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Abstract

The unprecedented pace of the sequencing of the SARS-CoV-2 virus genomes provides us

with unique information about the genetic changes in a single pathogen during ongoing pan-

demic. By the analysis of close to 200,000 genomes we show that the patterns of the SARS-

CoV-2 virus mutations along its genome are closely correlated with the structural and func-

tional features of the encoded proteins. Requirements of foldability of proteins’ 3D structures

and the conservation of their key functional regions, such as protein-protein interaction inter-

faces, are the dominant factors driving evolutionary selection in protein-coding genes. At the

same time, avoidance of the host immunity leads to the abundance of mutations in other

regions, resulting in high variability of the missense mutation rate along the genome. “Unex-

plained” peaks and valleys in the mutation rate provide hints on function for yet uncharacter-

ized genomic regions and specific protein structural and functional features they code for.

Some of these observations have immediate practical implications for the selection of target

regions for PCR-based COVID-19 tests and for evaluating the risk of mutations in epitopes

targeted by specific antibodies and vaccine design strategies.

Author summary

RNA viruses, such as SARS-CoV-2 have high mutation rates and their genomes accumu-

late mutations at a pace much faster than larger organisms. While a lot of attention is

focused on mutations changing the behavior of the virus, making it more or less infectious

or virulent, most mutations appear to be neutral. The interplay between different types of

natural selection and genetic drift is intensively studied by viral genetics, with many

detailed models of viral evolution. Here we show, on the example of the SARS-CoV-2

virus, that the patterns of mutations in viral genomes are tightly coupled with the three-

dimensional structure and detailed functional features of the proteins coded by the viral

genome. Highly mutated regions of the genome correspond to structural regions that can

easily accept amino acid changes, such as disordered regions or protein surfaces, while the
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reverse is true for regions corresponding to protein cores or functionally important fea-

tures. While many patterns can be explained by what we already know about SARS-CoV-

2 proteins, others provide hints for the still undiscovered functions or still unknown struc-

tural features. Taking into account these patterns may be important when we develop

tools, such as antibodies, PCR probes, vaccines or drugs, to make sure we target genomic

regions that are conserved because of natural negative selection.

Introduction

We live in the middle of the COVID-19 pandemic caused by the Severe Acute Respiratory Syn-

drome Coronavirus 2 (SARS-CoV-2). First identified and characterized in early 2020, the

virus is mutating and evolving into separate clades with distinct geographical and time distri-

bution (https://www.gisaid.org) [1]. This is typical for RNA viruses and cannot be automati-

cally interpreted as a sign that the disease it is causing is changing [2], but epidemiological [3]

and biochemical [4] data indicate that a viral strain with higher infectivity appeared already in

March 2020. Recent pandemic flare ups in the United Kingdom [5] and South Africa [6] sug-

gest that even newer super-transmissible strains are emerging. We can track these events in

almost real time thanks to a massive effort in sequencing the SARS-CoV-2 genome variants

from all over the world, with most of this information available through resources such as

GISAID [1] (https://www.gisaid.org). The genomic data on SARS-CoV-2 provides informa-

tion on the phylodynamics of the COVID-19 pandemic and is also studied for signals of posi-

tive selection in the search of changes that the virus may undergo while adapting to its new

host (https://observablehq.com/@spond/revised-sars-cov-2-analytics-page).

There is no doubt that the evolution of the SARS-CoV-2 virus, typical for RNA viruses [7],

is mostly driven by a combination of genetic drift and negative (purifying) selection that

removes non-viable viruses [8]. Genetic drift and negative or purifying selection typically

receive less attention than positive selection since it is considered as being less informative. In

this manuscript, we explore the possibility that integrating information about patterns of

genetic drift and negative genomic selection with that on protein three-dimensional structures

would allow us to gain novel insights about the structurally and functionally important regions

of SARS-CoV-2 proteins.

Negative or positive selection is typically measured by a rate of synonymous to non-synony-

mous mutations and thus can be calculated for individual positions or regions of the genome.

Such calculations are carried out for individual variants in the SARS-CoV-2 genome (https://

observablehq.com/@spond/revised-sars-cov-2-analytics-page). Here we want to focus only on

larger trends, using averages of mutation rates over entire proteins, individual domains or

some specific functional regions in them. Such observations were made from the beginning of

structural biology, when Perutz and his team noticed that mutations rarely happen in the pro-

tein core [9]. These early observations were later corroborated for different organisms, classes

of proteins, and evolutionary timescales [10]. It is, however, not obvious if this trend would

hold for a rapidly mutating pathogen tracked in the timescale of one year, where neutral

genetic drift is expected to be a dominant factor and how much it could be used, in reverse to

the earlier analyses, to learn about protein structure and function from the analysis of the

mutation patterns. Assuming that negative selection is a dominant effect, we focus on the

under and over mutated regions, interpreting the difference as a signal of the importance of

these regions to a broadly defined viral fitness.
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The analysis presented here is also enabled by the rapid pace of structural characterization of

the SARS-CoV-2 proteome [11] as by the end of December 2020, there was direct or indirect

high-quality structural information for over 60% of the total length of SARS-CoV-2 proteins.

Our group has recently developed the Coronavirus3D server [12], available at https://

coronavirus3d.org, to integrate information about the three-dimensional structures of SARS-

CoV-2 virus proteins from the Protein Data Bank (PDB) [13] resource (http://rcsb.org) with the

information on SARS-CoV-2 genomic variations retrieved from GISAID [1]. This integration

allows us to track, in almost real-time, the emergence of new trends or patterns in the evolving

SARS-CoV-2 genome. The new functionality of variant tracking is now the default first page

and the features described in this manuscript are available from the menu on the top of the page

as “3D proteome viewer” or directly at https://coronavirus3d.org/#/3dproteomeviewer.

In the first part of the manuscript, we evaluate mutation rate distributions along the

genome to gain insights into the types of selection pressure for individual SARS-CoV-2 pro-

teins as well as for their functional domains and sites. In the second part we analyze the muta-

tion pattern of known antibody epitopes and regions used for COVID-19 diagnostic tests,

showing that the continuous evolution of the SARS-CoV-2 virus can also affect the medical

and public health aspects of the COVID-19 pandemic and that structural information on viral

proteins is useful in our efforts to control it.

Results

Coronaviruses have a unique RNA copy-proofing mechanism [14] and, as a result, have a

lower mutation rate than other RNA viruses. Despite this, over 70% of the positions (21,124

out of 29,880) along the SARS-CoV-2 genome have been mutated at least once, as can be seen

by the analysis of over 192,030 high-coverage genomes sequenced as of Dec 3rd, 2020 on the

GISAID website (https://www.gisaid.org/) (see the Methods section for the details of the proto-

col used to select these genomes). The distribution of mutations along the SARS-CoV-2

genome has been discussed in many papers [15,16]; here we search for new observations that

could be made by mapping this information onto the structures of the proteins encoded by the

genome.

Distribution of mutations along SARS-CoV-2 genome and in its proteins

In line with earlier observations [16], the largest proportion of mutations observed in SARS-

CoV-2 genomes were missense mutations (61%), followed by synonymous mutations (33%)

and a relatively small number of start/stop gains and losses, as well as mutations in untrans-

lated regions (see S1 Fig for more details). When translated to the amino acid sequence, 7811

out of the total of 9926 (79%) amino acids in the SARS-CoV-2 proteome are mutated in at

least one genome in the dataset used in this study. We plotted the distribution of missense and

synonymous mutations using a moving 100 nt. window along the viral genome (Fig 1A). A

cluster of densely mutated regions near the 3’-terminus of the genome begins at the boundary

between Orf1ab (coding for non-structural proteins) and Orf2-Orf10 (coding for structural

and accessory proteins). Other minima and maxima of the mutation rate can mostly be

mapped to the functional parts of the genome as illustrated in Fig 1A. For instance, the region

corresponding to the C-terminal domain of nsp3 (violet line in Fig 1A) was found to be signifi-

cantly less mutated, likely due to its key role in inducing the formation of double-membrane

vesicles [17] and the minima in the spike protein to a RBD and postfusion core regions, both

critical for the virus entry into the host cell.

As seen in Fig 1B, the variance of the numbers of missense mutations in the 100 nt. win-

dows along the viral genome is about four times higher (20.96 versus 5.33) than the
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corresponding variance for synonymous mutations (Levene-test p-value = 5.2E-44) confirm-

ing that the number of the synonymous mutations fluctuates much less than that of missense

mutations.

At the same time, the rates of missense and synonymous mutations along the length of

the genome are marginally correlated (Spearman’s rank correlation coefficient Rs = 0.22,

p-value = 0.00012) implying that two mechanisms could be coupled- regions under stron-

ger or weaker negative selection on protein level are also slightly more or slightly less fre-

quently mutated overall. A full analysis of this interesting effect is outside the scope of this

paper.

Comparing the segment of the genome coding for the non-structural proteins (Orf1ab, cor-

responding to proteins nsp1-nsp16) to the whole proteome, we see that it is under-mutated in

both missense and synonymous mutations (p = 8.01E-75 and 5.72E-6, respectively). We also

see that this segment has a lower ratio of missense to synonymous mutations than the segment

coding for the structural and accessory proteins (p = 1.85E-12) (see the details of the calcula-

tion in the Methods section). This might suggest that negative selection is stronger in the

region coding for the essential viral reproduction apparatus, but also that the RNA features of

the genome support a lower mutation rate in this region. Therefore, we decided to use the

mutation rates in these two regions as two separate background probabilities in the statistical

tests applied to individual proteins later in the paper.

Fig 1. Distribution of SARS-CoV-2 mutations based on multiple sequence alignment of 192,030 high-coverage genomes. A). Rate of missense (red) and synonymous

(blue) mutations in windows of 100 nt. B) Violin plots highlight the differences in the distributions of missense and synonymous mutations in windows of 100 nt. SD;

Standard Deviation.

https://doi.org/10.1371/journal.pcbi.1009147.g001
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Rates of missense mutations along SARS-CoV-2 genome as a measure of

evolutionary pressure

Analysis of the rates of missense mutations in the genomes has a long history in the field of

cancer genomics, where cancer mutations have been shown to have clearly non-random distri-

bution when mapped on protein sequences and structures [18]. This effect was interpreted as a

signal of positive selection and used to identify cancer driver genes and mutations. It is worth

noting that this analogy is not perfect, as in cancer the count of mutations (number of samples)

can be directly included in the analysis as they are independent evolutionary events. In con-

trast, mutations observed in viral genomes are not independent events as individual genomes

inherit some mutations from their ancestors. Virus counts are also dependent on the sequenc-

ing rates in different regions, with orders of magnitude difference between the industrialized

and developing countries. Ideally, the mutation counts should include independent recurrence

events. However, existing estimates show a very low frequency of recurrent mutations in

SARS-CoV-2 genomes [4,19], on the order of 1% of all positions. They also disagree on the

positions of such recurrences as they depend on the details of the phylogenetic tree of all the

genomes, which at this point is still not definite [20]. Therefore, we decided to use the approxi-

mation of counting each mutation once, without taking into account the virus counts (number

of observations) nor the level of recurrence on specific positions since recurrence corrected

counts for ~1% of positions would not significantly influence counts averaged over 100nt win-

dow, as used here. With rapidly growing number of available genomes this situation may

change, but our in-house and literature [4,19] estimates for the datasets as analyzed here sup-

port this assumption.

At the same time, as shown in the previous section, variation in the rate of synonymous

mutations along the genome is small as compared to missense mutations. Taking into account

these observations, we decided to focus entirely on the missense mutations, as they are mani-

fested at the amino acid level and allow us to directly interpret the mutation rates through

their effect on proteins, their three-dimensional structures and potentially their functions.

Some SARS-CoV-2 proteins and domains show significant differences in

the rate of mutations

The SARS-CoV-2 genome codes for at least 29 individual proteins, with the product of Orf1ab

being further processed into 16 individual non-structural proteins through post-translational

processing by the viral proteases 3CLpro and PLpro. The exact count of the proteins coded in

the SARS-CoV-2 genome is still disputed, as some of the ORFs code for multiple proteins in

alternative reading frames [21]. Many of the SARS-CoV-2 proteins, such as nsp3 or Nucleo-

capsid phosphoprotein, can be further divided into independently folding regions (domains)

with specific functions. In the following analysis, we compared the observed number of mis-

sense mutations in a given protein or its domains with their expected number under an appro-

priate background mutation rate, to identify regions that are significantly over- or under-

mutated (see Methods). Because domain assignment is not complete for SARS-CoV-2 pro-

teins, we use information on structurally characterized constructs to define boundaries of

structural (and functional) domains or regions, in addition to domains identified by in-depth

sequence analysis such as Y1 and CoV-Y domains in nsp3 [22]. Regions located between struc-

turally characterized domains, for instance in nsp3, form another group of indirectly defined

regions. The complete list of SARS-CoV-2 proteins and experimentally solved structures/

domains within them that are used in the following analysis are listed in S1 and S2 Tables.

While the differences in mutation rates between specific proteins or protein regions could

be caused by differences in type of evolutionary pressure between them, they can also be
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affected by a different “background” mutation rate between different genomic regions. How-

ever as discussed earlier the region coding for the non-structural proteins is systematically

under-mutated as compared to the region coding for the structural and accessory proteins.

Therefore, in this analysis, we used different background frequencies for the different parts of

the proteome being analyzed (see Methods). Table 1 presents the results of the significance

analysis of the mutation rate for individual proteins (16 non-structural proteins, 4 structural

proteins and 6 accessory proteins) and Table 2 presents the results for individual functional

Table 1. SARS-CoV-2 proteins with a significantly different rate of mutations as compared to the corresponding background (set of non-structural proteins/set of

structural and accessory proteins).

Protein name Genomic start

position

Genomic end

position

Length

(nt.)

No. of missense

mutations

Expected no. of missense

mutations

p-value q-value (FDR

corrected)

Proteins under-mutated as compared to the background

nsp4 8555 10054 1500 770 885.71 4.20E-

05

8.09E-05

nsp5 10055 10972 918 448 542.05 2.47E-

05

5.12E-05

nsp8 12092 12685 594 307 350.74 1.71E-

02

2.57E-02

nsp9 12686 13024 339 164 200.17 9.25E-

03

1.47E-02

nsp10 13025 13441 417 196 246.23 9.12E-

04

1.54E-03

nsp12 13442 16236 2796� 1283 1650.96 9.58E-

24

6.46E-23

nsp13 16237 18039 1803 893 1064.62 1.86E-

08

5.57E-08

membrane glycoprotein 26523 27191 669 318 523.7 1.44E-

23

7.80E-23

surface glycoprotein 21563 25384 3822 2462 2991.87 1.54E-

39

4.16E-38

Proteins over-mutated as compared to the background

nsp1 266 805 540 465 318.86 8.02E-

15

3.61E-14

nsp2 806 2719 1914 1525 1130.17 7.06E-

32

9.53E-31

nsp3 2720 8554 5835 3746 3445.41 2.52E-

09

8.50E-09

nsp15 19621 20658 1038 718 612.91 2.16E-

05

4.87E-05

Orf3a protein 25393 26220 828 907 648.16 2.99E-

24

2.69E-23

Orf6 protein 27202 27387 186 173 145.6 2.36E-

02

3.36E-02

Orf7a protein 27394 27759 366 396 286.51 3.70E-

10

1.43E-09

Orf8 protein 27894 28259 366 379 286.51 8.65E-

08

2.12E-07

nucleocapsid

phosphoprotein

28274 29533 1260 1147 986.33 5.41E-

08

1.46E-07

Orf14 protein 28734 28955 222 226 173.78 1.18E-

04

2.13E-04

�contains a single additional nucleotide because of ribosomal slippage, see Genbank entry for MN908947.3

https://doi.org/10.1371/journal.pcbi.1009147.t001
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domains as identified from the structural analysis and the literature. The complete results are

available in S1 and S2 Tables. As seen from Table 1, many of the SARS-CoV-2 proteins show a

statistically significant difference in mutation rate when compared to their corresponding

backgrounds, with nine being under-mutated and ten being over-mutated. We see that the

majority of under-mutated proteins are non-structural proteins (7 out of 9), which mirrors the

trend seen earlier. This is seen despite the fact that individual non-structural proteins were

compared to the set of all non-structural proteins as the background, and individual structural

and accessory proteins were compared to the set of all structural and accessory proteins, sug-

gesting that these proteins are under strong negative selection. Most of the non-structural pro-

teins play a role in RNA replication/processing and are part of the viral replication and

transcription complex (RTC) [23,24]. Their low mutation rate can be explained by the fact that

these proteins are crucial for the viral life cycle. One of the exceptions to this trend is nsp1,

Table 2. Structurally characterized protein domains with rate of mutations significantly different than the background (the encompassing full protein).

Protein Domain name / pdb IDs Genomic

start

Genomic

end

Domain

length (nt.)

No. of missense

mutations in

domain

Protein

length (nt.)

Expected no. of

missense mutations in

domain

p-value q-value (FDR

corrected)

Domains under-mutated as compared to the background

nsp3 SUD (SARS Unique

Domain) / 2w2gA

3956 4747 792 446 5835 508.45 2.64E-

03

8.73E-03

nsp3 interdomain linker /

Region b/w 6w9cA and

2k87A

5900 5983 84 35 5835 53.93 7.36E-

03

1.52E-02

nsp3 Y1 domain / none 7469 8011 543 235 5835 348.60 1.96E-

11

6.47E-10

nsp3 CoV-Y domain / none 8012 8554 543 299 5835 348.60 4.90E-

03

1.24E-02

S Receptor binding domain

(RBD) / 6lzgB

22559 23143 585 299 3822 376.84 8.39E-

06

4.61E-05

S RBD assoc. linker domain

/ none

22529 22558 216 108 3822 139.14 5.91E-

03

1.36E-02

23144 23329

S 6vxxB 21641 25003 3363 2060 3822 2166.33 2.81E-

10

4.64E-09

N RNA-binding domain /

6m3mA

28415 28792 378 273 1260 344.10 3.37E-

06

2.22E-05

N C-terminal dimerization

domain / 6wjiA

29042 29365 324 246 1260 294.94 8.19E-

04

3.00E-03

nsp4 C-terminal domain of

nsp4 / 3vcbA

9782 10051 270 109 1500 138.60 4.86E-

03

1.24E-02

Domains over-mutated as compared to the background

nsp3 ubiquitin-like domain 1

(Ubl1) of nsp3 / 7kagA

2720 3040 321 248 5835 206.08 3.29E-

03

9.86E-03

nsp3 ADP-ribose phosphatase

domain (ADRP) / 6w02A

3341 3835 495 378 5835 317.78 5.96E-

04

2.46E-03

nsp3 interdomain linker /

Region b/w 6w02A and

2w2gA

3836 3955 120 134 5835 77.04 2.32E-

09

1.92E-08

S N-terminal domain

(NTD) / none

21563 22435 873 690 3822 562.36 2.16E-

09

1.92E-08

N Region b/w 6m3mA and

6wjiA

28793 29041 249 285 1260 226.67 2.70E-

05

1.27E-04

N Region b/w 6wjiA and

Nucleocapsid end

29366 29533 168 185 1260 152.93 6.20E-

03

1.36E-02

https://doi.org/10.1371/journal.pcbi.1009147.t002
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with a mutation rate similar to that of orfs2-14. Indeed, its function is somewhat different

from the other non-structural proteins, as it interacts with the ribosome to inhibit host protein

translation [25,26]. Overall, 6 out of the 10 over-mutated proteins are structural and accessory

proteins. Over-mutation generally implies lower negative selection or potentially some positive

selection, and again, this can be explained for at least some of these proteins based on their

functions, which involve interacting with components of the host cell. For example, Orf8, Orf6

and N protein have been implicated in disrupting the host anti-viral immune response [23,24]

so their high mutation levels can contribute to the immune avoidance by the SARS-CoV-2

virus.

In the next step, we looked at individual domains within SARS-CoV-2 proteins. As

domains within multidomain proteins often have their independent evolutionary history and

identifiable, individual functions, differences in mutation rates between different domains

may provide a more detailed picture of their relative importance for the viability of the virus.

We have used a similar approach in the eDriver algorithm used to identify the role of individ-

ual domains in cancer driver proteins [27] (with all the caveats discussed in the previous sec-

tion). The expression of multiple constructs from individual proteins allowed researchers to

recognize fragments that could fold independently and often can be assigned specific func-

tions. Three-dimensional structures of many of these domains have been determined, so here

we use the mapping of the SARS-CoV-2 proteins into the PDB structures/models as a proxy

for identification of domain boundaries (Table 2), in addition to those identified through the

literature.

We also looked at regions in between the solved structures/models, assuming that these

would form important linker regions or domains whose structures remain unsolved (Fig 2 and

Table 2). The complete list of domains found in SARS-CoV-2 proteins, and the relative excess

or dearth of mutations in them, is provided in S2 Table.

We see domains with significantly different mutation frequencies in four proteins: nsp3,

nsp4, N (nucleocapsid phosphoprotein) and S (spike/surface glycoprotein) protein. In N pro-

tein we see that the structured regions i.e., the RNA binding domain and the dimerization

domain (PDB IDs 6m3mA and 6wjiA, respectively), are significantly under-mutated. This

Fig 2. Domains and missense mutation rate per 100 nt window in the nsp3 protein.

https://doi.org/10.1371/journal.pcbi.1009147.g002
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effect can probably be explained by the rest of the nucleocapsid protein (including the region

between the two domains) being partly disordered, since such regions are typically much more

tolerant of mutations (for the detailed discussion of mutation rate in different parts of the N

protein–see the section Significantly lower mutation rate in the region of overlapping reading
frames). In line with this, we see that the region between the domains is significantly over-

mutated. In nsp3, three domains are over-mutated (Ubl1, ADRP and a linker domain) and

four are under-mutated (SUD, another linker, Y1 and CoV-Y domains). The SUD domain,

which is further composed of two macrodomains (Mac2 and Mac3), has been shown to bind

to G-quadruplexes. This binding occurs via lysine residues in both macrodomains; however, it

was shown through mutational analyses that only the lysine residues in Mac3 are essential for

binding [28]. Moreover, this binding appears to be essential for viral replication [29], support-

ing the low mutation rate of this domain. The Ubl1 and ADRP domains have both been sug-

gested to interfere with the host immune response. However, the connection between their

functions and the observed mutation distribution is less clear, particularly since they may per-

form more than one function [22].

Evidence of protein structure—driven purifying selection in SARS-CoV-2

The proportion of missense mutations in structurally characterized protein residues of SARS-

CoV-2 increases with their increasing solvent exposure following a known trend observed in

many protein families from different organisms [10]. There is a strong, nearly linear increase

in the rate of missense mutations, with synonymous mutations remaining at an approximately

constant level, similar to their flat distribution along the genome discussed earlier (Fig 3A).

The strong change in missense mutations rates is explained by tightly packed cores presenting

strong constraints for amino acid residue choices and many mutations there leading to

unfolded protein products. Protein-protein interaction interfaces do not pack as tightly as pro-

tein cores, but also have specific amino-acid composition and their mutations may lead to

function-affecting changes in protein complex formation. Notably, in cancer, we see the oppo-

site effect, with disproportionately high number of driver mutations found on protein-protein

Fig 3. Frequencies of missense (red) and synonymous (blue) mutations for residues buried in the protein core,

exposed to the solvent and involved in known protein-protein interfaces. A) The purifying selection decreases with

increasing solvent exposure. B) Exposed residues are very over-mutated and buried residues are very under-mutated.

For interfaces, the mutation rate falls between that for exposed and buried residues.

https://doi.org/10.1371/journal.pcbi.1009147.g003
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interfaces of cancer driver genes. SARS-CoV-2 non-structural proteins are known to form

higher order assemblies essential for their function [30], thus, we can expect that in most cases

interface residues should be conserved. This hypothesis is confirmed by the results shown in

Fig 3B, where the ratio between missense and synonymous mutations for the residues on

known protein interaction interfaces falls to a value between those for exposed and buried

residues.

In the calculations shown here we only used the information on currently known protein-

protein interfaces in SARS-CoV-2 proteins, based on experimental structures of viral protein

complexes. We can expect that “unexplained” conserved patches on the surfaces of SARS-

CoV-2 proteins may aid the discovery of some yet unknown interaction interfaces.

Significantly lower mutation rate in the region of overlapping reading frames. Over-

lapping reading frames are common in viruses, resulting in local protein coding density over

100% [31]. Systematic analyses suggest that combined negative selection on two reading

frames results in decreased rate of all mutations as mutations synonymous in one reading

frame may be missense (and potentially deleterious) in another reading frame [32]. The N-ter-

minal part of the Nucleocapsid gene of SARS-CoV-2 is translated into two different reading

frames resulting in an additional gene coding for a functional protein Orf9b. A similar overlap-

ping reading frame is suggested for the region coding for Orf14. We tested the rate of muta-

tions in the region of the Nucleocapsid protein which is coding for two proteins in two

different reading frames and compared the mutation rate in this region to the background rate

for the entire gene confirming the expected result (see Fig 4). The largest decrease in the rate

of mutations is observed in the region where proteins coded in two reading frames (Orf9b and

Nucleocapsid) have well-defined structures. The N-terminal region of the Nucleocapsid gene

does not have an experimental structure and is predicted to be structurally disordered and, as

Fig 4. A) Regions of Nucleocapsid gene targeted by the diagnostic PCR-based tests. Primers are shown as continuous

lines and probes–as dotted lines. Primers and the probe of the same test are shown in the same color. B) The open

reading frames: Orf9b is shown in red, Orf14 –in blue and Nucleocapsid–in black. The regions coding for

experimentally verified stable protein structures are shown as continuous lines and regions known to be structurally

disordered—as dotted lines. Orf14, whose protein structure remains to be determined is shown as a dashed line. C)

The rate of all (missense + synonymous) mutations per 100 nt windows. P-values from binomial tests are given for

regions which are significantly under- or over-mutated (the entire Nucleocapsid ORF was used as a background).

https://doi.org/10.1371/journal.pcbi.1009147.g004
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such, is expected to impose less constraints on mutations [33]. Despite the fact that it also over-

laps with Orf9b (see Fig 4), the density of mutations there is not decreased.

The protein-coding Orf14 does show only moderate decrease in mutation density, in the

region where it overlaps in a different reading frame with the gene coding for Nucleocapsid.

This is probably again explained by the fact that it mostly overlaps with the structurally disor-

dered region of the Nucleocapsid protein which does not impose strong constraints on mis-

sense mutations.

These observations have important practical implications for the selection of primers and

probes for COVID-19 diagnostic tests as mutations in their target genomic regions have detri-

mental effect on their accuracy. Taking into account constraints on mutation rate imposed by

protein structure and function may help in selecting regions which are less likely to accumulate

mutations in the future. Unfortunately, in fact, multiple PCR-based diagnostic tests for

COVID-19 target the genome region encoding the Nucleocapsid protein (see Fig 4) with some

of them mapping to the highly mutated disordered protein regions. We discuss this issue in

more detail in a separate section.

Missense mutations in epitopes on the Receptor Binding Domain of the

Spike protein

The Spike protein is the main surface antigen of SARS-CoV-2, a preferred target of therapeutic

antibodies for COVID-19, and the immunogen used in the currently available vaccines. There

are already more than 40 structurally characterized complexes of various types of antibodies

with the Spike protein and almost all of them bind to its Receptor Binding Domain (RBD).

Therefore, in the following analysis, we only focused on epitopes localized on the RBD.

Substitutions of residues in epitopes are a serious potential problem for both therapeutic

antibodies and vaccines. At the same time, many of these epitopes overlap with the part of the

RBD surface that binds to human ACE2 –the main entry receptor for SARS-CoV-2. The sur-

faces mediating interactions between SARS-CoV-2 proteins are under-mutated indicating

purifying selection (Fig 3B) and therefore it can be expected that the RBD-ACE2 interface

would also be under-mutated.

Indeed, the comparison of missense mutation rates in different groups of residues of the

Spike protein trimer shows that the rate of missense mutations in epitopes is close to that of

other exposed residues (see Fig 5A). However, exposed residues involved in the RBD-ACE2

interface appear to be under strong purifying selection as they are significantly under-mutated

as compared to other exposed residues (p-value = 0.03). This is expected as the RBD-ACE2

interface is essential for the entry of the virus into the host cell and any, even minor, disruption

of its binding would most likely diminish the ability of the virus to enter host cells. As a result,

the epitope residues that are also involved in the RBD-ACE2 interface are effectively “pro-

tected” from mutations. It seems that mutations, especially those which are observed multiple

times (higher virus counts), are unlikely to be found on this interface (Figs 5B and 6). In indi-

vidual epitopes, the positions significantly involved in contact with ACE2 only rarely have

mutations and these mutations usually have low viral counts (see Fig 6). While sufficient statis-

tics for these trends are still lacking, they support the idea that antibodies targeting epitopes

with large overlap with the ACE2 interaction interface are at a lower risk of immunological

escape by the virus.

The rate of mutations in regions targeted by the diagnostic PCR tests

The adverse effects of SARS-CoV-2 genomic mutations on the PCR-based diagnostic test

results have already been discussed by others [34,35] (also see the GISAID page on popular
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Fig 5. Mutations in known epitopes of the RBD of SARS-CoV-2 spike protein: A) Frequencies of missense (red) and

synonymous (blue) mutations in (from the left to right): residues buried in the Spike protein core, in its exposed residues, in all

residues from (structurally characterized) epitopes in RBD, and in all residues involved in binding to the human ACE2 receptor.

B) The virus counts of missense mutations in epitopes as a function of the percent of residue’s surface that is involved in the

RBD-ACE interface.

https://doi.org/10.1371/journal.pcbi.1009147.g005

Fig 6. An overview of mutations in structurally characterized epitopes on RBD of SARS-CoV-2 spike protein. The

percentages of residue’s area in contact with ACE2 are shown as blue bars. The number of epitopes a residue is

involved in is shown as white bars. The prevalence of missense mutations in epitopes is shown as red bars on the

opposite (logarithmic) scale. For more details on mutations in currently structurally characterized epitopes, see S2 Fig.

https://doi.org/10.1371/journal.pcbi.1009147.g006
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primers available at https://www.gisaid.org/). The false-negative results of the PCR tests, espe-

cially of the TaqMan-qPCR assay are linked to mutations and the high sensitivity of this tech-

nique to primer/probe-template mismatches [36,37]. Both missense and synonymous

mutations have an impact on the accuracy of PCR tests, but only missense mutations are

under structural and functional constraints imposed by proteins. Nevertheless, since missense

mutations comprise most (59%) of the mutations in the SARS-CoV-2 genome, the overall

mutation rate depends mostly on missense mutations.

Here we investigated the mutation rates of the target regions of the widely used PCR prim-

ers and probes in the context of proteins and protein domains encoded by these regions. To

this end, we collected the sequences of primers and probes commonly used for COVID-19

diagnostic PCR assays. The coordinates of the genomic target regions of these primers and

probes were obtained by mapping them to the reference genome used in this study (GenBank:

MN908947.3) and then these genomic coordinates were mapped to SARS-CoV-2 proteins and

(where possible) to experimental structures. As expected, the tests targeting the genomic

regions encoding highly conserved proteins whose functions are essential to the viral life-cycle,

such as RdRP, show the lowest rate of mutations (Fig 7A). More generally, target regions

encoding stable, protein structures have lower mutation rates than those encoding structurally

disordered protein regions. Regions coding for structurally disordered proteins are known to

be enriched in mutations [33] and this applies to the regions targeted by some widely used

diagnostic tests (Fig 7B). The examples of such frequently mutated target sequences are the tar-

gets of 2019-nCoV_N1 (also known as RX7038-N1 or CDC N1) primers and probe as shown

in Fig 7B. These regions encode the structurally disordered region of the SARS-CoV-2 Nucleo-

capsid protein. Our predictions of structural disorder obtained using the Disopred program

[38] were recently confirmed experimentally as it was shown that the SARS-CoV-2 Nucleocap-

sid protein is highly dynamic and contains three disordered regions [39]. Such regions are less

suitable as targets of PCR-based diagnosis of SARS-CoV-2. At the same time, the region cod-

ing for RdRP has few mutations (Fig 7B) and, thus, is a more reliable target for SARS-CoV-2

diagnostic purposes. The list of diagnostic primers and probes, mutation counts in their target

regions, and proteins encoded by these regions are provided in S4 Table.

Fig 7. The frequencies of SARS-CoV-2 mutations in genomic regions targeted by the primers and probes of the diagnostic PCR

tests A) The regions targeted by popular PCR tests have lower missense mutation rates when those regions are structurally

characterized or map to the RdRP structure, and higher missense mutation rates when the regions are structurally disordered.

On the other hand, the rate of synonymous mutations remains roughly the same. B) Examples of the effects of constraints

imposed by encoded proteins on rates of mutations in regions targeted by the PCR tests. The region targeted by the

2019-nCoV_N1 PCR test (top) encodes the structurally disordered linker region of the Nucleocapsid protein. The region

targeted by the nCoV_2019 PCR test (bottom) encodes the RNA-dependent RNA polymerase (RdRP). All reported counts are

based on 192,030 high-coverage genomes obtained as of Dec 3rd, 2020 from the GISAID website.

https://doi.org/10.1371/journal.pcbi.1009147.g007
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Discussion

In this manuscript, we have shown that the connection between the distribution of amino acid

mutations and structures of the proteins encoded in the genome is clearly evident in the evolu-

tion patterns for the SARS-CoV-2 virus.

The rate of missense mutations significantly varies along the SARS-CoV-2 genome, while

the rate of synonymous mutations shows much lower variability. This indicates that mutations

are significantly impacted by the selection mechanisms on the protein level. A simple analysis

of the rate of missense mutations along the genome reveals some strong maxima and minima.

Some peaks of mutation rate are correlated with structurally disordered regions where struc-

tural constraints on amino-acid substitution are generally lower [33]. At the same time, some

deep minima in mutation rate correspond to known essential regions of SARS-CoV-2 proteins

whose functions put significant constraints on the possible mutations. At least one deep mini-

mum in the rate of missense mutations corresponds to the structurally uncharacterized C-ter-

minal domain of nsp3, suggesting that it has a well-defined structure whose conservation is

essential for the viral life cycle. The analysis of mutation frequencies of individual proteins and

domains further corroborated these observations.

Additionally, the mutations in SARS-CoV-2 proteins follow a known trend [9] with posi-

tions corresponding to the residues in protein cores mutated less often than those correspond-

ing to solvent-exposed residues. Positions on the protein-protein interfaces present an

intermediate case, but it is possible that the existence of some as yet unknown interaction

interfaces complicates the analysis. This also opens up a possibility of searching for such inter-

faces by looking for patches of below-average sequence variability on protein surfaces. Another

fascinating example of constraints imposed by protein structures on SARS-CoV-2 mutations

are proteins encoded by overlapping reading frames. In agreement with trends observed ear-

lier in bacteria [33], the region of the Nucleocapsid gene that codes for two different protein

structures in two reading frames shows a significantly lowered rate of mutations.

The analysis of the mutation pattern in the SARS-CoV-2 virus is interesting from the evolu-

tionary point of view but may also be of practical importance. For instance, it makes it possible

to predict which of the currently known epitopes on the surfaces of SARS-CoV-2 proteins are

more likely to undergo widespread mutations in the future. Similar predictions can be useful

for regions targeted by primers and probes used in PCR-based diagnostic tests for COVID-19,

as there is already evidence that the accuracy of some of these tests has been negatively affected

by the accumulation of multiple mutations [40]). We show examples from both categories,

where structure constrained mutation rates may differentiate between evolutionarily stable

and unstable epitopes or probe sites, leading to antibodies less prone to viral escape and more

reliable PCR-based diagnostic tests, respectively.

It is noteworthy that another study which addressed mostly positive selection in the regions

of the SARS-CoV-2 genome [41] reports high conservation of the central RNA replication

machinery (nsp6-nsp13), suggests both strong positive and negative selection for the Spike pro-

tein and high conservation of the Orf3a-N region. While our analysis addresses mostly negative

selection, the last of these observations is not in agreement with ours as we report most of these

genes in the Orf3a-N region to be over-mutated. We believe that the difference between these

analyses is partly due to the different scope of the two studies (RNA level analysis [41] and pro-

tein level in our analyses) and partly due to the limited number of genomes used by Berrio et al.
[41]. Currently, the rate of missense mutations in some parts of the Orf3a-N region approaches

3 mutations per nucleotide suggesting very low conservation for these proteins.

Our simple approach of analyzing the frequency of mutations in genomic regions coding

for proteins or domains, originally applied to cancer [18,42], has its limitations. It was most
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appropriate when the number of known SARS-CoV-2 genomes (and the number of detected

mutations) was relatively low. With rapidly accumulating data and increasing rates of recur-

rence, mutation counts (which, in the beginning, were most likely linked to founders’ effects)

are expected to be increasingly correlated with fitness. However, at the time of finalizing this

manuscript the rate of missense mutations was still a good measure of local negative selection

as demonstrated by its expected strong dependence on the residues’ solvent exposure and

anticipated high value in structurally disordered regions.

Methods

Rate of mutations definition

In our analysis we focus on the rates of missense mutations (with the exception of overlapping

reading frames where we analyze all mutations). However, in figures we also often show num-

bers of synonymous mutations as the illustration of the fact that their distribution is mostly flat

and (as expected) it does not significantly differ between regions defined by structural and

functional features of proteins. In the manuscript we use the term “rate of mutations” for the

number of distinct mutations in a given protein region or per 100 nt. This does not include

virus counts (numbers of known genomes with a given mutation) so in our approach each

mutation is counted only once. We provide a more detailed justification of this approach in

the Results section.

Data collection and curation

Sequences and metadata of complete SARS-CoV-2 genomes were retrieved from GISAID

(https://www.gisaid.org/). as of December 3rd, 2020. All low-coverage genomes i.e., genomes

containing less than 29,000 nt. and those containing more than 1% of undetermined nucleo-

tides (Ns) based on GISAID cutoff, were removed. Several recent studies have shown that each

coronavirus genome has median minority variants (either inter- or intra-host) ranged from

1–38 [43–45] and this median range recorded as roughly 1–10 for point mutations (substitu-

tions) per sample [46]. The high rate of mutations could simply arise from sequencing errors

as pointed out in the literature [46] (also see https://virological.org/t/issues-with-sars-cov-

2-sequencing-data/473). Therefore, to avoid including spurious mutations, we excluded

genomes with substitution exceeding a cutoff of 1.5 interquartile range (IQR) above the 3rd

quartile of substitution rates in all genomes.

This filtering procedure resulted in 192,030 genomes and this set was used in all calcula-

tions and analyses in this study. One of the early annotated and sequenced complete genomes

of SARS-CoV-2 (GenBank: MN908947.3) was retrieved from The National Center for Biotech-

nology Information (NCBI) and used as a reference for all genomic coordinates and as a query

in all alignments.

Alignment, variant calling, and annotation

We calculated a multiple sequence alignment (MSA) of all high-coverage SARS-CoV-2

genomes using MAFFT version 7 (https://mafft.cbrc.jp/alignment/server/) with the default

parameters. The MSA file was then processed using SNP-sites [47] and BCFtools version 1.9

[48] for variant calling and variant normalizations, respectively. In all analyses, we only consid-

ered single nucleotide substitutions involving unambiguous nucleotides (A, T, C, G). In the

text we simply refer to them as “mutations”. All variations identified in this study along with

the corresponding metadata are accessible via VarCoV application available at http://

immunodb.org/varcov/.
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To annotate variants, we used SnpEff (http://snpeff.sourceforge.net/). We used R package

“vcfR” to manipulate and visualize variant calling format (VCF) data. The complete genome of

SARS-CoV-2 (GenBank: MN908947.3) was used as a reference for genomic coordinates of

proteins, protein structures, and models.

Comparison of missense mutations rate in non-structural proteins

(Orf1ab) and in the structural and accessory proteins

For each protein (except for the two very short peptides Orf3b and nsp11), we counted the

total number of missense mutations (based on genomic positions) that were observed in at

least one sample (that is, virus counts were ignored). If two mutations occurred at the same

genomic position but resulted in different base substitutions, they were counted

independently.

We then used the (two-sided) binomial test to compare:

1. the rate of missense mutations in Orf1ab (except nsp11) against the rate of missense muta-

tions in the complete proteome (excluding Orf3b and nsp11).

2. The rate of missense mutations in the set of all structural and accessory proteins (except

Orf3b) against the complete proteome.

3. The rate of synonymous mutations in Orf1ab to the full proteome.

4. The rate of synonymous mutations in the set of all structural and accessory proteins to the

full proteome.

(The binomial tests were performed in a manner similar to the analysis of mutation rates in

individual proteins, described below). We found that Orf1ab is significantly under-mutated,

while the structural and accessory proteins are significantly over-mutated in both missense

(p = 8.01x10-75) and synonymous mutations (p = 5.72x10-6). We further used Pearson’s Chi-

squared test with Yates’ continuity correction (as implemented in R) to assess the significance

of the difference between the proportion of missense and synonymous mutations in these two

regions (p = 1.85x10-12). Because of these significant differences we decided to use separate

backgrounds of Orf1ab and structural and accessory proteins to evaluate over- and under-

mutation of individual proteins.

The full list of proteins used in this analysis is provided in the S1 Table.

Assessing differences in rate of missense mutations in individual

SARS-CoV-2 proteins and domains

For the assessment of differences in mutation frequencies of individual proteins and domains

we compared the rate of missense mutations in these regions to the rate of missense mutations

in some larger background region encompassing the protein/domain of interest.

We used the binomial test to identify individual proteins and domains that have signifi-

cantly different mutation frequencies, when compared to an appropriate background mutation

rate. This approach was used previously by our group in the eDriver algorithm [27] to evaluate

the significance of differences in mutation rates between domains of cancer driver proteins.

The arguments for the binomial test, which are the number of successes, the number of tri-

als, and the expected probability of success, were set as follows:

1. The number of successes was the observed number of missense mutations in the protein/

domain being analyzed. This was counted as the total number of distinct missense muta-

tions in that protein/domain observed in at least one sample. Therefore, virus counts (the
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number of samples where the mutation was observed) were ignored, since we assumed

that, in most cases, these would not represent independent mutation events (see discussion

of recurrence in the Results section). However, missense mutations that occurred at the

same genomic position, but resulted in different base substitutions were counted

independently.

2. The number of trials was the number of missense mutations in the background region used

for comparison.

3. The expected probability of success (under the null hypothesis) was equal to the length of

the protein/domain divided by the length of the background region.

All lengths were calculated in terms of genomic positions (i.e., the length of the genomic

region coding for the protein/domain being analyzed). Missense mutations were also counted

at the level of genomic positions.

The following approaches and background regions were used in the analyses of individual

proteins and domains:

1. We used the set of all non-structural proteins (Orf1ab) (see note below) as the background

for analysis of individual non-structural proteins, and the set of all structural and accessory

proteins (see note below) as the background for the analysis of individual structural and

accessory proteins.

The full list of proteins analyzed can be found in S1 Table. Note: Two very short peptides

Orf3b and nsp11 coded in alternative reading frames (containing 9 bases and 38 bases respec-

tively) were excluded from these analyses.

1. Domains were identified based on protein structures or models and through the literature.

(For that purpose, only structures/models representing segments of the protein and not the

full protein were considered.) We also considered regions in between known structures/mod-

els to represent domains as well. The full list of domains can be found in S2 Table. For each

domain analyzed, the encompassing full protein was used as the reference background region.

Structural coverage of the SARS-CoV-2 proteome and derived structural

characteristics

The structural data for biological assemblies of SARS-CoV-2 was downloaded from Corona-

virus3D server developed recently by our group[12]. The Coronavirus3D server provides links

to experimental structures of SARS-CoV-2 proteins stored in PDB [13] and models of protein

regions of SARS-CoV-2 for which direct structural characterization is still lacking. Models

were calculated with Modeller [49] based on FFAS [50] alignments. For the purpose of this

study, we prepared a non-redundant list of structures which included non-overlapping struc-

tures and models providing only one structural characterization for each residue where possi-

ble (with the exception of structures coded in two different reading frames). The list of

structures and models used in this study is provided in S3 Table.

The collected experimental and modeled biological assemblies of SARS-CoV-2 proteins

were used to calculate solvent exposure with the GetArea program [51]. Solvent exposure was

calculated separately for biological assemblies and for isolated chains. The buried residues

were defined as those with less than 20% of their surface exposed to the solvent according to

GetArea. The remaining residues were classified as exposed. Interfaces were defined as a subset

of residues whose solvent exposure decreased by at least 20% of their total area in biological

assembly as compared to an isolated chain.
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Assessment of mutation frequencies as function of solvent exposure

The list of single nucleotide mutations in SARS-CoV-2 genomes (prepared as described in the

section Collection and curation of SARS-CoV-2 variation data) was merged with the solvent

exposure data prepared for residues of SARS-CoV-2 proteins (as described in the previous sec-

tion). The total numbers of synonymous and non-synonymous mutations were then calculated

for codons of protein residues for different ranges and categories of solvent exposure. The sig-

nificance of differences in rate of missense mutations between buried, exposed, and interface

residues was again assessed using binomial tests as described in previous sections with the

entire proteome of SARS-CoV-2 used as the background.

Rate of mutations in epitopes on RBD of Spike and in Spike-ACE2

interface

For these calculations we used the following definitions. Epitopes include residues whose sol-

vent exposure decreases by at least 20% of their maximal solvent exposed area in the RBD-anti-

body complex as compared to RBD alone. Similarly, ACE2-contact area for any residue from

RBD is the % of its solvent exposure lost when RBD is bound to ACE2. Antibody binding and

ACE2 areas were derived from separate PDB entries. For the purpose of comparison all epi-

topes are shown in the same structural context of the RBD-ACE2 complex (PDB id 6m0j)

rather than in the context of the antibody RBD complexes. However, RBD may undergo some

conformational changes in complexes with antibodies.

Rate of mutations in overlapping reading frames

In the overlapping reading frames, we tested differences in rate of all mutations rather than

only missense mutations as mutations which are missense in one frame may be synonymous

in other and vice versa. The significance of the changes in rate of all mutations in different

regions of Orf9b and Nucleocapsid proteins was calculated using binomial tests in a way analo-

gous to that used for individual proteins (see the previous section). For example, the number

of all mutations in the region of the overlap of two structures coded in different reading frames

(positions 28415–28574), the total number of mutations in Nucleocapsid and the ratio of the

length of the overlap to the total length of Nucleocapsid were used as number of successes,

number of trials and background probability in binomial tests, respectively. All lengths were

calculated in terms of nucleotides.
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20. Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, et al. Phylogenetic analysis of

SARS-CoV-2 data is difficult. bioRxiv. 2020.

21. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. The

coding capacity of SARS-CoV-2. Nature. 2021; 589(7840):125–30. Epub 2020/09/10. https://doi.org/

10.1038/s41586-020-2739-1 PMID: 32906143.

22. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain

protein. Antiviral Res. 2018; 149:58–74. Epub 2017/11/13. https://doi.org/10.1016/j.antiviral.2017.11.

001 PMID: 29128390; PubMed Central PMCID: PMC7113668.

PLOS COMPUTATIONAL BIOLOGY Structural constraints on SARS-CoV-2 evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009147 July 8, 2021 20 / 22

https://doi.org/10.1038/s41467-020-19808-4
http://www.ncbi.nlm.nih.gov/pubmed/33243994
https://doi.org/10.1016/j.gene.2007.09.013
http://www.ncbi.nlm.nih.gov/pubmed/17928171
https://doi.org/10.1128/JVI.00411-20
http://www.ncbi.nlm.nih.gov/pubmed/32238584
https://doi.org/10.1016/S0022-2836(65)80134-6
https://doi.org/10.1038/nrg.2015.18
http://www.ncbi.nlm.nih.gov/pubmed/26781812
https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52
https://www.rcsb.org/news?year=2020&article=5e74d55d2d410731e9944f52
https://doi.org/10.1093/bioinformatics/btaa550
https://doi.org/10.1093/bioinformatics/btaa550
http://www.ncbi.nlm.nih.gov/pubmed/32470119
https://doi.org/10.1002/pro.3730
http://www.ncbi.nlm.nih.gov/pubmed/31531901
https://doi.org/10.4161/rna.8.2.15013
http://www.ncbi.nlm.nih.gov/pubmed/21593585
https://doi.org/10.1002/jmv.25762
https://doi.org/10.1002/jmv.25762
http://www.ncbi.nlm.nih.gov/pubmed/32167180
https://doi.org/10.1016/j.meegid.2020.104351
http://www.ncbi.nlm.nih.gov/pubmed/32387564
https://doi.org/10.1128/mBio.00524-13
http://www.ncbi.nlm.nih.gov/pubmed/23943763
https://doi.org/10.1038/nmeth.4364
http://www.ncbi.nlm.nih.gov/pubmed/28714987
https://doi.org/10.3390/pathogens9100829
https://doi.org/10.3390/pathogens9100829
http://www.ncbi.nlm.nih.gov/pubmed/33050463
https://doi.org/10.1038/s41586-020-2739-1
https://doi.org/10.1038/s41586-020-2739-1
http://www.ncbi.nlm.nih.gov/pubmed/32906143
https://doi.org/10.1016/j.antiviral.2017.11.001
https://doi.org/10.1016/j.antiviral.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29128390
https://doi.org/10.1371/journal.pcbi.1009147


23. V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for

SARS-CoV-2. Nat Rev Microbiol. 2020. Epub 2020/10/30. https://doi.org/10.1038/s41579-020-00468-6

PMID: 33116300; PubMed Central PMCID: PMC7592455.

24. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, et al. Structural insights into SARS-CoV-2 pro-

teins. J Mol Biol. 2021; 433(2):166725. Epub 2020/11/28. https://doi.org/10.1016/j.jmb.2020.11.024

PMID: 33245961; PubMed Central PMCID: PMC7685130.

25. Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, et al. Structural basis for

translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020; 369

(6508):1249–55. Epub 2020/07/19. https://doi.org/10.1126/science.abc8665 PMID: 32680882;

PubMed Central PMCID: PMC7402621.

26. Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, et al. SARS-CoV-2 Nsp1

binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol. 2020; 27(10):959–66.

Epub 2020/09/11. https://doi.org/10.1038/s41594-020-0511-8 PMID: 32908316.

27. Porta-Pardo E, Godzik A. e-Driver: a novel method to identify protein regions driving cancer. Bioinfor-

matics. 2014; 30(21):3109–14. Epub 2014/07/30. https://doi.org/10.1093/bioinformatics/btu499 PMID:

25064568; PubMed Central PMCID: PMC4609017.

28. Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, Kusov Y, et al. The SARS-unique domain (SUD)

of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLoS Pathog. 2009; 5(5):

e1000428. Epub 2009/05/14. https://doi.org/10.1371/journal.ppat.1000428 PMID: 19436709; PubMed

Central PMCID: PMC2674928.

29. Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. A G-quadruplex-binding macrodomain within the

"SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription

complex. Virology. 2015; 484:313–22. Epub 2015/07/08. https://doi.org/10.1016/j.virol.2015.06.016

PMID: 26149721; PubMed Central PMCID: PMC4567502.

30. von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, Zimmer R, et al. Analysis of intraviral

protein-protein interactions of the SARS coronavirus ORFeome. PLoS One. 2007; 2(5):e459. Epub

2007/05/24. https://doi.org/10.1371/journal.pone.0000459 PMID: 17520018; PubMed Central PMCID:

PMC1868897.

31. Chirico N, Vianelli A, Belshaw R. Why genes overlap in viruses. Proc Biol Sci. 2010; 277(1701):3809–

17. Epub 2010/07/09. https://doi.org/10.1098/rspb.2010.1052 PMID: 20610432; PubMed Central

PMCID: PMC2992710.

32. Rogozin IB, Spiridonov AN, Sorokin AV, Wolf YI, Jordan IK, Tatusov RL, et al. Purifying and directional

selection in overlapping prokaryotic genes. Trends Genet. 2002; 18(5):228–32. Epub 2002/06/06.

https://doi.org/10.1016/s0168-9525(02)02649-5 PMID: 12047938.

33. Brown CJ, Johnson AK, Daughdrill GW. Comparing models of evolution for ordered and disordered pro-

teins. Mol Biol Evol. 2010; 27(3):609–21. Epub 2009/11/20. https://doi.org/10.1093/molbev/msp277

PMID: 19923193; PubMed Central PMCID: PMC2822292.

34. Peñarrubia L, Ruiz M, Porco R, Rao SN, Juanola-Falgarona M, Manissero D, et al. Multiple assays in a

real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic vari-

ants during the COVID-19 outbreak. Int J Infect Dis. 2020; 97:225–9. Epub 2020/06/12. https://doi.org/

10.1016/j.ijid.2020.06.027 PMID: 32535302; PubMed Central PMCID: PMC7289722.
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