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Abstract

Purpose: Deep learning has had success with MRI reconstruction, but previously published 

works use real-valued networks. The few works which have tried complex-valued networks have 

not fully assessed their impact on phase. Therefore, the purpose of this work is to fully investigate 

end-to-end complex-valued convolutional neural networks (CNNs) for accelerated MRI 

reconstruction and in several phase-based applications in comparison to 2-channel real-valued 

networks.

Methods: Several complex-valued activation functions for MRI reconstruction were 

implemented, and their performance was compared. Complex-valued convolution was 

implemented and tested on an unrolled network architecture and a U-Net–based architecture over a 

wide range of network widths and depths with knee, body, and phase-contrast datasets.

Results: Quantitative and qualitative results demonstrated that complex-valued CNNs with 

complex-valued convolutions provided superior reconstructions compared to real-valued 

convolutions with the same number of trainable parameters for both an unrolled network 

architecture and a U-Net–based architecture, and for 3 different datasets. Complex-valued CNNs 

consistently had superior normalized RMS error, structural similarity index, and peak SNR 

compared to real-valued CNNs.

Conclusion: Complex-valued CNNs can enable superior accelerated MRI reconstruction and 

phase-based applications such as fat–water separation, and flow quantification compared to real-

valued convolutional neural networks.
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1 | INTRODUCTION

MRI is a useful medical imaging technique that, unlike CT, does not use harmful ionizing 

radiation. However, MRI is relatively slow. A typical scan requires patients to remain still 

for a long period of time to produce images of diagnostic quality. Scan times can be 

significantly reduced by undersampling k-space in various sampling patterns with negligible 

image quality loss.

Traditionally, reconstructing images from these accelerated scans has involved leveraging 

techniques such as parallel imaging1,2 and compressed sensing (CS).3 More recently, 

convolutional neural networks (CNNs) have been shown to provide a rapid and robust 

solution to MRI reconstruction as an alternative to slow iterative solvers. These 

reconstruction networks span a vast range of architectures and techniques. Examples include 

cascaded networks,4 generative adversarial networks,5,6 unrolled methods,7–11 hybrid 

networks,12–14 U-Nets,15–17 and automated transform by manifold approximation.18

Even though MRI data are complex-valued, the vast majority of current deep learning (DL) 

frameworks do not support complex-valued DL. Complex representations have not 

traditionally appeared in many DL architectures because most standard computer vision 

datasets are real-valued. In MRI, signals collected are complex-valued with both a real and 

imaginary component. Most reconstruction networks split real and imaginary components 

into 2 separate real-valued channels,5,8,10–13,18–20 which may not be the best way to 

represent complex numbers in a neural network. Recent work has shown the representative 

power and accuracy of complex-valued deep neural networks,21 which motivates applying 

complex-valued CNNs to MRI reconstruction.

Using complex numbers enables accurately representing both magnitude and phase, which 

are 2 essential components of certain signals. Phase is valuable in many MRI applications, 

including blood flow, QSM, fat–water separation, and chemical shift imaging. Thus, 

constructing a network that more accurately reconstructs the phase may improve various 

MRI applications.

A few DL networks applied to MRI reconstruction22–25 have demonstrated that DL 

performance can be improved over real-valued networks using complex-valued networks. In 

MRI reconstruction, Dedmari et al22 applied a complex dense fully convolutional network to 

MRI reconstruction using complex convolution and complex batch normalization. The 

authors demonstrated improved recovery of anatomy and perceptual quality using a 

complex-valued network in comparison to a real-valued network. Wang et al23,24 applied 

complex-valued convolution to a cascaded network for parallel MRI reconstruction. The 

authors used a complex-valued network and chose a residual structure to avoid vanishing 

gradient problems and to improve network convergence.

However, these works reconstruction primarily evaluated the quality of magnitude 

reconstructions and minimally treated how complex networks affect phase reconstruction 

and other phase-related applications. Additionally, these works only tested a single complex-

valued activation function for reconstruction, whereas testing several different complex-

valued activation functions could have added value to the comparisons. None of these works 
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experimented with an unrolled network architecture,7 which is a model-driven approach that 

incorporates known MR physics. Unrolled networks have demonstrated powerful results in 

MRI reconstruction. ,7,8,10,26–28– Therefore, it is important to understand how complex-

valued processing performs on an unrolled network architecture. Finally, previous works do 

not evaluate whether complex-valued networks perform better than real-valued networks 

over a variety of datasets, network architectures, and network size.

In this work, we investigate potential improvement in recovery of image phase using 

complex-valued CNNs compared to real-valued CNNs. We present an extensive study, 

examining several datasets, network architectures, and network sizes. We experiment with 

complex-valued convolution and complex-valued activation functions. We investigate 

performance of real-valued and complex-valued CNNs on phase reconstruction. Therefore, 

we compare results of complex versus real models on fat–water separation and flow 

quantification, tasks that heavily rely on accurate phase reconstruction, which is a novel 

contribution to studying complex models for MRI. In our comparisons, we give attention to 

both phase and magnitude reconstructions using image metrics, which take both phase and 

magnitude into account, as well as showing both phase and magnitude representative 

images.

Our novel contributions in this paper are:

1. Quantitative and qualitative comparison of reconstructions from real versus 

complex networks for an unrolled network architecture across an extensive range 

of width and depth, presented in Results section B and Results section C.

2. Quantitative and qualitative comparison of reconstructions from real versus 

complex networks for a U-Net–based architecture, presented in Results section 

D.

3. A novel comparison of real versus complex model performance on tasks, which 

heavily rely on accurate phase reconstruction: fat–water separation and flow 

quantification, presented in Results section F and H.

4. A formulation of complex-valued processing for MRI reconstruction, including 

complex convolution and complex activation functions, made publicly available 

at: https://github.com/MRSRL/complex-networks-release

2 | METHODS

2.1 | Complex-valued convolution

We begin with our representation of complex numbers within our convolutional neural 

network. A complex number can be represented by d = a + ib, where a = Re {d} and b = Im 

{d} are the respective real and imaginary components.

Instead of separating real and imaginary components of our data and performing real-valued 

convolution, we performed the complex-valued equivalent. To do so, we convolved a 

complex filter matrix W = X + iY, where X and Y are real-valued filters, with our complex 
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data d = a + ib. Using the distributive property of convolution, we can split this convolution 

into 4 separate real-valued convolutions:

W * d = (X + iY ) * (a + ib) = (X * a − Y * b) + i(Y * a + X * b) . (1)

These convolutions can be represented in matrix form by:

Re(W * d)
Im(W * d) = X −Y

Y X * a
b ⋅ Re(W * d)

Im(W * d) = X −Y
Y X * a

b . (2)

A complex-valued convolutional layer has half as many parameters compared to its real-

valued counterpart. To understand this, refer to Supplementary Information Methods section 

A.

For a fair comparison between complex-valued and real-valued models, we set the number 

of feature maps so each model has the same number of parameters.

2.2 | Complex-valued activation functions

Numerous activation functions have been proposed to work with complex numbers. In a 

standard real-valued CNN, we use the rectified linear unit (ReLU) applied separately to the 2 

channels. We experiment with modReLU,21,29 CReLU,21 zReLU,21 and the cardioid 

function.30 The motivation behind these activation functions can be found in Supporting 

Information Methods section B.

The ReLU function is defined as:

ReLU(d) = d if d ≥ 0
0 otherwise . (3)

The ReLU function is defined as:

modReLU(d) = ReLU( d + b)eiθd, (4)

where d ∈ ℂ; b is a learnable real-valued bias parameter; and θd is the phase of d.

The ℂReLU function, which applies separate ReLUs on real and imaginary components of a 

complex-valued input and adds them, is defined as:

ℂReLU(d) = ReLU(Re d + iReLU(Im d ) . (5)

The zReLU function is defined as:

zReLU(d) = d, if θd ∈ [0, π
2 ]

0, otherwise
. (6)

The cardioid function, which scales the input magnitude but retains the input phase, is 

defined as:
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cardioid(d) = 1
2d(1 + cosθd) . (7)

2.3 | Network architecture and training

MRI reconstruction with CNNs has been demonstrated with a variety of network 

architectures. We chose to use 2 different reconstruction networks to compare performance 

of real and complex convolution in order to demonstrate complex-valued processing across 

different architectures. The first network used is based on an unrolled optimization with 

deep priors based on the iterative soft-shrinkage algorithm.7,31 Unrolled networks have been 

commonly used in state-of-the-art MRI reconstruction 7,8,10,26,27,32 due to good 

performance and having the advantage of reducing the reconstruction solution space, which 

refers to the set of possible reconstructions that the model can be trained to produce. The 

unrolled network architecture is shown in Figure 1A. This network repeats 2 different 

blocks: a data consistency block and a de-noising block.

The first block of Figure 1A, known as the update block, is used to enforce consistency with 

the measured data samples. This block, otherwise known as the data consistency block, 

makes sure the final reconstructed image is consistent with the measured data to minimize 

the chance of hallucination. More information on this can be found in the Supplementary 

Information Methods section B. The second block of Figure 1A is used to denoise the 

image. The second network used is based on U-Net.6,16,17 U-Net was chosen as another 

architecture because U-Net is a quite different architecture compared to variants of the 

iterative soft-shrinkage algorithm-based unrolled architecture, such as variational10 and 

model-based DL33 networks. U-Net is also of increasing interest in MRI reconstruction.
6,16,17,34–37 The U-Net-based architecture is shown in Figure 1B.

The networks were trained with an L1 loss. The networks were optimized with the Adam 

optimizer38 with β1 = 0.9, β2 = 0.999 and a learning rate of 0.001. The U-Net was trained 

with a batch size of 3, and the unrolled network was trained with a batch size of 2. Networks 

were trained using an NVIDIA Titan Xp graphics card and an NVIDIA GeForce GTX 1080 

Ti graphics card. For further information, refer to Supporting Information Methods section 

B. The proposed methods were implemented in Python 2.7 using Tensorflow 1.14. To 

compute image quality, we evaluated normalized RMS error (NRMSE), peak SNR (PSNR), 

and structural similarity index (SSIM)39 between the reconstructed image and the fully 

sampled ground truth. NRMSE error and PSNR are evaluated on complex-valued images; 

however, SSIM is evaluated on magnitude-only images. An explanation of this is in 

Supporting Information section B.

2.4 | Dataset details

Three sets of data were obtained with Institutional Review Board approval and subject-

informed consent. First, fully sampled knee images were acquired using 8 coil arrays and a 

3D fast spin echo sequence with proton density weighting with fat saturation,40 which we 

expected to have the least phase variation. Fifteen subjects were used for training, and 3 

subjects were used for testing. The readout was in the superoinferior direction; thus, the 
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axial direction was subsampled. Each subject had a complex-valued volume of size 320 × 

320 × 256 that was split into axial slices of size 320 × V256. The knee dataset is available 

online: http://old.mridata.org/fullysampled/knees.

The second dataset that we used contained body scans, which were acquired using 16 coil 

arrays and a 3D RF-spoiled dual gradient-echo spoiled gradient-recalled sequence with 

gadolinium contrast.41,42 Here, we expected greater phase variation. Phase should 

systematically vary between the 2 echoes depending on tissue composition. This dataset 

could be used for fat–water separation, for which phase is important information. On 

average, TE1 was 1.1 ms and TE2 was 2.2 ms. The fully sampled direction was left–right. 

The dataset was split into 2D coronal slices of 104 patients for training and 45 patients for 

testing. Each subject had a complex-valued volume of size 224 × 220 × 180 that was split 

into coronal slices of size 220 × 180, with each slice considered a separate training example.

Third, fully sampled 2D phase-contrast (2D PC) cine images were acquired using 8 coil 

arrays in 180 pediatric patients. Signal phase directly encoded blood velocity, which was the 

clinical goal of the acquisition. Through-plane velocity was encoded for various vessels of 

interest including the aorta, pulmonary artery/vein, mesenteric vein, and splenic vein. Data 

acquisition was performed across several 1.5 Tesla and 3.0 Tesla scanners (Discovery MR 

750, GE Healthcare; Waukesha, WI), with a flip angle of 20 degrees, a complex-valued 

volume of approximate size 192 × 256 × 18, temporal resolution of 5.056 ms, and Venc 

ranging between 80 and 500 cm/s. 124 subjects were used for training, and 44 subjects were 

used for testing. Each cine dataset was split up by cardiac frames and slices because the 

network architecture accommodated 2D data.

Further sequence details are in Supporting Information Table S1. For each dataset, variable-

density sampling masks were generated using pseudo-random Poisson-disc sampling on the 

Cartesian grid, with acceleration factors ranging from 2 to 9 with a fully sampled calibration 

region of 20 × 20 in the center of k-space. Many sampling masks were used in order to train 

the model for a general Poisson-disc pattern, not just one sampling pattern. Sensitivity maps 

for the data acquisition model were estimated from k-space data in the calibration region 

using ESPIRiT.43 The Berkeley Advanced Reconstruction Toolbox44 was used to estimate 

sensitivity maps, generate Poisson-disc sampling masks, and perform a CS3 reconstruction 

with L1-wavelet regularization of these datasets for comparison purposes.

2.5 | Experiments

In the following experiments, we evaluated the effect of number of feature maps, network 

depth, and network architecture on reconstruction using complex-valued and real-valued 

networks. We did an extensive search of network parameters for later experiments, which is 

an extension of previous work. We then evaluated the performance in flow quantification 

and fat–water separation of complex-valued and real-valued networks.

To encourage reproducible research, we provide a software package in Tensorflow 1.14 to 

reproduce the results described in this article, which can be downloaded from: https://

github.com/MRSRL/complex-networks-release.
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2.5.1 | Experiment 1: Activation functions—The unrolled network was trained and 

tested on the knee dataset using real convolution and complex convolution. When real 

convolution was used, ReLU was applied separately to the real and imaginary channels. 

When complex convolution was used, the network was additionally trained and tested using 

the activation functions introduced above: modReLU, CReLU, zReLU, and the cardioid 

function. The goal of this experiment was to compare the reconstruction performance of real 

and complex convolution as well as the reconstruction performance of different complex-

valued activation functions. The impact of various proposed complex-valued activation 

functions on reconstruction accuracy was assessed by calculating average PSNR, NRMSE, 

and SSIM on a test dataset. The number of iterations and feature maps were fixed for this 

experiment to 4 and 256, respectively. The real-valued and complex-valued networks were 

designed to have nearly identical numbers of parameters. For all future experiments, we used 

CReLU as the complex-valued activation function because it performed the best over the 

other activation functions.

2.5.2 | Experiment 2: Complex convolution and network width—Using the knee 

dataset, we evaluated the impact of the width of the unrolled network on the performance of 

the real versus complex model by fixing the number of iterations to 4 while varying the 

number of feature maps in each layer. We defined network width as the number of feature 

maps per layer. To match the number of parameters for both models while keeping the 

number of unrolled iterations the same, the real-valued model had 6, 12, 22, 46, 90, and 182 

feature maps, whereas the complex-valued model had 8, 16, 32, 64, 128, and 256 feature 

maps. We trained and tested the unrolled network using real and complex convolution over a 

wide range of network widths because we wanted to see if the performance of the complex-

valued model was consistent over a range of number of feature maps. We did this by training 

many models of different sizes. We also wanted to investigate whether the performance of 

the real-valued and complex-valued models converged as both models gained more 

representational capacity.45 We measured performance by calculating PSNR, NRMSE, and 

SSIM.

2.5.3 | Experiment 3: Complex convolution and network depth—We 

investigated if the difference in performance of the real-valued and complex-valued models 

would converge faster as the number of parameters in each model increased. We defined 

network depth as the number of unrolled iterations per layer. Using the knee dataset, we 

varied the depth of the unrolled network by training real and complex-valued networks with 

2, 4, 8, and 12 iterations in each layer. The goal of this experiment was to see if the 

difference in performance, measured through the image metrics PSNR, NRMSE, and SSIM, 

of the real-valued and complex-valued models converged as the number of parameters in 

each model increased.

2.5.4 | Experiment 4: U-Net performance—We then trained and evaluated the 

reconstruction performance of 2 models, 1 with real convolution, and 1 with complex 

convolution, using the U-Net architecture. Our goal was to compare real and complex 

convolution on an additional architecture to investigate whether the difference in 

performance of the models remained over a variety of network architectures.
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2.5.5 | Experiment 5: Dual gradient-echo dataset—From the results of 

experiments 1-4, we decided to hereafter use an unrolled network with 128 feature maps and 

4 iterations to strike a balance between performance and memory usage. With a good 

candidate network, we performed 4 experiments with clinically important applications that 

depend on phase.

We then trained and evaluated the unrolled network on the dual gradient-echo dataset for 2 

models, 1 with real convolution and 1 with complex convolution. The goal of this 

experiment was to investigate whether the difference in performance of models with real and 

complex convolution was consistent in a dataset with more phase variation. The dual-echo 

dataset had more phase information than the knee dataset. Therefore, this experiment was 

specifically meant to measure effects of complex-valued convolution on phase.

2.5.6 | Experiment 6: Fat–water separation—We implemented the fat–water 

separation algorithm described in Berglund et al46 and applied it to the dual-echo dataset to 

compare the complex or real models of experiment 5 for fat–water separation. This is a 

clinically important application that relies on phase. Fat–water separation is important for 

applications such as liver fat quantification or T1 separation. Obtaining fat-suppressed 

images is used for post-contrast T1-weighted imaging in the body and extremities. This is 

commonly obtained by dual-echo imaging, which offers a balance between obtaining fat–

water separation and scan time. Whereas separation from 3 echoes is more robust, the time 

penalty is significant.

2.5.7 | Experiment 7: Phase-contrast dataset—We also trained and evaluated the 

unrolled network on the 2D PC cine dataset for 2 models, 1 with real convolution and 1 with 

complex convolution. The 2D PC cine dataset had more phase information than both the 

knee and the dual-echo dataset. Phase-contrast data are used for velocity-encoded images. 

Therefore, it was important to accurately reconstruct the phase information of such 2D PC 

data. The reconstruction of 2D PC images is important for extensive evaluation of patients 

with heart disease.

2.5.8 | Experiment 8: Flow quantification—To further analyze the accuracy of phase 

reconstruction in a clinical application, we compared the real and complex models’ 

performance on flow quantification of the 2D PC cine dataset. Accurate flow quantification 

is important for measuring patients’ blood flow in the arteries and the heart. Flow 

quantification is a much more clinically relevant metric than conventional image metrics. 

Also, image metrics are calculated over the entire image, whereas flow quantification is 

calculated only over the region of interest. For each exam, we selected a region of interest 

and measured the average flow (L/min) and the peak velocity (cm/s) of the real and complex 

models’ reconstructions. These flow metrics were measured using Arterys (Arterys Inc, San 

Francisco, CA), a medical image analysis tool. We then compared these flow statistics to the 

ground truth and evaluated which model had more accurate flow.
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3 | RESULTS

3.1 | Experiment 1: Activation functions

Comparisons of the various complex-valued activation functions’ reconstruction accuracy in 

the unrolled network on the knee dataset are shown in Table 1. ℂReLU achieves the best 

performance overall, with zReLU almost achieving the same performance.

In the unrolled network that was trained and tested on the knee dataset, the complex-valued 

CNN achieved superior PSNR (36.08 ± 3.06) compared to the real-valued CNN (34.18 ± 

4.51). The complex-valued CNN achieved superior NRMSE (0.13 ± 0.04) compared to the 

real-valued CNN (0.16 ± 0.06). Finally, the complex-valued CNN achieved superior SSIM 

(0.92 ± 0.02) compared to the real-valued CNN (0.90 ± 0.07).

Representative magnitude images from the unrolled models for the spin-echo–based knee 

dataset are displayed in Figure 2. Here, ReLU was used as the activation function for the 

real-valued model, and CReLU was used as the activation function for the complex-valued 

model. Typically, the complex-valued network produced a reconstruction closer to the 

ground truth, as evidenced by superior PSNR, NRMSE, and PSNR, than the real-valued 

network. Both networks typically outperformed CS with L1-wavelet regularization.3 Also, 

the complex-valued network produced a better phase reconstruction, as evidenced by 

superior NRMSE and PSNR compared to the real-valued network. In Supporting 

Information Figure S1, the red arrows suggest that the complex-valued network is able to 

better preserve and reconstruct phase details compared to the real-valued network.

3.2 | Experiment 2: Complex convolution and network width

The performance on a test dataset of the real and complex unrolled models as a function of 

network width is shown in Figure 3A. The number of iterations in each model was fixed at 4 

as the number of feature maps was varied while keeping the total number of parameters for 

each model approximately the same. The reconstruction performance from networks with 

complex-valued convolutions had superior PSNR, NRMSE, and SSIM compared to the 

networks with real-valued convolutions. As expected, the performance of both networks 

improved as network width increased. The gap in performance between the real and 

complex models stayed fairly constant as the number of parameters increased. This figure is 

replotted over number of total feature maps instead of number of total parameters in Figure 

S2.

3.3 | Experiment 3: Complex convolution and network depth

Figure 3B shows similar trends to the results of experiment 2. Here, the number of feature 

maps is fixed as the number of iterations was varied while keeping the total number of 

parameters for each model approximately the same. The complex-valued model had superior 

PSNR, NRMSE, and SSIM compared to the real-valued model for all number of iterations. 

As expected, the performance of both networks improved as network depth increased.
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3.4 | Experiment 4: U-Net performance

When complex convolution was used in the U-Net architecture, the reconstruction 

performance improved compared to the model with real convolution, with higher PSNR, 

lower NRMSE, and higher SSIM. The complex-valued CNN achieved superior PSNR 

(35.28 ± 2.34) compared to the real-valued CNN (35.00 ± 1.95). Additionally, the complex-

valued CNN achieved superior NRMSE (0.16 ± 0.03) compared to the real-valued CNN 

(0.17 ± 0.02). However, the complex-valued CNN achieved approximately equal SSIM (0.90 

± 0.05) compared to the real-valued CNN (0.90 ± 0.02).

Representative images from the U-Net are displayed in Figure 4. Again, the complex-valued 

network produces a reconstruction closer to the ground truth than the real-valued network. 

The red arrows in Figure S3 indicate differences in the reconstruction of phase details 

between the various models and CS with L1-wavelet regularization. These differences can be 

especially seen in the patellar tendon. As shown in the second column, the real-valued model 

introduced a phase wrapping error in the background of the phase images, whereas the 

complex-valued model and CS did not.

3.5 | Experiment 5: Dual gradient-echo dataset

In the unrolled network that was trained and tested on the dual-echo full-body dataset, the 

PSNR of reconstructions with complex-valued convolutions (29.51 ± 3.49) was superior to 

reconstructions with real-valued convolutions (28.54 ± 3.36). Additionally, the NRMSE of 

reconstructions with complex-valued convolutions (0.17 ± 0.02) was superior to 

reconstructions with real-valued convolutions (0.22 ± 0.08). Finally, the SSIM of 

reconstructions with complex-valued convolutions (0.78 ± 0.11) was superior to 

reconstructions with real-valued convolutions (0.77 ± 0.10).

Representative images from the unrolled network for the dual-echo full-body dataset are 

displayed in Figure 5. The model with complex-valued convolution often produced a much 

sharper reconstruction. Additionally, we observe from difference maps that the complex-

valued model produced both a magnitude and phase reconstruction that was visually more 

similar to that of the reconstructed ground truth because the vessels and anatomical structure 

are more visible.

3.6 | Experiment 6: Fat-water separation

In the fat-water separation experiments on the dual-echo dataset, we calculated the pixel-

wise percent error between the fat–water images of each model and the ground truth. On 

average, the fat–water separation of the complex model was 0.319% closer to the ground 

truth compared to the fat-water images of the real model. This pixel-wise percent error may 

be dominated by large errors in the fat–water separation. However, greater differences in 

performance can be seen in the actual fat–water images, as shown in Figure 6, which depicts 

fat and water maps of real, complex, and ground truth reconstructions for 2 different test 

patients. Red boxes highlight various discontinuations and inaccuracies in fat–water 

separation of the real model compared to the ground truth. The complex model was able to 

produce a more correct fat–water map for these regions. This suggests complex networks 

could be better for clinical applications involving fat–water separation.
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3.7 | Experiment 7: Phase-contrast dataset

In the unrolled network that was trained and tested on the phase-contrast dataset, the PSNR 

of reconstructions with complex-valued convolutions (33.50 ± 5.90) was superior to 

reconstructions with real-valued convolutions (32.27 ± 5.54). Additionally, the NRMSE of 

reconstructions with complex-valued convolutions (0.21 ± 0.10) was superior to 

reconstructions with real-valued convolutions (0.22 ± 0.08). Finally, the SSIM of 

reconstructions with complex-valued convolutions (0.88 ± 0.08) was superior to 

reconstructions with real-valued convolutions (0.86 ± 0.08).

Representative images from the unrolled network for the phase-contrast dataset are 

displayed in Figure 7. In Figure 7A, magnitude images from the second echo only are 

shown. In Figure 7B, the velocity-encoded image is shown, which is calculated using both 

echoes. The model with complex-valued convolution consistently produced more accurate 

reconstructions, for which both the magnitude and velocity-encoded images were closer to 

the ground truth than the model with real-valued convolution and CS with L1-wavelet 

regularization. This suggests that complex networks could be better for clinical 

cardiovascular applications.

3.8 | Experiment 8: Flow quantification

Results from the experiments comparing the real and complex models for flow 

quantification on the 2D PC data are shown in Figure 8, which compares the 2 models’ 

performance, measured in percent error between the model and the ground truth, for 2 

different flow metrics: average flow and peak velocity. The complex model had superior 

average flow estimation (6.27% error) than the real model (7.23% error). The peak velocity 

estimation of the complex model was 23.22% closer to the ground truth than that of the real 

model. Representative results are shown in Figure 9. From left to right in this figure are the 

real model reconstruction, complex model reconstruction, and ground truth reconstruction. 

This suggests that complex-valued networks may be more useful for the evaluation of blood 

flow of cardiac patients. Full-color videos are in the online-only Supporting Information 

Video S1.

4 | DISCUSSION

We have demonstrated that complex-valued CNNs can provide superior recovery of phase 

compared to purely real-valued, 2-channel CNNs, with clinical applications in fat–water 

separation and quantification of flow and velocity. We have also used complex-valued CNNs 

to significantly improve general MRI reconstruction compared to real-valued CNNs. In the 

majority of experiments, the complex-valued network achieved superior reconstructions 

compared to a real-valued network with the same number of trainable parameters.

Using complex networks to better reconstruct phase is a major novelty of this work. This can 

be best seen in the experiments done on phase-contrast MRI and associated flow 

quantification for cardiovascular applications, shown in Figure 9. Capture of peak velocities, 

which is critical to pressure gradient estimation, is markedly improved with complex 

networks. This is potentially because the complex network is better able to reconstruct each 
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temporal phase, thus creating more accurate velocity-encoded images and therefore more 

accurate estimations of average flow and peak velocity.

The significant impact of complex networks is also demonstrated on fat–water separation 

experiments, shown in Figure 6. There was not a large difference between complex and real 

networks in terms of pixel-wise percent error compared to the ground truth. However, this 

metric was calculated over the entire image and therefore does not necessarily accurately 

reflect the clinical impact of phase errors on interpretation of the images. A more clinically 

relevant assessment comes from inspecting the images to determine which networks had 

more areas where fat and water were erroneous swapped in the fat-water separated images. 

Figure 6 shows that the complex network is much more robust to difficult fat–water 

separation. Many areas are shown where the real network wrongly swapped fat and water, 

whereas the complex network did not. One possible explanation for this is the complex 

network can more accurately reconstruct phase than the real network.

Additionally, finer details in the phase are more visible in the complex-valued network, as 

shown by the red arrows in Figures 2B, 4B, and 5B. More accurate reconstruction of phase 

can especially be seen in the phase images of Figure 5B from the dual-echo body dataset and 

in the velocity-encoded images of Figure 7B from the phase-contrast dataset. In the dual-

echo body dataset, accurate phase reconstruction was needed for correct fat–water 

separation. In the 2D PC dataset, accurate phase reconstruction was essential for quantifying 

flow in the velocity-encoded images.

Several reasons suggest that complex-valued networks could have superior performance 

compared to real-valued networks for MRI applications. First, maintaining phase 

information throughout the network is important because many MRI applications use the 

reconstructed phase as valuable information. The phase is decoupled in a 2-channel real and 

imaginary convolutional neural network because different weights are applied to both input 

channels, potentially altering the phase. Second, the complex-valued weights have been 

shown to contain higher representative power compared to real-valued weights. For 

example, complex numbers have been lauded for enabling faster training,29 showing smaller 

generalization error47 and even allowing the network to have richer representational power.
29,48

The model with complex-valued convolution produced better image reconstructions over the 

model with real-valued convolution over a variety of architectures such as an unrolled 

network and a U-Net, as well as datasets such as a set of knee images, a set of dual-echo 

full-body images, and a set of phase-contrast images. We believe that there are 2 possible 

explanations for this. First, using complex-valued weights in our model with the complex-

valued convolutional layer, we are able to use more feature maps so the number of 

parameters is the same as in the model with the real-valued convolutional layer; therefore, 

this enables better reconstruction accuracy.8 Additionally, because the complex-valued 

network enforces a structure that preserves the phase of the input data, the reconstructed 

phase of the complex-valued network is typically visually closer (as measured by PSNR, 

NRMSE, and SSIM) to the phase of the ground truth compared to the reconstructed phase of 

the real-valued network.
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When the width and depth of the unrolled network were varied over a large range, the 

complex-valued network still achieved superior image reconstruction metrics with a constant 

gap in performance compared to the real-valued model, even as the number of parameters 

greatly increased. Beyond quantitative metrics, the reconstructed images from the complex-

valued network better show the details of anatomical structure. One possible explanation for 

this finding is that the complex-valued model can more accurately represent the complex-

valued nature of the data compared to the real-valued model, which must learn this complex-

valued nature. Therefore, the complex-valued model has an inherent advantage regardless of 

the network size. However, it is possible that we did not compare large enough models (due 

to GPU memory limitations) to see any potential convergence.

Across different complex-valued activation functions, CReLU achieved the best 

performance over the other, more complicated activation functions. These results suggest a 

potential for a better performing activation function for complex-valued networks; thus, 

future work could be directed toward exploring kernel activation functions, which allow the 

network to learn a trainable function for reconstructions, as described by Virtue et al30 and 

Scardapane et al.49

DL approaches have some advantages compared to CS in terms of robustness, image quality, 

and reconstruction speed. Here, complex networks performed better than CS by quantitative 

metrics. It should be noted that in some examples the results of both the real and complex 

DL methods looked overly smoothed compared to the CS result. This phenomenon is most 

apparent in Figure 2. This is a known drawback of CNNs for image restoration, as shown by 

Zhao et al.50 Despite this drawback, an advantage of these DL reconstructions over CS is 

greatly reduced reconstruction time. To address this drawback, we could use a better 

learning metric, such as a generative adversarial network, or add a perceptual loss to the 

reconstruction network.

Because we were using an off-the-shelf GPU with around 12 GB, we did have to constrain 

the number of layers and feature maps so our model would fit on this GPU. It is possible that 

our reconstruction performance would have been increased even further had we had access 

to a GPU with more memory. We could then have had more layers or feature maps—or even 

been able to treat our dataset as a volume instead of slices. This could also be easily 

extended to 4D datasets, where the time dimension could then be leveraged during the 

training of the model.

These methods are likely generalizable. Here, an unrolled network based on iterative soft-

shrinkage algorithm and a U-Net were used as the 2 tested network architectures. We 

showed complex networks were better across both the unrolled and U-Net architectures, 

which suggests that the superior performance is generalizable across network architectures. 

The unrolled network that was used in this work has not been widely investigated, which is 

one aspect of the novelty of the work. However, this leaves open the question of the 

generalization of complex networks to network architectures other than unrolled and U-Net, 

which could be pursued as future work. This complex-valued framework can be easily 

adapted to any other network architecture by directly replacing the 2 channel real-valued 

convolution layers of existing networks with the complex convolution layers. Additionally, 
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the superior performance of complex-valued CNNs can be generalized to many other 

applications, both in MRI and otherwise. This has implications in other MRI applications 

where the reconstructed phase is important, such as in 4D flow and QSM. Outside of MRI, 

complex-valued networks could help DL tasks wherever complex numbers are used, such as 

ultrasound, optical imaging, radar,51 speech,21 and music.21

Possible future experiments include adding the complex conjugate of the filter matrix, W = 

X − iY, to the learned feature maps. This conjugate filter could potentially give the network 

more representative power without adding more trainable parameters. This could assist DL 

MRI applications where the physical phenomenon of the complex conjugate is encountered, 

such as in off-resonance correction. Additionally, complex-valued networks could be 

extended to quaternion-valued networks52–54 with applications in DL-based reconstruction 

or RF pulse design.

5 | CONCLUSION

We have shown that complex-valued CNNs have superior image quality compared to real-

valued CNNs on several tasks for which phase accuracy is clinically important, such as flow 

quantification and fat–water separation. Complex networks were able to more accurately 

quantify the flow in 2D PC datasets, which could lead to better clinical decisions for cardiac 

patients. Complex networks were also able to construct more continuous and accurate fat–

water separated maps, which could lead to more accurate tasks further downstream, such as 

QSM or T1 mapping. Additionally, we have explored a variety of complex-valued network 

architectures with superior results compared to real-valued architectures. Our work shows 

complex-valued CNNs provide superior reconstructions compared to real-valued CNNs with 

the same number of trainable parameters, enabling potentially reducing MRI scan times by 

more accurately reconstructing images from subsampled data acquisitions using complex-

valued CNNs. Because of superior performance with deep complex-valued networks, we can 

improve the reconstruction of accelerated MRI scans. Complex-valued CNNs can be 

generalized to other reconstruction architectures and other DL MRI applications for which 

accurate phase reconstruction is important.
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FIGURE 1. 
A, One iteration of the unrolled network based on the iterative shrinkage-thresholding 

algorithm.7,8 This consists of an update block, which uses the MRI model to enforce data 

consistency with the physically measured k-space samples. Then, a residual structure block 

is used to denoise the input image to produce the output image ym+1. Each convolutional 

layer except for the last is followed by a ReLU and a complex-valued activation function 

(see Methods section B). B, The second reconstruction network architecture, which is based 

on the original U-Net for segmentation.15 Every orange box depicts a multi-channel feature 

map. The number of channels is denoted on top of each feature map representation. Each 

arrow denotes a different operation, as depicted by the right-hand legend. This network uses 

contracting and expanding paths to capture information. Note: ReLU, rectified linear unit
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FIGURE 2. 
Representative magnitude image results from the unrolled network, where the left column is 

the input zero-filled reconstructed image; the second column is the network with real 

convolution; the third column is the network with complex convolution; the fourth column is 

the compressed sensing with L1-wavelet regularization reconstruction; and the fifth column 

is the ground truth reconstruction using all the data. Each row was undersampled by factors 

of 2.25, 7.40, and 7.37, from top to bottom. The difference maps are displayed under each 

reconstruction
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FIGURE 3. 
A, Performance of the unrolled network as a function of network width on a test dataset. 

Here, the number of iterations is kept constant at 4, whereas the number of feature maps is 

varied for the complex and real networks such that the number of parameters for each 

evaluation is approximately the same. Compressed sensing does not use feature maps and is 

plotted as a constant. The test PSNR, NRMSE, and SSIM were evaluated for each network. 

B, Performance of the unrolled network as a function of network depth on a test dataset. 

Here, the number of feature maps is kept constant at 128 and 90 for the complex and real 
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networks, respectively, whereas the number of iterations is varied for each network. The 

number of iterations in compressed sensing does not change; however, its performance is 

plotted for reference. The test PSNR, NRMSE, and SSIM were evaluated for each network. 

Note: NRMSE, normalized RMS error; PSNR, peak SNR; SSIM, structural similarity index
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FIGURE 4. 
Representative magnitude image results from the U-Net, where the left column is the input 

zero-filled reconstructed image; the second column is the network with real convolution; the 

third column is the network with complex convolution; the fourth column is the compressed 

sensing with L1-wavelet regularization reconstruction; and the fifth column is the ground 

truth reconstruction. The top row was undersampled by a factor of 4, and the bottom row 

was undersampled by a factor of 6. The difference maps are displayed under each 

reconstruction
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FIGURE 5. 
Representative results from the unrolled network from the dual gradient-echo dataset, where 

the left column is the input zero-filled reconstructed image; the second column is the 

network with real convolution; the third column is the network with complex convolution; 

the fourth column is the compressed sensing with L1-wavelet regularization reconstruction; 

and the fifth column is the ground truth reconstruction. Each row was undersampled by 

factors of 6, 9, and 4, from top to bottom. The difference maps, magnified by a factor of 40, 

are displayed under each reconstruction. A, Magnitude images. B, Phase images. Red arrows 

indicate differences in visibility of small details
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FIGURE 6. 
The fat and water maps of the real, complex, and ground truth reconstructions for 2 different 

test patients. The red boxes highlight various discontinuations and inaccuracies in the fat–

water separation of the real model compared to the ground truth. The complex model was 

able to produce a more correct fat–water map for these regions
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FIGURE 7. 
Representative results from the unrolled network of the phase-contrast dataset, where the left 

column is the input zero-filled reconstructed image; the second column is the network with 

real convolution; the third column is the network with complex convolution; the fourth 

column is the compressed sensing with L1-wavelet regularization reconstruction; and the 

fifth column is the ground truth reconstruction. Each row was undersampled by factors of 9, 

6, and 4, from top to bottom. The difference maps are displayed under each reconstruction. 

A, Magnitude images of the second echo. B, Velocity-encoded images
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FIGURE 8. 
Quantitative results from the experiments comparing the real and complex models for flow 

quantification on the 2D PC dataset. This plot compares the 2 models’ performance, 

measured in percent error between the model and the ground truth, for 2 different flow 

metrics: average flow and peak velocity. The complex model had superior average flow 

estimation (6.27% error) than the real model (7.23% error). The peak velocity estimation of 

the complex model was 23.22% closer to the ground truth than that of the real model

Cole et al. Page 26

Magn Reson Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 9. 
Visual results from the experiments comparing the real and complex models for flow 

quantification on an exam from the 2D PC dataset. From left to right are the reconstruction 

of the real mode, reconstruction of the complex model, and reconstruction of the ground 

truth. For test patient 1, the average flow estimation across all phases is 3.31 L/min, 3.31 L/

min, and 3.49 L/min; and the peak velocity estimation is 270.82 cm/s, 124.59 cm/s, and 

107.63 cm/s, for the real, complex, and ground truth, respectively. For test patient 2, the 

average flow estimation across all phases is 0.45 L/min, 0.42 L/min, and 0.41 L/min; and the 

peak velocity estimation is 106.63 cm/s, 99.2 cm/s, and 96.31 cm/s, for the real, complex, 

and ground truth, respectively. Full color videos are in the online-only Supporting 

Information Video S1
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TABLE 1

Comparison of image metrics on test knee datasets with various complex-valued activation functions. The bold 

values denote which model performed the best under each image metric. Variable-density subsampling (R = 

7.9 ± 0.1)

Method NRMSE PSNR SSIM

Input images 0.72 ± 0.10 24.73 ± 2.4 0.76 ± 0.08

Real convolution with ReLU 0.39 ± 0.09 30.47 ± 2.5 0.88 ± 0.07

Complex convolution with:

 CReLU 0.31 ± 0.08 32.32 ± 3.6 0.90 ± 0.06

 modReLU 0.38 ± 0.09 30.67 ± 3.5 0.87 ± 0.07

 zReLU 0.32 ± 0.09 31.97 ± 3.4 0.89 ± 0.06

 ReLU 0.33 ± 0.08 31.88 ± 3.4 0.89 ± 0.07

 Cardioid 0.32 ± 0.09 31.86 ± 3.4 0.89 ± 0.06

Abbreviations: NRMSE, normalized RMS error; PSNR, peak SNR; ReLU, rectified linear unit; SSIM, structural similarity index.
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