more grains (i.e. using more
sliding window sizes in multi-grained scanning) like
gcForest(Sgrains), which uses five grains and attains
63.37%. It is also interesting to see that the per-
formance undergoes a significant improvement to
69.00% with gcForest(gbdt), which simply replaces
the final level with GBDT [13]. The section entitled
‘Influence oflarger models’ will show that better per-
formance can be obtained if larger models of gcFor-
est can be trained.

Running time

Our experiments use a PC with two Intel ES 2695 v4
CPUs (18 cores), and the running efficiency of gc-
Forest is good. For example, for the IMDB dataset
(25 000 examples with 5000 features), it takes 267.1
seconds per cascade level, and automatically termi-
nates with nine cascade levels, amounting to 2404
seconds or 40 minutes. In contrast, an MLP com-
pared on the same dataset requires 50 epochs for
convergence and 93 seconds per epoch, amounting
to 4650 seconds or 77.5 minutes for training; 14 sec-
onds per epoch (with a batch size of 32) if using a
GPU (Nvidia Titan X pascal),amounting to 700 sec-
onds or 11.6 minutes. Multi-grained scanning will
increase the cost of gcForest; however, the differ-
ent grains of scanning are inherently parallel. Also,
both completely random forest and random forest
are parallel ensemble methods [15]. Thus, the effi-
ciency of gcForest can be improved further with op-
timized parallel implementation. Note that the train-
ing cost is controllable because users can set the
number of grains, forests, and trees by considering
the computational cost available. It is also notewor-
thy that the above comparison is somewhat unfair to
gcForest, because many different architectures have
been tried for neural networks to achieve reported
performance but these time costs are not included.

Performance tendency

Figure 6 shows the performance tendency of gcFor-
est when the number of cascade levels increases. It
can be seen that gcForest starts with a performance
inferior to SVM and MLP, and gradually improves.
In our experiments the validation process terminates
the growth at the ninth level; the figure shows more
levels for observing the tendency.

Influence of multi-grained scanning

To study the separate contribution of the cas-
cade forest structure and multi-grained scanning,
we compare gcForest with a cascade forest

Influence of cascade structure

89.0 o *_x_-x--x--x--x--x
.04 - .
° % The final model structure of gcForest is a cascade
88.5- . . .
x'x of cascades, where each cascade consists of multiple
B0y S A levels each corresponding to a grain of scanning, as
38754 X X shown in Fig. 5. There are other possible ways to ex-
g s70] / ploit the features from multiple grains, e.g. the vari-
. -X- gcForest ant that concatenates all features together as shown
’ % + Random forest . .
86.04 O CNN in Fig. 7.
A MLP _ Table 2 shows that concatenating the features
85.5 @ Logistic regression . L.
+ * SVM (linear kernel) from multiple grains is not as good as the current de-
i3 5 7 8§ 1 13 sign in gcForest (here, ORL has nine training images

Levels

Figure 6. Performance tendency on IMDB.

on the MNIST, GTZAN and sEMG datasets.
The test accuracies with/without multi-grained
scanning are 99.26%/65.67%/71.30% and
98.02%/52.33%/48.15% on MNIST/GTZAN/
SEMG, respectively. It is evident that, when there
are spatial or sequential feature relationships,
multi-grained scanning helps improve performance.

Influence of completely random forest

To study the contribution of completely random
forest, we compare gcForest with its variant, which
replaces completely random forests by random
forests. The test accuracies with/without com-

perperson). Nevertheless, there might be other ways
leading to better results; we leave this for future ex-
ploration.

Influence of larger models

Figure 8 suggests that larger models tend to offer
better performance, though we have not tried even
more grains, forests and trees due to the limits of
computational resources.

Note that computational facilities are crucial for
enabling the training of larger models; e.g. GPUs for
DNNs. On one hand, some new computational de-
vices, such as Intel KNL of the MIC (many inte-
grated core) architecture, may offer acceleration for
gcForest. On the other hand, some components of
gcForest, e.g. multi-grained scanning, may be accel-
erated by GPUs. Moreover, there is plenty of room
for improvement with distributed computing imple-

pletely random forests are 99.26%/89.16%/97.40% mentations.
and 99.11%/87.62%/96.65% on MNIST/IMDB/
LETTER, respectively. It shows that completely ran-
repe ey by REAL APPLICATION

dom forest helps no matter whether multi-grained
scanning is applied (MNIST) or not (IMDB), or
whether data are low-dimensional (LETTER).

,,,,,,,,,,,,,,,,

| Cascade forest

gcForest has been implemented in an indus-
trial distributed-machine-learning platform and

P Eil: | ‘ |

) i i :

L8 g Forest A1) --> [903-dim ! : 3,630-dim 3,630-dim 12-dim i

P [e | |]] [Forest] o] |

o l Forest BT --> [903-dim | 3,618-dim ; -Forest ->§ -->§ Forest ->§ |

1) [! B ‘ : i
2 u . | 1 O O O S !
5 L] | £ ; 1 3 H g H [Forest}-> H 3 !
g E [i g 1< ’:> Forest A2 --> [603-dim | Conca- 3 4 >_ ::> ,:‘ >0 3
= g LU . E 1 E> ° d> 2 |
a2 Y| : 77 ForestBg 5 [603-dim D ! u| . 0 5 |
£ q : [oesBl ©) [l | Ave 5 Max 8
= | | ‘ ‘ a
T —] - ‘ : |
@] - 3 : |
O £ i el Bl [Foestt{ i
=%} i i 1 | Forest[~ orest [~ f

LN oo | ; ; g : ;

| HS - . ! i 1

N >Bwsam | ‘ l | 1

| J § i Level 1 T Level N !

,,,

Figure 7. A variant that concatenates all features from multiple grains. Suppose that there are three classes, the raw features are 400-dim, and three
sizes of sliding windows are used.

Table 2. Results with the variant of concatenating features from multiple grains.

MNIST ORL GTZAN sEMG
gcForest 99.26% 97.50% 65.67% 71.30%
variant 98.96% 98.30% 65.67% 55.93%

IMDB LETTER ADULT YEAST
gcForest 89.16% 97.40% 86.40% 63.45%
variant 89.32% 97.25% 86.17% 63.23%
applied to real-world illegal cash-out fraud de- RELATED WORK

tection by a big unicorn enterprise [33]. On
a dataset with 131407704 training examples
and 52489529 testing examples, each corre-
sponding to a transaction described by 5000
teatures, gcForest achieved the best performance of
0.9970/0.5440/0.9480 on AUC/F1/KS, whereas
DNNs achieved 0.9722/0.3861,/0.8551. For details
see [33].

The gcForest is a decision-tree ensemble approach.
There are studies showing that by using ensembles
such as random forest facilitated with DNN features,
the performance can be even better than simply us-
ing DNNs [34]. Our purpose is quite different. We
are aiming at anon-NN-style deep model rather than
a combination with DNNs. By using cascade forest
structure, we hope to endow the model with char-
acteristics of layer-by-layer processing, in-model fea-
ture transformation and suflicient model complex-

635 CIFAR-10 99.4 MNIST)

q ity.

-~) ’ oma : Sy - Random forest [12], which has been widely ap-
>) > - : w plied to various tasks, is one of the most success-
S 625 S 99.2 Default setting ful ensemble methods. Completely random forest
§ Default setting § . has been found useful during recent years, such

62.0 e / as iForest [35] for anomaly detection, sencForest

P @ 99.0 ./ [36] for handling emerging new classes in stream-
615 2 3 4 5 i 3 3 i 5 ing data, etc. gcForest offers another example ex-
Nifoer 6l glis Number of grains hibiting the usefulness of completely random for-

(@) with increasing number of grains est.
620 CIFAR-10 09,50 MNIST . Many works have tried to connect ra_mdom forest
e with neural networks, such as converting cascaded

615 . w\ Default setting 1 random forest to CNNs [37] and exploiting random
3 Default setting | . forest to help initialize neural networks [38]. These
% AL %gg 25 / works are typically based on early studies, e.g. map-
< 605 < ping of trees to networks, tree-structured neural net-

- p works, as reviewed in [39]. Their goals are totally

60.0} o0 -l different from 'ours. In‘ particular, their final models

2 6 8 10 = 6 F) 70 are based on differentiable modules (even for stud-
Number of forests Number of forests ies involving non-differentiable activation functions,
(b) With increasing number of forests per grade differentiable relaxation functions are actually used
T T in the optimization/learning process), whereas we
20 I Rk . are trying to develop deep models based on non-
9 [- differentiable modules without relying on gradient-

- o1 Default setting - based adjustment.
§ 5 § 02l Default setting The multi-grained scanning procedure of gcFor-
§ § .,V est uses different sizes of sliding windows to exam-

60.5] ine the data; this is somewhat related to wavelet

* and other multi-resolution examination procedures

600l —- R e S =5 550 L40]. For each window size, a set of instances is gen-

Number of trees Number of trees erated from one training example; this is related to

(c) With increasing number of trees per forest

Figure 8. Performance with increasing number of grains/forests/trees. Red highlights
the performance with the default setting.

bag generators of multi-instance learning [41]. In
particular, the bottom part of Fig. 4, if applied to im-
ages, can be regarded as the SB image bag generator
[41].

The cascade procedure of gcForest is related to
boosting [18], which is able to automatically decide
the number of learners in an ensemble, and in partic-
ular a cascade boosting procedure [42] has achieved
great success in object detection tasks. Note that
when multiple grains are used, each level in the cas-
cade of gcForest consists of multiple grades; this is
actually a cascade of cascades. Each grade can be re-
garded as an ensemble of ensembles.

Passing outputs of one level of learners as in-
puts to another level of learners is related to stack-
ing [43,44]. However, stacking is easy to overfit with
more than two levels, and can hardly enable a deep
model by itself. Our trick lies in the enhancement
of diversity during model growth. Actually, gcFor-
est exploits all major categories of diversity enhance-
ment strategies [15].

As a tree-based approach, gcForest might be po-
tentially more useful for theoretical analysis than
deep neural networks, although this is beyond the
scope of this paper. Indeed, some recent theoretical
studies about deep learning, e.g. [45], seem more in-
timate with tree-based models.

FUTURE ISSUES

One important future issue is to enhance the fea-
ture re-representation process. The current imple-
mentation of gcForest takes the simplest form of
class vectors, i.e. the class distribution at the leaf
nodes into which the concerned instance falls. Such
a small number of augmented features will be eas-
ily drowned out when the original feature vectors
are high-dimensional. It is apparent that more fea-
tures may be involved. Intuitively, more features may
enable the incorporation of more information, al-
though this is not always necessarily helpful for gen-
eralization. Moreover, a longer class vector may en-
able a joint multi-grained scanning process, leading
to more flexibility of re-representation. Recently we
have shown that a decision forest can serve as Au-
toEncoder [46]. On one hand, this shows that the
ability of AutoEncoder is not a special property of
neural networks; on the other hand, this shows that
a forest can encode abundant information, offering
great potential to facilitate feature re-representation.

Another important future issue is to accelerate
and reduce the memory consumption. Building
larger models may lead to better performance, where
computational facilities are crucial for enabling the
training of larger models. The success of DNNs
owes much to the acceleration offered by GPUs,
but forest structure is unfortunately not suitable
for GPUs. One possibility is to consider some new
computational devices such as KNL; another is

distributed computing implementation. Feature
sampling can be executed when transformed feature
vectors produced by multi-grained scanning are
too long to be accommodated; this not only helps
storage reduction, but also offers another channel to
enhance the diversity. It is also possible to explore
smarter sampling strategies such as BLB [47] or fea-
ture hashing [48] when adequate. The hard negative
mining strategy may help improve generalization,
and efforts to improve the efficiency of hard negative
mining may also be helpful for multi-grained scan-
ning [49]. The efficiency of gcForest may be further
improved by reusing some components during the
process of different grained scanning, class vectors
generation, forest training, completely random
tree generation, etc. In case the learned model is
big, it is possible to reduce it to a smaller one by
using the strategy presented in [50], later called
knowledge distillation.

The adoption of completely random forest not
only helps diversity enhancement, but also provides
an opportunity to exploit unlabeled data. Note that
the growth of completely random trees does not re-
quire labels; label information is only needed for an-
notating leaf nodes. Intuitively, for each leaf node
it might be possible to require only one labeled ex-
ample if the node is to be annotated according to
the majority cluster on the node, or one labeled
example per cluster if all clusters in the node are
non-negligible. This offers gcForest the opportunity
of incorporating active learning [51] and/or semi-
supervised learning strategies [52].

The gcForest is able to achieve a performance
highly competitive with DNNs on a broad range
of tasks except some large-scale image tasks. In-
deed, DNNs are very successful in image tasks, e.g.
[53,54]. On one hand, we believe that the perfor-
mance of gcForest can be significantly improved,
e.g. by designing a better feature re-representation
scheme rather than using the current simple classi-
fication vectors. On the other hand, it should not
be ignored that DNN models have been investi-
gated for more than 20 years by a huge crowd of
researchers/engineers whereas deep forest has just
been born. Furthermore, we conjecture that nu-
meric modeling tasks such as image/audio data are
very suitable for DNNs because their operations,
such as convolution, fit well with numeric signal
modeling. Deep forest was not developed to replace
DNNis for such tasks; instead, it offers an alterna-
tive when DNNs are not superior. There are plenty
of tasks, especially categorical/symbolic or mixed
modeling tasks, where deep forest may be found use-
ful. For example, the application described in the sec-
tion entitled ‘Real application’ is a mixed modeling
task involving both categorical and numeric features.

RESEARCH ARTICLE

CONCLUSION

This paper attempts to address the question of
whether deep learning can be realized with non-
differentiable modules. We conjecture that behind
the mystery of deep neural networks there are three
crucial characteristics, i.e. layer-by-layer process-
ing, in-model feature transformation, and sufficient
model complexity. To verify the conjecture, we try to
endow a non-NN-style deep model with these char-
acteristics, and our results show that it really works.

The proposed gcForest approach (a shared gc-
Forest code for small- or medium-scale data is avail-
able at [55]) is able to construct deep forest, a deep
model based on decision trees, and the training pro-
cess does not rely on backpropagation and gradi-
ent adjustment. Compared with deep neural net-
works, gcForest has fewer hyper-parameters and has
achieved excellent performance across various do-
mains even by using the same parameter settings.

There are other possibilities for constructing
deep forest. As a seminal study, we have only ex-
plored a little in this direction. Indeed, the most im-
portant value of this paper lies in the fact that it may
open the door for non-NN-style deep learning, or
deep models based on non-differentiable modules
that do not rely on gradients.

FUNDING

This work was supported by the National Natural Science Foun-
dation of China (61751306) and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.

REFERENCES

. Goodfellow |, Bengio Y and Courville A. Deep Learning. Cam-
bridge, MA: MIT Press, 2016.
2. Sirignano J. Deep learning models in finance. SIAM News 2017,
50: 1.
3. LeCun Y, Bottou L and Bengio Y et al. Gradient-based learning
applied to document recognition. Proc IEEE 1998; 86: 2278—324.
4. Krizhenvsky A, Sutskever | and Hinton G. ImageNet classifi-

cation with deep convolutional neural networks. In: Pereira F,
Burges CJC and Bottou L et al. (eds). Advances in Neural Infor-
mation Processing Systems 25. 2012, 1097—105.

. Simonyan K and Zisserman A. Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556.

6. Srivastava RK, Greff K and Schmidhuber J. Training very deep

ol

networks. In: Cortes C, Lawrence ND and Lee DD et al. (eds).
Advances in Neural Information Processing Systems 28. 2015,
2377-85.

7. He K, Zhang X and Ren S et al. Deep residual learning for image
recognition. In: Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, Las Vegas,
NV. 2016, 770-8.

w©

12.
13.

17.

18.

20.

21.

22.

23.

24.

25.

26.

Zhou and Feng 85

. Han S, Pool J and Tran J et al. Learning both weights and con-

nections for efficient neural network. In: Cortes C, Lawrence ND
and Lee DD et al. (eds). Advances in Neural Information Process-
ing Systems 28.2015, 1135-43.

. Luo JH, Wu J and Lin W. ThiNet: a filter level pruning method

for deep neural network compression. arXiv:1707.06342.

. Courbariaux M, Bengio Y and David JP. BinaryConnect: training

deep neural networks with binary weights during propagations.
In: Cortes C, Lawrence ND and Lee DD et al. (eds). Advances in
Neural Information Processing Systems 28. 2015, 3123-31.

. Rastegari M, Ordonez V and Redmon J et al. XNOR-Net: Ima-

geNet classification using binary convolutional neural networks.
In: Proceedings of the 14th European Conference on Computer
Vision, Amsterdam, The Netherlands. 2016, 525—42.

Breiman L. Random forests. Mach Learn 2001; 45: 5-32.

Chen T and Guestrin C. XGBoost: a scalable tree boosting sys-
tem. In: Proceedings of the 22nd ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, San Francisco, CA.
2016, 785-94.

. Zhou ZH and Feng J. Deep forest: towards an alternative to

deep neural networks. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence, Melbourne, Aus-
tralia. 2017, 3553-9.

. Zhou ZH. Ensemble Methods: Foundations and Algorithms. Boca

Raton, FL: CRC Press, 2012.

. Krogh A and Vedelsby J. Neural network ensembles, cross vali-

dation, and active learning. In: Tesauro G, Touretzky DS and Leen
TK (eds). Advances in Neural Information Processing Systems 7.
1995, 231-8.

Breiman L. Bagging predictors. Mach Learn 1996; 24: 123—-40.
Freund Y and Schapire RE. A decision-thearetic generalization of
on-line learning and an application to boosting. J Comput Syst
Sci1997; 55: 119-39.

. Ho TK. The random subspace method for constructing decision

forests. IEEE Trans Pattern Anal Mach Intell 1998; 20: 832—44.
Dietterich TG and Bakiri G. Solving multiclass learning problems
via error-correcting output codes. J Artif Intell Res 1995; 2: 263—
86.

Breiman L. Randomizing outputs to increase prediction accuracy.
Mach Learn 2000; 40: 113-20.

Liu FT, Ting KM and Yu Y et al. Spectrum of variable-random
trees. J Artif Intell Res 2008; 32: 355-84.

Hinton GE, Osindero S and Simon YW. A fast learning algorithm
for deep belief nets. Neural Comput 2006; 18: 1527-54.
Samaria F and Harter AC. Parameterisation of a stochastic
model for human face identification. In: Proceedings of the Znd
IEEE Workshop on Applications of Computer Vision, Sarasota,
FL. 1994, 138-42.

Tzanetakis G and Cook PR. Musical genre classification of
audio signals. /EEE Trans Speech Audio Process 2002; 10:
293-302.

Sapsanis C, Georgoulas G and Tzes A et al. Improving EMG
based classification of basic hand movements using EMD. In:
Proceedings of the 35th Annual International Conference on
the IEEE Engineering in Medicine and Biology Society, Osaka,
Japan. 2013, 5754—7.

28.

29.

30.

3

=

32.

33.

34.

35.

36.

37.

38.

39.

40.

| Natl Sci Rev, 2019, Vol. 6, No. 1

. Gers FA, Eck D and Schmidhuber J. Applying LSTM to time series pre-
dictable through time-window approaches. In: Proceedings of the Interna-
tional Conference on Artificial Neural Networks, Vienna, Austria. 2001, 669—
76.

Maas AL, Daly RE and Pham PT et al. Learning word vectors for sentiment
analysis. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, Portland, OR. 2011, 142-50.

Kim Y. Convolutional
arXiv:1408.5882.
Lichman M. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
(9 November 2018, date last accessed).

. Krizhevsky A. Learning multiple layers of features from tiny images. Depart-

neural networks for sentence classification.

ment of Computer Science, University of Toronto, 2009.

Ba J and Caruana R. Do deep nets really need to be deep? In: Ghahramani Z,
Welling M and Cortes C et al. (eds). Advances in Neural Information Processing
Systems 27.2014, 2654-62.

Zhang YL, Zhou J and Zheng W et al. Distributed deep forest and its application
to automatic detection of cash-out fraud. arXiv:180504234.

Kontschieder P, Fiterau M and Criminisi A et al. Deep neural decision forests.
In: Proceedings of the IEEE International Conference on Computer Vision, San-
tiago, Chile. 2015, 1467-75.

Liu FT, Ting KM and Zhou ZH. Isolation forest. In: Proceedings of the 8th I[EEE
International Conference on Data Mining, Pisa, Italy. 2008, 413-22.

Mu X, Ting KM and Zhou ZH. Classification under streaming emerging new
classes: a solution using completely-random trees. /EEE Trans Know! Data Eng
2017; 29: 1605-18.

Richmond DL, Kainmueller D and Yang MY et al. Relating cascaded random
forests to deep convolutional neural networks for semantic segmentation.
arXiv:1507.07583.

Welbl J. Casting random forests as artificial neural networks (and profiting
from it). In: Proceedings of the 36th German Conference on Pattern Recogni-
tion, Miinster, Germany. 2014, 765-71.

Zhou ZH and Chen ZQ. Hybrid decision trees. Know/ Base Syst 2002; 15: 515—
28.

Mallat S. A Wavelet Tour of Signal Processing, 2nd edn. London: Academic
Press, 1999.

41.

42.

43.
44.
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

RESEARCH ARTICLE

Wei XS and Zhou ZH. An empirical study on image bag generators for multi-
instance learning. Mach Learn 2016; 105: 155-98.

Viola P and Jones M. Rapid object detection using a boosted cascade of sim-
ple features. In: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, Kauai, HI. 2001, 511-8.

Wolpert DH. Stacked generalization. Neural Network 1992; 5: 241-60.
Breiman L. Stacked regressions. Mach Learn 1996; 24: 49-64.

Mhaskar H, Liao Q and Poggio TA. When and why are deep networks better
than shallow ones? In: Proceedings of the 31st AAAI Conference on Artificial
Intelligence, San Francisco, CA. 2017, 2343-9.

Feng J and Zhou ZH. AutoEncoder by forest. In: Proceedings of the 3Z2nd AAAI
Conference on Artificial Intelligence, New Orleans, LA. 2018.

Kleiner A, Talwalkar A and Sarkar F et al. The big data bootstrap. In: Proceed-
ings of the 29th International Conference on Machine Learning, Edinburgh,
Scotland. 2012.

Weinberger K, Dasgupta A and Langford J et al. Feature hashing for large scale
multitask learning. In: Proceedings of the 26th International Conference on Ma-
chine Learning, Montreal, Canada. 2009, 1113-20.

Henriques JF, Carreira J and Caseiro R et a/. Beyond hard negative mining:
efficient detector learning via block-circulant decomposition. In: Proceedings
of the IEEE International Conference on Computer Vision, Sydney, Australia.
2013, 2760-7.

Zhou ZH and Jiang Y. NeC4.5: neural ensemble based C4.5. /EEE Trans Know!
Data Eng 2004; 16: 770-3.

Huang SJ, Jin R and Zhou ZH. Active learning by querying informative and rep-
resentative examples. /EEE Trans Pattern Anal Mach Intell 2014; 36: 1936—
49.

Zhou ZH and Li M. Semi-supervised learning by disagreement. Know! Inform
Syst2010; 24: 415-39.

Xu T, Zhang X and Liu F et al. Unsupervised deep feature learning for remote
sensing image retrieval. fem Sens 2018; 10: 1243.

Li'Y, Zhang Y and Huang X et al. Large-scale remote sensing image retrieval
by deep hashing neural networks. /EEE Trans Geosci Rem Sens 2018; 56: 950—
65.

gcForest. http://lamda.nju.edu.cn/code_gcForest.ashx (3 November 2018,
date last accessed).

http://archive.ics.uci.edu/ml
http://lamda.nju.edu.cn/code_gcForest.ashx

